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Preface to the Third Edition

As natural selection works solely by and for the good of each being,
all corporeal and mental endowments will tend to progress toward perfection.

Charles Darwin (1809-1882), The Origin of Species

Finally after 12 years of ROXIE development we have, thanks to Bernhard Auchmann, a user’s docu-
mentation of more than 130 pages included as Parts 8 and 9 into the third edition of this book. The other
chapters have accordingly been arranged into parts for analytical and numerical field computation, time
transient effects, and design and optimization. Annexes, bibliography and index have been grouped into
Part 7 so that the ROXIE user’s documentation can easily be printed and filed in a different folder, yet
taking advantage of cross-references from the documentation into the book and vise-versa.

With recently proposed projects for fast cycled accelerators with superconducting magnets, in-
creasing attention is focused on eddy current effects in the cables, yoke end-plates, copper wedges,
cold-bores and beam-screens. We thus included some chapters from Bernhard’s diploma theses on the
analytical and numerical calculation of eddy current problems. Goodzeit, Ball and Meinke have recently
proposed to build accelerator magnets from nested, tilted helices which produce an idealcos Θ current
distribution. We explain this principle in Chapter 14 as it may pave the way to high field magnets with
briddleNb3Sn conductors. We took advantage to correct (minor) errors in the theory chapters.

Stephan Russenschuck
Geneva, January 2006

Preface to the Second Edition

One of the more humbling experiences in e-publishing is the discovery of omissions, bugs and
typographical errors which can slip by in the rush to "press." To those I have confused I promise that this
revised edition will be a welcome relief.

I have also made more substantial changes in this version. I added Chapter 2 on the thermal and
operational margin of superconducting magnets; thanks to B. Auchmann for programming the Newton
algorithm. Thedigressionsand Chapter 9 have been added in order to hone the tools for the application
of discrete differential forms, planned for a future edition of the book. I have also extended the chapter
on LHC magnet polarities, in which the feedback and information provided by D. Bozzini, P. Proudlock,
S. Ramberger, R. Wolf and M. Zerlauth proved highly useful. I also added the draft version of the ROXIE
license agreement for the readers who would like to install the ROXIE program on their own platform.

Thanks to the students of EMAG-05 for their invaluable feedback, and in particular to N. Schwerg,
who also contributed the graphs in Section 27.3.3. R. de Maria provided the beautiful drawing of the
Roebel bar in Section 2.3. Thanks also to M. Strickler, who again has brushed up many sections of the
English text.

Stephan Russenschuck
Geneva, September 2005



Preface to the First Edition

Said a disappointed visitor,
’Why has my stay here yielded no fruit?’

’Could it be because you lacked the courage to shake the tree?’
said the master benignly.

Anthony de Mello (1931-1987), One Minute Wisdom.

This book has evolved from extended write-ups of lectures at the Joint Universities Accelerator School
(JUAS), the Vienna University of Technology, and the CERN Technical Training Course Series, covering
the electromagnetic design and optimization of accelerator magnets.

In the wake of the Large Hadron Collider (LHC) project at CERN, the proceeding HERA project
at DESY, and the (canceled) SSC project, a number of comprehensive books have been published on
the design of superconducting magnets, e.g., [139], [231], [107]. Other sources of information are the
proceedings of the Magnet Technology conferences, which are usually published in the IEEE Transac-
tions on Applied Superconductivity. The amount of publications is not surprising as the magnet systems
are the most costly items in accelerator projects. Nevertheless it was felt necessary to add a comprehen-
sive overview on mathematical foundations of the electromagnetic design and optimization techniques
applied to these magnets.

Finite-element and boundary-element techniques have become a standard tool in the design of
electromagnetic equipment and are increasingly combined with mathematical optimization routines.
The design of superconducting magnets (dominated by the requirement of an extremely uniform field)
requires accurate methods of numerical field computation. It is an advantage that the related field opti-
mization problems are basically limited to static magnetic fields and therefore the design and optimiza-
tion methods can be explained at the most simple problem in numerical field computation.

Superconducting magnet design can be split into two tasks: First the layout and optimization of the
superconducting coil and, secondly, the numerical field calculation of the magnetization in the iron yoke,
which mainly affects the lower order multipole field errors. This makes it possible to study analytical as
well as numerical methods on concrete examples.

After an introduction to the LHC project, the main differences between superconducting and nor-
mal conducting accelerator magnets are explained by means of a metamorphosis between the LEP and
the LHC main dipoles. Chapter 4 presents the foundations of linear algebra necessary for the under-
standing of vector-fields as mappings that assign to each point in the affine space a vector from the union
of all tangent spaces at this point. The principles of vector-analysis are reviewed with special emphasis
on the classical theory of space curves and their Freney-Serret frames. This will be needed at a later
stage for the design and optimization of coil ends in superconducting magnets in Chapter 30. Chapter 8
presents the Poincaré lemmata as the basis for the application of scalar and vector potentials to curl- and
divergence-free fields, respectively. In Chapter 10 different formulations of the Maxwell equations are
presented together with the necessary constitutive equations and the continuity conditions on material
boundaries. Also presented in this chapter are the measurement of the magnetic properties of yoke steels
and the constitutive equations for permanent magnet material. Chapter 11 reviews the different potential
formulations in iron and current free domains which all lead to a scalar Laplace equation. In this case the
fields are said to be harmonic. The concept of magnetic multipole coefficients is then explained and the
scaling laws needed for the interpretation of magnetic field measurements are derived. Chapter 12 de-



rives easy relations for the conceptual design of normal conducting magnets (including magnetic circuits
with permanent magnet excitation) and gives a rudimentary treatment of the subject of water cooling.

The solutions of the Laplace equation cannot account for line currents. Therefore Chapter 13 pro-
vides the solution of Biot-Savart’s law for a number of line-current configurations (including solenoidal
magnets) and presents the concept of the magnetic double layer. The results are used in Chapter 14 for
the design and optimization of coil cross-sections in superconducting magnets. A very important equa-
tion is derived which not only provides insight in the scaling of multipole coefficients and their sensitivity
to manufacturing tolerances, but also motivates the decoupling of the coil and yoke optimization in the
design process of superconducting accelerator magnets.

With more powerful computer resources, field optimization employing complex analysis methods
has become less popular in the last 20 years. Nevertheless, the holomorphic functions treated in Chapter
16 can efficiently be used for the scaling of field measurements, for the calculation of fields generated
by intersecting ellipses of constant current density and for the explanation of the so-called feed-down
effect. Chapters 18-22 present the principles of numerical field computation, the finite-element shape
functions, the automatic generation of quadrilateral finite element meshes, and the numerical field com-
putation methods specially suited for accelerator magnet design. These are the method of reduced vector
potential and the BEM-FEM coupling method which can also be extended to three dimensions. Some
simulation results of the LHC main dipoles are validated with field measurements. Chapter 27 treats
the superconducting filament magnetization and the calculation of hysteresis effects in superconducting
magnets. Additional post-processing, including the calculation of self- and mutual inductances, as well
as rudimentary quench calculations are described in Chapters 24 and 29. Chapters 31 and 32 describe in
detail the mathematical optimization techniques (with deterministic as well as genetic algorithms) which
have been used for the design of the LHC magnets.

The presented methods have been incorporated in the CERN field computation program ROXIE
which was used for the design and optimization of all the superconducting magnet components for the
LHC. The modeling capabilities of the ROXIE program, together with its interfaces to CAD/CAM and
the mathematical optimization routines have inverted the classical design process, where numerical field
calculations are performed for only a limited number of numerical models that merely approximate the
engineering design. ROXIE represents a new approach to the integrated design of superconducting mag-
nets. This design process is described in Chapter 34 using the example of the main dipole magnet for the
LHC. The methodology can, however, be applied to a number of different devices in magnet technology,
e.g., torus magnets and solenoids for magnetic resonance imaging (MRI) or nuclear magnetic resonance
(NMR), normal conducting magnets, actuators, magnetic storage (SMES), and electrical machines.
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How to Avoid Reading this Book
Many people would rather learn about numerical field calculation at worked examples than by read-
ing a book. For those who have obtained a ROXIE license, the home page http://cern.ch/at-mel-em/
links to a case study for the design and optimization of a superconducting dipole magnet with input
files for 2-D and 3-D coil design, coil field optimization and simplified iron-yoke configurations. More
elaborate models can be found in the test-case repository, which also includes sample files for solenoids,
wigglers, as well as shielding problems which are not treated in the book. A model library for all the
superconducting LHC magnets is also available. Part 8 and 9 of this book contain the ROXIE user’s
documentation.

The table below lists the relevant chapters for different target groups. Accelerator physicists (A),
magnet builders (M), magnet designers (D) and students interested in the theoretical aspects of numerical
field computations (S).

Part Chapter Title A M D S

1 The Large Hadron Collider x x x x

Introduction 2 The Load-Line of Superconducting Magnets x x x x

3 Field Quality in Accelerator Magnets x x x x

4 Affine Space and Vector-Fields x x

Mathematical 5 Classical Vector-Analysis x x

Background 6 Curvilinear Coordinates x

7 Functional Spaces and Fourier Series x

8 The Lemmata of Poincaré x x

9 Cartan’s Calculus at a Glance x

Analytical 10 Foundations of Electromagnetism x x x

Field Calc. 11 Harmonic Fields x x x x

and Magnet 12 Normal Conducting Magnets x x x x

Polarities 13 Fields and Potentials of Line Currents x x x

14 Coil Field of Superconducting Magnets x x x x

15 Potentials of Localized Current Distributions x

16 Complex Analysis Methods for Magnet Design x x x

17 LHC Magnet Polarities x x x x

Numerical 18 Principles of Numerical Field Computation x x x

Field Calc. 19 Finite Element Shape Functions x x x

and Integral 20 Mesh Generation x x x

Quantities 21 Numerical Field Comp. for Accelerator Magnets x x x

of the Field 22 The Coupling between BEM and FEM x x x

Solution 23 BEM-FEM Coupling withAtot Formulation x

24 Integral Quantities of the Field Solutions x x

Superconductor 25 Diffusion of Electromagnetic Fields x

Magnetization 26 BEM-FEM Coupling for Time Transient Field Problems x

and Time 27 Superconductor Magnetization x x x x

Transient 28 Vector-Hysteresis Model for Persistent Currents x x

Fields 29 Quench Analysis x x

30 Field Diffusion in Conducting Domains x x

Magnet Design 31 Mathematical Optimization x x x

and 32 Optimization Algorithms x x x

Optimization 33 Genetic Optimization x x x

34 The Integrated Design Process x x

Annexes 35-40

ROXIE 41-54 Documentation

User’s Doc. 55-59 Examples of ROXIE Applications



Further Reading

To steal a book is an elegant offense,
old Chinese proverb.

In addition to the references in the bibliography we list here selected textbooks and web-links for
further studies in the field.

A: Textbooks

1. Jackson, J.D.: Classical Electrodynamic, John Wiley and Sons, 1997. A classics, now for the third
edition in SI-units.

2. Stratton, J.A.: Electromagnetic Theory, McGraw-Hill, New York, 1941. Read the masters.
3. Bozorth, R.M.: Ferromagnetism, IEEE-Press, 1978. All you wanted to know about iron magneti-

zation.
4. Frankel, T.: The Geometry of Physics, an Introduction, Cambridge University Press, 1997. To

probe further in the field of differential manifolds.
5. Jänich K: Vectoranalysis, Topologie, Lineare Algebra, Funktionentheorie, all by Springer Verlag,

Heidelberg, in German. Linear Algebra and Vector Analysis also in English (English versions very
expensive for paperbacks).

6. Lehner G.: Elektromagnetische Feldtheorie für Ingeniuere und Physiker, Springer, 1990. One of
my references, only in German.

7. Mess, K.H., Schmüser, P., Wolff S.: Superconducting Accelerator Magnets, World Scientific,
1996. A book from practitioners in the field.

8. Prechtl, A.: Vorlesungen über die Grundlagen der Elektrotechnik, Band 2, Springer, 1994. Em-
phasis on the global quantities in electromagnetics, lots of exercises. In German.

9. Fletcher, R.: Practical Methods in Optimization, John Wiley, 2000. The reference for mathematical
programming techniques.

B: Web-links

1. http://www.asc.wisc.edu/plot/plot.htm. Peter Lee keeps up-to-date tabels of critical current densi-
ties in superconducting material.

2. http://www.hfml.kun.nl/froglev.html. Flying frogs and levitons.
3. http://discretephysics.dic.units.it/. Algebraic formulation of physical fields, with links to scientific

publications in the field.
4. http://cdsweb.cern.ch/. More photographs on the LHC project.
5. http://cryogenics.nist.gov/. Ray Radebaugh provides tables with material properties at cryogenic

temperatures.
6. http://turnbull.mcs.st-and.ac.uk/history/index.html. The MacTutor History of Mathematics archive

gives access to more than 1300 biographies of mathematicians.
7. http://lato.la.asu.edu/ H.D. Mittelmann keeps a nice webpage with links to lectures and software

for mathematical optimization.



Notation

Mathematics is the art of giving the same name to different things,
poetry is the art of giving different names to the same thing.

Jules Henri Poincaré (1854-1912)

In this publication we follow the recommendations of the International Electrotechnical Commis-
sion, IEC-CEI, 27-1:Letter symbols to be used in electrical technology. Consequently we denote the
vector-fields, e.g.,B,E with bold face capitals, although in the mathematical literature capitals are used
for the functional spaces and lower case for their elements. We follow this mathematical convention in
Chapters 4 - 8 where we consequently use precise notations of the kindb : Ω → R3 : r 7→ b(r).
The length of a path, the surface area and the volume are defined in IEC 27 ass,A, V but we use the
lower casea for the surface area to avoid confusion with the vector potentialA. It would have been
consequent to use the lower casev for the volume, but this clashes with the usual notation of velocity.
For the conductivity we follow DIN 1324 and use the symbolκ instead ofσ that is also used for the
electric surface charge density. Owing to the habit of denoting the reference radius in accelerator mag-
nets withr we user, ϕ, z for cylindrical coordinates andR,ϑ, ϕ for the spherical coordinates (where
according to DIN 1324,ϑ is the polar angle andϕ is the equatorial angle). We useϕ instead ofϕ for
the scalar potential andVm (again according to DIN 1324) for the magnetomotive force (instead of the
F recommended in IEC 27). In accordance with both norms, the magnetizationM does not containµ0

and is therefore expressed in units ofA·m−1. As we only use the symbol for the magnetic polarization
once in the entire text we denote it against all norms withPmag instead of theJ which is reserved for the
current density. A last remark: We use italics in sub- and superscripts only for indices and coordinates.
Descriptive add-ons are set in roman type characters. As an example,ϕm,i may indicate the magnetic
(indicated by the roman type m) scalar potential in thei-th material domain.



Nomenclature

A Magnetic vector-potential

Ar Reduced vector-potential

As Source vector-potential

An Skew field components

An Skew field components at reference radius

an Skew relative field components at reference radius

Bn Normal field components

Bn Normal field components at reference radius

bn Normal relative field components at reference radius

B,B Magnetic flux density

Bss Short sample field

B1 Main dipole field

Bp Penetration field

f Objective function

F Objective function vector

fk Shape functions

g Inequality constraint

h Equality constraint

H,H Magnetic field strength

H, [H] Hesse matrix

J,J Current density

J Jacobi matrix

Jss Short sample current[
K
]

Stiffness matrix

L Self inductance

L Lagrange function

m,m Magnetic moment

M,M Magnetization

M Mutual inductance

M Feasible domain

n Normal vector on domain boundary

P Regularization term



Q Normal derivative ofA onΓ
r Radius

ri Radius of line current

r0 Reference radius

Ryoke Inner radius of iron yoke

t Weighting factors

u Objective weighting function

V Volume

w,w1, wa Weighting function

x Design variable

xll Lower bound of design variable

xlu Upper bound of design variable

z Residual

Z Position of line current in complex plane

Z0 Field point in complex plane

α Inclination angle of coil-block

α Lagrange multiplier (inequality constraints)

β Lagrange multiplier (equality constraints)

Γ Domain boundary

ΓB Domain boundary withBn = 0 (Dirichlet) condition

ΓH Domain boundary withHt = 0 (Neumann) condition

Γai Domain boundary between iron and air

λ Filling factor

µ0 Permeability of free-space

µr Relative permeability

µ Mean value

∇ Nabla operator

Ω Domain

ΩFEM FEM Domain

ΩBEM BEM Domain

Ωa Air region

Ωi Iron region

ρ Radius of curvature

σ Standard deviation

Θ Solid angle

Θi Angular position of line current

ϕ Positioning angle of coil-block

ξ Magnetic susceptibility
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Chapter 1

The Large Hadron Collider

The Large Hadron Collider (LHC) will provide proton-proton collisions with a center-of-mass energy
of 14 TeV. This requires high-field superconducting magnets to guide the counter-rotating beams in
the existing LEP tunnel with a circumference of 26.6 km. The LHC magnet system consists of 1232
superconducting dipoles and 386 main quadrupoles together with about 20 different types of magnets for
insertion and correction.

In the wake of the Large Hadron Collider (LHC) project at CERN, the proceeding HERA project
at DESY, and the (canceled) SSC project, a number of comprehensive books have been published on the
design of superconducting magnets, e.g., [139], [231], [107]. Other sources of information are the pro-
ceedings of the Magnet Technology conferences, which are usually published in the IEEE Transactions
on Applied Superconductivity. The large amount of publications is not surprising as the magnet systems
are the most costly items in these accelerator projects.

In proton machines the maximum achievable energy is limited by the strength of the bending
magnets, and the beam lifetime is limited by the field quality obtained in the magnets. In this chapter we
will, at the example of the LHC, describe some aspects of superconductor technology and the components
of the magnet system.

1.1 Guiding fields for charged particles

A particle with chargeQ moving with velocityv through an electro-magnetic field is subjected to the
electromagnetic force according to the Lorentz1 law F = Q(v ×B + E), so that the rate of change of
the particle’s momentum is given by

F =
dp
dt

=
d
dt

(mv) = Q(v ×B + E) , (1.1)

wherem denotes the relativistic mass2. While the particle moves from the locationr1 to r2 with v = dr
dt ,

it changes its energy by

∆E =
∫ r2

r1

F · dr = Q

∫ r2

r1

(v ×B + E) · dr . (1.2)

The particle trajectorydr is always parallel to the velocity vectorv. Therefore the vectorv × B is
perpendicular todr, i.e., (v × B) · dr = 0. The magnetic field cannot contribute to a change in the
particle’s energy.

1Hendrik Antoon Lorentz (1853-1928).
2The concept of relativistic mass is subject to misunderstanding. Thats why we don’t use it. .... it makes increase of energy

of an object with velocity or momentum appear to be connected with some change in the internal structure of the object. In
reality, the increase of energy with velocity originates not in the object but in the geometric properties of space-time itself,E.F.
Taylor and A. Wheeler, Spacetime Physics [216]. Accepted, in future editions of this book we might go as far as to challenge
the representation of fields and forces as vector(field)s all-together.

3
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However, if forces perpendicular to the particle trajectory are needed, magnetic fields can serve
for the guiding and the focusing of particle beams. At relativistic speed, electric and magnetic fields
have the same effect on the particle trajectory if|E| ≡ c|B|. A magnetic flux density of one tesla is
then equivalent to an electric field strength of about3 · 108 V/m. While a magnetic flux density of one
tesla can easily be achieved with normal conducting magnets (superconducting accelerator magnets can
reach up to 10 T on an industrial scale), electric field strengths in the GV/m range are technically not
realizable. This is the reason why for high energy particle accelerators magnetic fields are used for beam
steering.

A charged particle forced to move along a circular trajectory looses energy by emission of photons
according to

∆E =
1

3ε0
Q2E4

(m0c2)4R
(1.3)

with every turn completed [236], whereR is the curvature of the trajectory andE is the particle’s energy.
A comparison between electron and proton beams of the same energy yields:

∆Ep

∆Ee
=
(
mec

2

mpc2

)4

=
(

0.511 MeV
938.19 MeV

)4

= 8.8 · 10−14. (1.4)

The maximum energy in circular lepton machines is limited by the synchrotron radiation and in linear
colliders by the maximum achievable electric field in the accelerator structure. For the heavier protons,
synchrotron radiation is not a limiting factor but the maximum energy is limited by the field in the
dipole (bending) magnets. However, in the LHC the power emitted (about 3.7 kW) cannot be overlooked
as it has to be absorbed by the beam pipe at cryogenic temperatures. This affects the installed power
of the refrigeration system and is an important cost issue. In addition, the synchrotron light impinges
on the beam pipe walls in the form of a large number of hard U.V. photons. These release absorbed
gas molecules, which then increase the residual gas pressure, and liberate photo-electrons, which are
accelerated across the beam pipe by the strong positive electric field of the proton bunches.

1.1.1 Bending magnets and magnetic rigidity

In cylindrical coordinates(r, ϕ, z) the space curve of the particle orbit has the form
r = rer + zez and the velocity vector in pointP on this space curve is

v =
dr
dt

=
dr
dt

er + r
der
dt

+
dz
dt

ez . (1.5)

Considering that the differentiation int of the unit vectorser andeϕ yields

der
dt

=
dϕ
dt

eϕ and
deϕ
dt

= −dϕ
dt

er , (1.6)

respectively (for a proof see Section 6.7.2), the force in radial direction on the particle moving in an
uniform magnetic fieldB0 and zero electric field can be calculated from Eqns. (1.1) and (1.5):

Fr =
d
dt

(
m

dr
dt

)
−mr

(
dϕ
dt

)2

= Qr
dϕ
dt
B0 . (1.7)

Assuming a constant circular motion on the bending radiusr = R (also called the radius of gyration),
replacingdϕ

dt by v0
R and re-arranging gives

p = mv0 = −QB0R . (1.8)

In charged particle dynamics it is customary to refer to the “momentum”pc which has the dimension of
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Fig. 1.1: Motion of a particle close to the equilibrium orbit and the curvilinear coordinate system(x, y, t) following the orbit

with parameters. Note that in magnet design, magnetic measurement, survey, and beam physics different frames are applied,

see Chapter 17.

an energy and to express it in units ofGeV, i.e.,

p = {p}GeV/c
109 · 1.602... · 10−19

2.997... · 108
· 1V·A·s
1m·s−1

. (1.9)

With Q expressed in units of the electronic charge, i.e.,

Q = {Q}e · 1.602... · 10−19 · 1A·s , (1.10)

the particle momentum given in GeV/c is determined by:

{p}GeV/c ≈ 0.3 {Q}e{R}m {B0}T. (1.11)

The termB0R is called the magnetic rigidity and is a measure of the beam’s “stiffness” in the bending
field. In circular proton machines the maximum energy is basically limited by the strength of the bending
magnets.

Remark: Eq. (1.11) may look strange to some. But according to the ISO [106] standards, a
physical quantity is expressed asG = {G}[G] where{G} denotes the numerical value of quantityG
expressed in the physical unit[G] that is appropriate for the measurement of that quantity. Therefore we
write B = 5 T and [B] = 1 · T andnot B [T] = ... . It is important not to use italic characters for
the unit symbols in order to avoid confusion with the physical quantities (T could denote torque or the
thermodynamic temperature, for example). The factor 1 indicates that a basis unit within thecoherent
unit system is used. The physical quantity has obviously to be invariant to the change of unit[G]old =
a[G]new. ThenG = {G}old[G]old = a{G}old[G]new = {G}new[G]new, i.e.,{G}old = 1/a {G}new. �

Table 1.1 shows a comparison of the maximum proton beam energy at different particle accelerators and
the maximum flux density in the bending magnets. Note that the effective radius is between 60% and
70% of the tunnel radius because of the dipole “filling factor” (interconnections, focusing elements etc.)
and the straight sections around the collision points.

The bending angleϕ of a dipole is determined by the equation

sin
ϕ

2
=

L

2R
=

LB0

2B0R
, (1.12)

see Fig. 1.2 (left), whereL is the magnetic length of the dipole. Eq. (1.12) yields an approximation for
small angles:

ϕ ≈ LB0

B0R
, (1.13)
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Fig. 1.2: Left: On the bending angle of dipole magnets. Right: On the focal length of a thin qadrupole magnet.

numerically:

{ϕ}rad ≈ 0.3 {Q}e {L}m
{B0}T

{β}1U{E}GeV
, (1.14)

whereβ = v
c . This gives for relativistic particles, a magnetic induction of 8.33 T in the LHC main

dipoles of 14.3 m magnetic length, and a particle energy of 7 TeV, an opening angle of approximately
5.1 mrad. Consequently, 1232 bending magnets are needed for the ring.

The aperture of the bending magnet must be large enough to contain the sagittaS of the beam
which is the distance between the arc’s apex and the chord, see Fig. 1.2 (left). The sagitta can be
calculated with the equation3

S = R[1− cos(
ϕ

2
)] ≈ Rϕ2

8
=
L2

8R
=
QBL2

8p
. (1.15)

According to Eq. (1.11) the trajectory radius of the particle increases with the particle momentum. As
both the maximum field and the maximum dimensions of the magnets are limited, the magnetic field must
be ramped synchronously with the particle energy which is the principle of the synchrotron accelerator
developed in 1945 by McMillan [133] and Veksler [224].

3Using the expansioncos x = 1− x2

2!
+ x4

4!
− . . . for |x| < ∞.

Accelerator Tevatron HERA UNK SSC RHIC LHC

Laboratory FNAL DESY IHEP SSCL BNL CERN

Commissioning 1983 1990 canceled canceled 2000 2007

Country USA Germany Russia USA USA Switzerland

Circumference (km) 6.3 6.3 21 87. 3.8 27.

Proton beam energy (TeV) 0.9 0.82 3.0 20. 0.1 7.0

Nominal dipole flux density (T) 4.4 4.68 5.11 6.79 3.45 8.33

Injection dipole flux density (T) 0.66 0.23 0.69 0.68 0.4 0.535

Nominal current (A) 4400 5027 5073 6553 5050 11850

Number of dipoles per ring 774 416 2168 3972 264 1232

Aperture (mm) 76.2 75 80 50 80 56

Magnetic length (m) 6.1 8.8 5.8 15. 9.7 14.3

Dipole filling factor 0.75 0.58 0.59 0.68 0.67 0.65

Table 1.1: Comparison of the maximum proton beam energy at different particle accelerators and the maximum flux density in

the bending magnets.
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1.1.2 Transverse motion and the normalized gradient

Guiding magnets (dipoles) with homogeneous field define theequilibrium orbit(or design orbit) for the
particle momentump0. As the particles are revolving in the machine up to108 turns, oscillating about
the equilibrium orbit, focusing elements (quadrupoles) are installed. The strength of the restoring field
is usually expressed in terms of thenormalized gradientderived below:

Assuming transverse motion (z = 0), and taking Eq. (1.7) with variable radiusr(s) and non-
uniform fieldBy, replacingdϕ

dt by v0
r and changing the independent variablet to s (the arc length along

the equilibrium orbit), i.e,ddt = v0
d
ds yields

1
mv0

d
ds

(
mv0

dr
ds

)
− 1
r

=
Q

mv0
By . (1.16)

For a displaced particle atr = R+ x which is exposed to the field approximated with

By = B0 +
∂By
∂x

∣∣∣∣
x=0

x (1.17)

(neglecting all higher order terms) one gets withp0 = mv0:

1
p0

d
ds

(
p0

d
ds

(R+ x)
)
− 1
R+ x

− Q

p0

(
B0 +

∂By
∂x

∣∣∣∣
x=0

x

)
= 0 , (1.18)

or by settingQ/p0 = −1/(B0R):

1
p0

d
ds

(
p0

dx
ds

)
− 1
R+ x

+
1
R

+
1

B0R

∂By
∂x

∣∣∣∣
x=0

x = 0 . (1.19)

With the assumption thatx� R, this equation can be reduced to

1
p0

d
ds

(
p0

dx
ds

)
+ (

1
R2

+ k)x = 0 , (1.20)

where the gradientk (normalized to the magnetic rigidity) is defined as

k :=
1

B0R

∂By
∂x

∣∣∣∣
x=0

. (1.21)

Thus a magnet with a positive gradient is focusing a proton beam in the horizontal plane. Withg =
∂By

∂x

∣∣∣
x=0

we get numerically

{k}m−2 ≈ 0.3
{g}T/m

{p}GeV/c
. (1.22)

Disregarding acceleration (taking the design momentump0 = const.) yields withK(s) = 1
R2 + k

d2x

ds2
+K(s)x = 0 (1.23)

where the dependence ofK on thes-coordinate is introduced to allow for changes inK from one magnet
element to another (where it is usually assumed to be constant). WhenK(s) is periodic, Eq. (1.23) is
the famous Hill4 equation. The angular deflection of a particle passing through a thin quadrupole at a
horizontal deflectionx (which is assumed to be constant during the passage5) is found by integrating the
differential equation (1.23), i.e.,∫ L

0

d2x

ds2
ds =

dx
ds

∣∣∣∣
L

− dx
ds

∣∣∣∣
0

= tanϕ (1.24)

4George Hill (1838-1914).
5This is called a paraxial approximation.
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and ∫ L

0
(

1
R2

+ k)xds =
Lx

R2
+ Lkx ≈ Lkx . (1.25)

Thus, when the focusing term of the dipole (the first term in the parenthesis) is neglected, we have

tanϕ ≈ −Lkx = −LBy
B0R

= − Lgx
B0R

. (1.26)

In geometrical optics the focal lengthf of a lens is related to the its angle of deflectionϕ by

tanϕ = −x
f
, (1.27)

see Fig. 1.2 (right) and consequently

f =
1
k L

. (1.28)

1.2 Layout of the LHC machine

The Large Hadron Collider (LHC) will provide proton-proton collisions with a center-of-mass energy of
14 tera electron volts (TeV) and a luminosity (rate of interaction per unit cross-section) of1027cm−2s−1.
The LHC will also be able to collide heavy ions, such as lead ions, up to an energy level of about
1100 TeV. These collisions cause phase transition of nuclear matter into quark-gluon plasma as it existed
around10−6 seconds after the Big Bang. Two large detectors, ATLAS (A Toroidal LHC Apparatus) and
CMS (Compact Muon Solenoid), will detect and record the results of these collisions.

The LHC will be installed in the existing tunnel of the Large Electron Positron Collider (LEP)
(decommissioned in 2000), which has a circumference of 26.6 km. Using superconducting magnets with
a nominal field of 8.33 T will allow the storage of proton beams with an energy of up to 7 TeV per
beam. A virtual reality view into the LEP tunnel with the continuous cryostat of the LHC machine is

Fig. 1.3: A virtual view into the LEP tunnel with the continuous cryostat of the LHC machine.



CHAPTER 1. THE LARGE HADRON COLLIDER 9

shown in Fig. 1.3. The two counter-rotating proton beams (protons in Beam 1 circulate in clockwise
direction when looking from above) require two separate magnetic channels (the main dipole field is
always directed upward for Beam 1). Space limitations in the LEP tunnel dictate a so-called two-in-one
magnet design, with two sets of coils and beam channels within a common mechanical structure, iron
yoke, and cryostat. The distance between the beam channels is 194 mm. The beam channels are located
in the same plane and cross at four points. The total path length is the same for each beam.

Remanent magnetic fields in the bending magnets (from iron magnetization in normal conducting
magnets, superconducting filament magnetization in superconducting magnets) make it impossible to
ramp accelerator magnets linearly from an arbitrarily small field level. This is the reason why the particles
are injected from a linac or a multi-stage injector chain. The LHC will make use of the existing injector
chain, which includes many accelerators at CERN: Linacs, Booster, LEAR as an ion accumulator, PS and
the SPS. The beams will be injected into the LHC from the SPS at an energy of 450 GeV and accelerated
to 7 TeV in about 30 min. The beam parameters, beam size, and beam intensity, are determined by the
performance of the injector complex. The pre-accelerators are operational and the modifications required
to achieve the LHC beam parameters will be finished before the LHC comes into operation. The civil
engineering for the LHC is limited to the construction of two large underground caverns for the ATLAS
and CMS experiments, and the two transfer tunnels (each 2.5 km long) from the SPS to the LHC.

The layout of the machine (Fig.1.4) corresponds to the one of LEP, with eight straight sections
each approximately 528 m long, available for experimental insertions or utilities.

The two high-luminosity insertions are located at opposite straight sections, Point 1 (ATLAS) and
Point 5 (CMS). Two more experimental insertions are located at Point 2 (ALICE Pb ions) and Point 8
(B physics). These straight sections also contain the injection systems where the beams cross from one
ring to the other. The remaining four straight sections do not have beam crossings. Insertions 3 and 7
each contain two beam collimation systems using only classical magnets. These insertions are designed
to be robust against the inevitable beam loss on the primary collimators, and to keep the amount of new
infrastructure needed to a minimum. Insertions 4 and 6 contain the radio frequency systems and the beam
dump insertion. The beams are extracted vertically from the machine using a combination of horizontally
deflecting fast-pulsedkickermagnets and vertically deflecting, normal conducting septum magnets. Fig.
1.4 shows in addition to the general layout of the LHC ring, the powering scheme with the 8 circuits
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Fig. 1.4: Left: Layout of the LHC main ring with its physics experiments and naming conventions for the octants and sectors.

Each of the 8 arcs is composed of 23 FODO cells. A cell is subdivided into two half cells composed of three dipoles and one

quadrupole. The half cells are numbered following the number of the lattice quadrupole they contain. Right: Powering scheme

with 8 circuits powered from four feed-points.
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Fig. 1.5: Half-cell (33L8 and 32L8 in sector 78) of the LHC main ring with multipole corrector magnets (spool-pieces) con-

nected to the main dipoles and so-called lattice correctors connected to the main quadrupoles in the short-straight section. In

sector 78 the current is positive into the A terminal of the dipoles, the anode of the protection diode is on the right and the field

in the inner aperture (Beam 2) points downward. Focusing quadrupole field for Beam 1 in the odd numbered half cells. MCS

= spool piece sextupole, MS = arc lattice sextupole corrector, MSS = arc lattice skew sectupole corrector, MCO = spool piece

octupole corrector, MCD = spool piece decapole corrector, MO = octupole lattice corrector. MCD and MO form the so-called

MCDO magnet with nested coils in a common collar and iron yoke. The length of the magnets are not to scale.

powered from four feed-points at Point 2,4,6 and 8.

Each of the arcs is composed of 23 arc cells schematically shown in Fig. 1.5. Each cell is made
of two identical half-cells which consist of a string of three 14.3 m-long dipoles (MBA,MBB) and one
3.10 m-long quadrupole (MQ). Sextupole (MCS), decapole (MCD), and octupole correctors (MCO)
are located at the ends of the main dipoles. The quadrupole is housed in theshort straight section
(SSS), which also contains a combined sextupole/dipole corrector, an octupole (MO) or a trim quadrupole
(MQT), and a beam-position monitor.

The two dispersion suppressor cells (per sector) consist of four quadrupoles interleaved with four
strings of two dipoles each. The dipoles have the same length as in the arc. The four quadrupoles of
the dispersion suppressor are all powered in series with the arc-cell quadrupoles. The Q7, Q8, and Q9
quadrupoles are 3.25 m long, and Q10 is a standard arc cell quadrupole of 3.1 m length. All quadrupole
fields are adjusted with 1.5 m long trim quadrupoles having a maximum gradient of 120 T/m, and which
are independently powered. The Beam-Position Monitors in the dispersion suppressor are placed on the
right side (downstream) of the quadrupoles, while the beam orbit dipole corrector for Q7, Q8 and Q9 and
the combined sextupole/dipole corrector for Q10 are placed on the left side (upstream). In addition, two
skew quadrupoles are installed next to Q8 and Q10.

Each insertion comprises the following sections: A free space of 23 m on each side of the IP with
a particle absorber, required to protect the superconducting quadrupoles from the secondary particles,
placed at 19 m from the IPs, the low-β (or inner) quadrupole triplet, a pair of separation dipoles, and
the matching (or outer) quadrupole triplet. The inner triplet comprises four identical 5.5 m long, 70
mm aperture quadrupoles which are powered in series, so that the two outer quadrupoles, Q1 and Q3
are focusing, while the inner two, Q2a and Q2b (forming the central optical element of the triplet) are
defocussing. The beam separation is accomplished with a pair of bending magnets, D1 and D2. The
outer triplet quadrupoles, Q4 - Q6 are built of several units of dispersion-suppressor type quadrupoles.
These magnets have the same cross-section as the arc quadrupoles, but are slightly longer, 3.25 m. The
last quadrupole of the triplet, Q6, is adjacent to the dispersion suppressor, and is formed of two units of
3.25 m length.

1.3 Superconducting magnet system

The magnet system makes use of superconductor technology that allows for high current densities (for
applied niobium-titanium alloy (NbTi) 1950 A/mm2 at a field of 9 tesla and a temperature of 1.9 kelvin)
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and keeps the energy consumption of the LHC remarkably small. LHC, with 22 times the collision energy
of the Super Proton Synchrotron (SPS), which uses normal conducting magnets, does not consume more
power than the SPS. At the Fermilab and DESY laboratories, large operational accelerators are installed
which make use of niobium-titanium superconductors at a temperature6 of 4.2 K. The operational field
of these magnets is about 4 T for the Tevatron at Fermilab, and about 4.7 T for HERA at DESY. The
only way of obtaining as much as 9 T with NbTi superconductors is to cool the magnets to 1.9 K. Below
2.17 K, helium takes on the so-called super-fluid state, with very low viscosity and very large thermal
conductivity. This helps in the cooling of the superconducting wires while reducing the helium flow
through the magnets. However, the heat capacity of the superconducting cables is reduced by nearly
an order of magnitude (compared to 4.5 K), resulting in a higher temperature rise for a given deposit of
energy. Therefore, any movement of the coil must be avoided by the use of an appropriate force-retaining
structure, in particular as the forces and the stored energy in the magnets increase with the square of the
magnetic field.

1.3.1 Main magnets

The main dipoles (MB) are the most challenging components of the LHC, from a technological as well
as an economical point of view. The cross-section of the magnetcold-mass(version of spring 2000) in its
cryostat is shown in Fig. 1.6. The main design parameters of the LHC main dipole are given in Table 1.2.

The keystoning of the cable is not sufficient to allow the cables to build up arc segments. Cop-
per wedges (oxygen free copper according to the ASTM C102 and DIN 1787 standards) are therefore
inserted between blocks of cables. The size and shape of these wedges yield the necessary degree of
freedom for optimizing the field quality produced by the coil. The coil must be shaped to make the best
use of the superconducting cable (limited by the peak field to which it is exposed), while producing a
dipole field with the highest possible field homogeneity.

In case of the main dipole, the cable is insulated with layers of polyimide film. Two layers (in total 50.8
µm thick) are wrapped on the cable edge to edge, and another 68.8µm thick is wrapped around the cable
with a spacing of 2 mm. This is done in order to protect the cable from a turn-to-turn voltage of about
50 V at quench, while providing sufficient channels for the superfluid helium to carry away the heat that
is generated in operation mainly by beam losses, synchrotron radiation, and beam image currents in the
beam screen.

As the field quality is extremely sensitive to coil positioning errors, each coil is polymerized in a
mould at a temperature of 180oC for 30 minutes in order to glue the turns firmly together and give the
coil its final shape. The inside cable ends are soldered together, re-insulated, and glued back onto the
coil-blocks.

6The conversion to degrees Celsius is{T}oC = {T}K − 273.16.

Injection / Nominal / Ultimate field 0.535 / 8.33 / 9.0 T

Coil aperture at 293 K 56 mm

Magnetic length at 1.9 K 14.312 m

Operating current (inj./nominal/ultimate) 763 / 11850 / 12840 A

Operating temperature 1.9 K

Coil turns per aperture: Inner/outer shells 30 / 50

Distance between aperture axes at 1.9 K 194 mm

Outer diameter of cold-mass at 293 K 570 mm

Overall length of cold-mass at 293 K 15.18 m

Overall mass of cryo-magnet 27 tons

Stored energy in both channels at 8.33 T 6.9 MJ = 1.92 kWh

Self-inductance for both channels at nom. field98 mH

Table 1.2: Main parameters of the LHC dipoles.
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Fig. 1.6: Cross-section of the dipole magnet and cryostat. 1: Aperture 1 (outer). 2: Aperture 2 (inner). 3: Cold-bore and

beam-screen. 4: Superconducting coil. 5: Stainless steel collar (non-magnetic). 6: Iron yoke. 7: Shrinking cylinder. 8:

Super-insulation, 9: Vacuum vessel. M3: Busbar for the powering of the MB circuits. M1: Busbar for the powering of the

focusing quadrupoles. M2: Busbar for the powering of the de-focusing quadrupoles. N: Auxiliary bus-bar for the powering of

arc-corrector magnets.

The size and elastic modulus of each coil is measured to determine the pole and the coil-head
shimming for the collaring. The required shim thickness is calculated such that the compression under
the collaring press is about 120 MPa. After the collaring rods are inserted and external pressure is
released, the residual coil pre-stress is about 50-60 MPa on both layers. The collars which are made of
austhenitic stainless steel are surrounded by an iron yoke which not only enhances the magnetic field by
about 10% but also reduces the stored energy and shields the fringe field.

The magnetic yoke consists of precision punched laminations of 5.8 mm in thickness made of low
carbon mild steel, hot rolled and annealed. The stacking factor of the yoke lamination is about 0.985.
The laminations are pre-assembled in 1.5 m long packs which are then mounted into half-yokes. After
the assembly of the half yokes and the welding of the shrinking cylinder, the gap between the half-
yokes is closed. The pre-stress has been chosen such that the gap between the half-yokes remains closed
during cool-down and excitation of the magnet. The dipole magnet, its connections, and the bus-bars
are enclosed in the stainless steel shrinking cylinder closed at its ends and form the dipole cold-mass, a
containment filled with static, pressurized (1 bar) superfluid helium at 1.9 K. The cold-mass, weighing
about 24 tons, is assembled inside its cryostat, which comprises a support system, cryogenic piping,
radiation insulation, and thermal shield, all contained within a vacuum vessel. The vacuum, at a pressure
below 10−6 mbar, together with two thermal shields covered with super-insulation, minimize heat in-
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Fig. 1.7: Dipole and quadrupole cold-masses with magnetic vector potentialAz. Left: Main LHC dipole (MB). Right: Main

LHC quadrupole (MQ)
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Fig. 1.8: Left: Insertion quadrupole cold-mass (MQM). Right: Wide aperture quadrupole for the matching section (MQY).

leaks into the cold-mass. The cryostat runs at three temperature levels, 1.9 K for the cold-mass, 5-10 K
and 50-70 K for the two intermediate heat-intercept levels, respectively. The beam-screen, shielding the
coils against beam-induced heat losses, is mounted inside the cold-bores of the cold-masses. The field
pattern of the MB cold-mass is shown in Fig. 1.7 (left).

The MQ cold-mass consists of 4 coils with two layers per aperture in separate austenitic steel col-
lars, surrounded by a common iron yoke (punched from a single sheet) and an inertia tube, see Fig. 1.7
(right). The inertia tube houses also the corrector magnets of the Short Straight Section (SSS) and con-
stitutes the outer part of the helium vessel. The MQs in one arc are powered in series, with 2 independent
families QF (focusing) and QD (de-focusing) per arc and per beam.

1.3.2 Insertion magnets

The LHC contains about 1800 superconducting magnet units, including 1232 main dipoles, 392 arc-type
quadrupoles, 56 trim quadrupoles and 114 individually powered quadrupoles in the insertion regions. To
this number about 4800 local multipolar correctors, e.g., sextupoles, octupoles and decapoles, have to
be added for a total of about 6500 magnets. Comprehensive lists of magnets and magnet sub-assemblies
can be found in Chapter 17.

The MQMs are superconducting quadrupoles for the LHC insertions. The quadrupoles consist of
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two 56 mm bore collared coils assembled in a two-in-one magnetic yoke. The coils are wound in two
layers using an 8.8 mm wide cable in one continuous length. The LHC requires three magnetic lengths of
MQM quadrupoles: 3.4 m (MQM), 2.4 m (MQMC) and 4.8 m (MQML). The magnets are individually
powered with nominal current rating of 6kA and operate in liquid helium at 4.5 K and 1.9 K, respectively.
The cross-section of the MQM magnets is displayed in Fig. 1.8 (left).

The MQYs, see Fig. 1.8 (right) are wide aperture superconducting quadrupoles for the matching
sections. The quadrupoles consist of two collared coils assembled in a two-in-one magnetic yoke. The
coils are wound in four layers using two different cables of 8.3 mm width. The magnets are operated in
liquid helium at 4.5 K. The MQX are 70 mm aperture superconducting quadrupoles for the LHC low-
beta triplets. The quadrupoles consist of a collared coil assembled in a single aperture magnetic yoke.
The LHC requires two lengths of MQX quadrupoles: The 6.370 m MQXA shown in Fig. 1.9 (left) and
the 5.5 m MQXB. The MQXA is designed and supplied by KEK, Japan, and the MQXB is supplied by
Fermilab, USA. Both designs use two cables of different width.

1.3.3 Spool-pieces and lattice correctors

Sextupole spool-piece correctors (MCS) are single aperture magnets installed downstream (on the lyra
side) in the cold-mass of each MBA and MBB dipole, one for each aperture. The cross-section is show
in Fig. 1.10.

The coils are clamped with central posts made from G11 material which is totally amagnetic and
therefore not represented in the numerical model. The octupole spool pieces MO are made from two MO
magnet modules, displayed in Fig. 1.10, mounted in a common twin aperture support structure, installed
upstream of the main quadrupole in the inertia tube of the arc SSS (alternating with MQT and MQS).
The MCDO, also shown in Fig. 1.10, is a single aperture assembly of spool piece correctors consisting
of an octupole magnet (MCO) and a decapole magnet (MCD) concentrically mounted (nested) inside an
aluminum shrinking cylinder. They are installed upstream of the A-type dipole cold-mass.

MQT and MQS are built from the same magnet module, (MQS turned by 45 degrees) consisting
of single-layer quadrupole coils surrounded by a laminated yoke and a shrinking cylinder, see Fig. 1.10
(right). Two modules (one per aperture) are mounted in a common support structure. MQT or MQS are
installed upstream of the main quadrupoles in the cold-mass of the arc short-straight-section. The tuning
quadrupoles are powered in series in two families per arc and per beam. As an exception, MQT12 and
MQT13 are individually powered as short trim quadrupoles. The MCBX is a combined single aperture
concentric (nested) dipole corrector, with one horizontal MCBXH (inside) and one vertical MCBXV
(outside) associated to Q1 and to Q2 in the insertion region, see Fig. 1.11.

The local correctors of the higher order multipoles in the inner triplet, including sextupoles to
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Fig. 1.9: Left: Quadrupole for the low-beta triplets (MQXA). Right: Quadrupole for the low-beta triplets (MQXB).
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Fig. 1.10: From upper left to lower right: 1) Octupole module. Two modules in a common support structure form the MO

magnet. 2) Sextupole spool piece corrector module (MCS). 3) Nested decapole-octupole corrector MCDO. 4) Trim quadrupole

module MQT. 5) Nested multipole correctors forA3, A4 andB4, MCSOX. Magnets not to scale with the main magnets.

dodecapoles are made of nested coils assembled with the dipole corrector MCBX (forming MCBXA)
and the skew quadrupole correctors (forming MQSXA).

The MCBH and MCBV are horizontal and vertical dipole orbit correctors. They are made from the
same single aperture module, rotated by 90 degree in case of the vertical orbit corrector. The sextupole
correctors MS and skew sextupoles MSS are built from the same magnet module (turned by 30 degree
in MSS), mounted with MCBH(V) in a twin aperture structure which is then called MSCB. The MSCB
assemblies are installed on the downstream side of the main quadrupole in the inertia tube of the arc short
straight sections (SSS) and with the Q11 cold-masses in the Dispersion Suppressor (DS). The sextupole
modules are powered in series forming one skew sectupole family and 4 normal sextupole families per
arc and per beam. The dipole section of the MSCB assembly is shown in Fig. 1.12 left. The arrangement
of the different corrector modules generates 4 types of assemblies MSCB(A,B,C,D).

The MCBC(A,B) is a superconducting twin aperture dipole corrector magnet assembly in an
MQM-type common support structure, see Fig. 1.13 (left). In the MCBCB, the modules are arranged
such that the field in the external aperture is horizontal. The MCBY are wide aperture dipole corrector
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Fig. 1.11: Left: MCBX, single aperture orbit corrector associated to MQX close to Q2 and Q3. The corrector acts on both

the vertical and the horizontal plane. The outer layer is a horizontal orbit corrector (vertical field) named MCBXH. The inner

layer is a vertical orbit corrector (horizontal field) named MCBXV. Right: MCBXA sub-assembly with sextupole (MCSX) and

do-decapole (MCTX) insert in the MCBX magnet.
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Fig. 1.12: Left: Cross-section with magnetic field modulus of MSCBB subassembly (consecutively combined sextupole and

dipole corrector) installed in the arc short straight section. The external aperture is MS+MCBV - here only shown MCBV -

while the internal aperture is MS+MCBH. Right: Octupole lattice corrector cross-section (MO) installed in arc short straight

section.
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Fig. 1.13: Left: MCBCB subassembly (orbit corrector associated to MQM, MQML or MQMC+MQM). Vertical orbit correc-

tor in the external aperture and horizontal corrector in the internal aperture. Right: MCBYB, wide aperture orbit corrector

associated to MQY.

magnet assemblies, see Fig. 1.13 (right).



Chapter 2

The Load-Line of Superconducting
Magnets

Fig. 2.1 shows the critical current density of the NbTi alloy as a function of current densityJ , flux
densityB and temperatureT together with the working point and theload-lineof the LHC main dipoles.
Fig. 2.1 (left) shows the operational margin of the magnet on the load-line forT constant, the right figure
shows the temperature margin at a given flux- and current density.

Although a niobium-tin (Nb3Sn) alloy allows, at 8 T, approximately twice the current density of
NbTi, it was not considered for the LHC, because a series production of magnets would have to confront
the brittle nature of the material, which requires awind-and-reacttechnique, where the cable containing
unreacted niobium and tin is first wound and then heat-treated at a reaction temperature of about 700oC
to form the superconducting A15 phase of Nb3Sn. High-temperature superconducting materials (cooled
to temperatures of about 4 K) have improved considerably in critical current density and will thus be
used for the current leads to feed the excitation current from room temperature into the 4.5 K helium
bath in the so-called distribution feed box (DFB). For use in the magnets, however, the critical current
density (300 A/mm2 at 8 T, 4 K for Bi2223 tapes) is still too low.

For more information on critical currents obtained in technical superconductors, consult the web
pages maintained by Peter J. Lee: http://www.asc.wisc.edu/plot/plot.htm.

2.1 Critical surface modeling

The dependence of the critical current density of NbTi on the modulus of the magnetic flux density
B = |B| can be given by the following fit [39] based on [128]:

Jc(B, T ) =
J ref

c C0B
α−1

(Bc2)α
(1− b)β

(
1− t1.7

)γ
, (2.1)

with

Bc2 = Bc20

(
1− t1.7

)
. (2.2)

and the reduced temperaturet and the reduced fieldb defined by

t :=
T

Tc0
and b :=

B

Bc2(T )
. (2.3)

The fit parameters for the LHC main magnet cables are critical current densityJ ref
c = 3 · 109 A·m−2

at 4.2 K and5 T, upper critical fieldBc20 = 14.5 T, critical temperatureTc0 = 9.2 K, normalization
constantC0 = 27.04 T and the fit parametersα = 0.57, β = 0.9 andγ = 2.32. The dependence ofJc

on the fit parameters is shown in Section 27.3.3.

17
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In [232] a modified Kim-Anderson fit [113] for a constant temperature of 4.5 K is applied:

Jc(B) =
J0B0

B +B0
+A0 +A1B (2.4)

with J0 = 3.5·1010 A·m−2,B0 = 0.149 T,A0 = 5·109 A·m−2 andA1 = −7·108 A·m−2T−1 .

Nb3Sn conductors have a strain (ε) dependent critical surface. Summers [213], based on work in
[94] and [65], introduces the empirical relation

Jc(B, T, ε) = C(ε)(Bc2(T, ε))−1/2 (1− t2)2 b−1/2(1− b)2 (2.5)

where

Bc2(T, ε) = Bc20(ε)(1− t2)[1− 0.31t2(1− 1.77 ln t)], (2.6)

and the reduced temperaturet and the reduced fieldb are defined by

t :=
T

Tc0(ε)
and b :=

B

Bc2(T, ε)
. (2.7)

The strain dependent parameters are

C(ε) = C0(1− a|ε|1.7)1/2 , (2.8)

Bc20(ε) = Bc20m(1− a|ε|1.7) , (2.9)

Tc0(ε) = Tc0m(1− a|ε|1.7)1/3 , (2.10)

where the values ofBc20 andTc0 at zero intrinsic stain are denotedBc20m (in the range of 24 - 28
T) andTc0m (in the range of 16 - 19 K), respectively.C0 is a strain, temperature and field independent
parameter in the range of 12000 - 40000AT1/2mm−2. In Eqns. (2.8) - (2.9) the dimensionless parameter
a is approximately 900 for compressive strain (ε < 0) and 1250 for tensile strain (ε > 0). Depending on
the manufacturing process the axial compression in the strands is in the range of -0.05% to -0.4%, [58].
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Fig. 2.1: Critical surface of the NbTi superconductor. Left: Operational margin of the magnet on the load-line. Right: Temper-

ature margin at a given field and current density.
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Fig. 2.2: Critical current density (at 1.9 K) of NbTi as a function of the applied field (with a linear approximation around

the working point) and the load-line of the LHC main dipoles. Note that the quench current is limited by the critical surface

of the cable being exposed to a higher field than the measured one in the aperture of the magnet. Important for the magnet

performance is the engineering current densityJE which also takes into consideration the copper matrix of the strands, the

filling factor of the cable and the insulation layers.

Fig. 2.2 shows the critical current density of NbTi as a function of current density and the applied
field together with a linear approximation at the working point and the load-line of the LHC dipoles.
Note that the quench current is limited by the critical current density in the coil which is exposed to a
higher field than that measured in the aperture of the magnet. Important for the magnet performance
is the engineering current densityJE which also takes into consideration the copper matrix (needed for
stabilization), the filling factor in the cable and the insulation.

2.2 Strands

The strands are made of thousands of NbTi filaments embedded in a copper matrix that serves to stabilize
the cable and carry the current in case of a quench since superconductors have a high resistivity in the
normal state, see Fig. 2.4. A quench is the process of parts of the magnet becoming normal conducting,
which results in a temperature rise that causes adjacent domains to become normal conducting as well.
The filaments are made as small as possible (constraint by the manufacturing costs) in order to reduce
the remanent magnetization effects and increase the stability against flux jumps during excitation (the
release of fluxoids from their pinning centers).

For the calculation of the quench margin in a superconducting magnet theJc(B) dependence can
be linearly approximated around the working point. The critical current density and the slope of the
critical surface at a reference field are given for some of the strands used in LHC cables in Table 2.1. The
values of the critical current density include already the degradation due to the cabling process.

2.3 Cables

To ensure good tracking of the field with respect to the current and to reduce the number of current
feedthroughs from ambient temperature, the magnets in (superconducting) synchrotron accelerators are
connected in series. Neglecting non-linearities due to iron saturation in the magnet yokes, and neglecting
the stored energy at injection field level, the induced voltage during the ramping of a LHC magnet string
is approximately

U ≈ 2E/It , (2.11)
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Strand 1 Strand 2 Strand 5 Strand 6 N-Line

Magnet MB inner MB outer MQM MQY

Diameter of strands (mm) 1.065 0.825 0.48 0.735 1.6

Twist pitch (mm) 25. 25. 15. 15. 15.

Copper/Superconductor ratio 1.6 1.9 1.75 1.25 9.

Filament diameter (µm) 7 6 6 6 60.

Number of filaments/strand 8900 6500 2300 6580 18

Tref (K) 1.9 1.9 1.9 4.5 4.2

Bref (T) 10 9 8 5 1

Jc(Bref , Tref ) (A/mm2) 1433.3 1953.0 2872. 2810. 5968

dJc/dB(A/mm2T) 500.34 550.03 600. 606. n.s.

ρ(293 K)/ρ(4.2K) of Cu (RRR) > 70. > 70. 80. 80. 100.

Table 2.1: Characteristic data for the strands used in the MB cables, the MQM and the MQY cables and the auxiliary busbar

cable (N-line) for the powering of the lattice corrector magnets (which resembles strands used for MRI magnets). n.s. = not

specified.

whereE is the stored energy in the string of 154 main dipoles at nominal current,t is the rise time of
about 1200 sec., andI is the nominal operating current of about 11800 A. The maximum voltage in
the power supplies of the main dipole circuit can be calculated with a stored energy of about1.1 · 109

joule (about 300 kWh) to approximately 155 V. To avoid higher voltages, the coils of the LHC dipole
and quadrupole magnets are wound of so-called Rutherford cables of trapezoidal (keystoned) shape. The
winding scheme is identical to the Roebel1-bar known in the domain of electrical machines. Two layers
of fully transposed strands limit non-uniformities in the current distribution within the cable caused by
the cable’s self-field and the flux-linkage between the strands, see Fig. 2.3. The cable used for the inner
layer coil of the main dipoles contains 28 superconducting strands, the cable used in the outer layer
dipole coil and in the main quadrupoles, contains 36 strands. This makes operating currents in the range
of 12 kA possible.

1Ludwig Roebel (1878-1934), patent 1912.

x pc

z

y

wc

tw

Fig. 2.3: Winding scheme of a Rutherford cable (with 10 strands) which resembles the Roebel-bar known in the domain of

electrical machines. The blue path shows the transposition of the superconducting strand. Red: Cross resistances, Yellow:

Adjacent resistances.
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S t r a n dF i l a m e n t s
Fig. 2.4: Cable for the inner layer of the LHC main dipole coils, micrographies of the strand cross-section and the supercon-

ducting filaments.

For magnet design it is desirable that the conductor is keystoned with an angle that allows the
winding of perfect arc segments. However, due to the critical current degradation during cabling, the
keystone angle is limited. In [179] the narrow edge packing factor is defined as

λn :=
as

0.5 tnds
=
πd2

s

2tn
(2.12)

whereas is the strand cross-sectional area,tn is the cable thickness at its narrow edge andds is the
strand diameter. Measurements have revealed that the amount of degradation increases considerably for
narrow edge packing factors exceeding 0.98 because of local reduction in the strand cross-section and
breakage of filaments during cabling. InNb3Sn strands, breakages of anti-diffusion barriers can lead to
incomplete filament reaction [58]. The cable thickness at its wide edge should be chosen such that the
upper and the lower strands are in contact, in order to maintain the cable integrity during coil winding
[179]. The cable packing factor is defined as

κc :=
nπd2

s

2wc(tn + tw) cosψ
(2.13)

wherewc is the cable width,tw is the cable thickness at its wide edge andψ is the pitch angle. The pitch
angle can be calculated fromtanψ = 2wc

pc
wherepc is the cable pitch length.

2.4 Field and temperature margin in the main dipole

Designing coils with two layers of cables of the same width but of different thickness results in an about
40% higher current density in the outer layer cable, which is exposed to a lower magnetic field.. This is
usually referred to ascurrent grading. The LHC main dipole coils are wound from cables with 28 NbTi
multi-filamentary strands of 1.065 mm diameter in the inner layer (see Fig. 2.4) and 36 strands of 0.825
mm diameter in the outer layer. The main parameters of the LHC cables are given in Table 2.2. Fig. 2.5
(left) shows the modulus of the current density in the cable which varies because of the different cable
compaction on the thick - and the thin edge. Clearly visible is the current grading in the inner and outer
layer. Fig. 2.5 (right) shows the modulus of the magnetic flux density. Fig. 2.6 shows the margin on the
load-line (in %) and the temperature margin in kelvin, i.e, the difference between the bath temperature
and the critical temperature at the operation field and current. All plots are given for nominal operation
at 8.33 T and 11850 A.
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Cable 1 Cable 2 Cable 4 Cable 5 Cable 6

Magnet MB (IL) MB (OL), MQ MQM MQY (OL) MQY (IL)

Strand 1 2 5 5 6

Bare width (mm) 15.1 15.1 8.8 8.3 8.3

Bare thickness, thin edge (mm) 1.736 1.362 0.77 0.78 1.15

Bare thickness, thick edge (mm) 2.064 1.598 0.91 0.91 1.40

Mid thickness (mm) 1.9 1.48 0.84 0.845 1.275

Keystone angle (degree) 1.25 0.9 0.91 0.89 1.72

Aspect ratio 7.95 10.2 10.47 9.82 6.51

Insulation narrow side (mm) 0.150 0.150 0.08 0.08 0.08

Insulation broad side (mm) 0.120 0.130 0.08 0.08 0.08

Pitch length (mm) 115. 100. 66 66 66

Number of strands 28 36 36 34 22

Cross-section of Cu (mm2) 15.3 12.6 4.1 3.9 5.2

Cross-section of SC (mm2) 9.6 6.6 2.4 2.2 4.1

Table 2.2: Cable characteristic data for inner layer (IL) and outer layer (OL) main dipole (MB) and main quadrupole (MQ) coil,

and for the insertion quadrupoles MQM and MQY.
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Fig. 2.5: Left: Modulus of the current density in the cable (variable because of the different cable compaction on the thick and

the thin edge. Right: Modulus of the magnetic flux density. All figures for nominal operation: 8.33 T, 11850 A.
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Fig. 2.6: Left: Margin on the load-line. Right: Temperature margin, i.e, the difference between the bath temperature and the

critical temperature at the operation field and current. All figures for nominal operation: 8.33 T, 11850 A.



Chapter 3

Field Quality in Accelerator Magnets

The design and optimization of accelerator magnets is dominated by the requirement of an extremely
uniform field, which is mainly defined by the layout of the superconducting coils. This will be visible
from the magnet metamorphosis presented in the next section. We will therefore start with a formal
introduction to field quality, described by means of so-called multipole coefficients which can be obtained
from a Fourier analysis of the magnetic flux density in the aperture of the magnets. Even very small
effects influencing the geometry of the superconducting coils, such as the trapezoidal shape of the cable,
the insulation, the grading of the current density in the cable due to varying cable compaction, and coil
deformations due to collaring, cool down and electromagnetic forces have to be considered in the field
calculation. In particular for the 3-D case, commercial software has proven inadequate to this task.

The ROXIE program package was therefore developed at CERN for the design and optimization
of the LHC superconducting magnets. In collaboration with the Technical University of Graz, Austria,
the program was extended to include the possibility of calculating iron saturation effects using a reduced
vector-potential method. ROXIE also includes the method of coupled boundary/finite-elements, which
was developed at the University of Stuttgart, Germany, and which is specially suited for the calculation
of 3-dimensional effects in the magnets. The advantage of both methods is that the coils do not need to
be represented in the finite-element mesh and can therefore be modeled with the required accuracy.

The modeling capabilities of the ROXIE program, together with its interfaces to CAD/ CAM,
and the mathematical optimization routines have inverted the classical design process where numerical
field calculations are performed for only a limited number of numerical models that merely approximate
the engineering design. ROXIE represents a new approach to the integrated design of superconducting
magnets which is briefly described at the end of this chapter.

3.1 Accelerator Magnet Metamorphosis

Fig. 3.1 shows the 26 GeV Proton Synchrotron (PS) with its normal conducting magnets in its tunnel
(top) and the High Energy Ring Accelerator (HERA) at DESY where a ring of normal conducting mag-
nets steer the electron beam, and a ring of superconducting magnets steer the counter rotating proton
beam.

This prompts the question what the difference between normal and superconducting magnets is
from the design and computational point of view. To explain the difference, Figs. 3.2 - 3.5 show a
“metamorphosis” between the normal conducting dipoles for the LEP (Large Electron Positron collider,
decommisioned in 2000), with superferric window frame magnets and the single aperture dipole model
as intermediate states and finally two different designs of two-in-one magnets for counter rotating proton
beams.

All field calculations were performed using the numerical field computation methods as described
in Chapter 18. The field representations in the iron yokes are to scale, the size of the field icons changes
with the different field strengths. As a reference, the source field form the coils (neglecting the contribu-
tion from the iron yoke), denotedBs, is given in the figure captions.

23
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Fig. 3.1: The 26 GeV Proton Synchrotron (PS) with its normal conducting magnets in its tunnel (top) and the High Energy

Ring Accelerator (HERA) at DESY, Hamburg, Germany, where in one ring the normal conducting magnets steer the electron

beam and where in the second ring the superconducting magnets steer the counter rotating proton beam (bottom).

Fig. 3.2 (left) shows the slightly simplified C-core dipole for LEP. The advantage of C-core mag-
nets is an easy access to the beam pipe, but they have a higher fringe field and are less rigid than the
H-type magnets as shown in Fig. 3.2 (right). Additional pole shims can be applied in order to improve
the field quality in the aperture. The field of these magnets is dominated by the shape of the iron yoke.
The LEP dipoles are ramped from 0.0218 T at injection energy (20 GeV) to 0.1090 T at 100 GeV. In
order to reduce the effect of remanent iron magnetization and for a better economical exploitation of the
steel, the yoke is laminated with a stacking factor of only 0.27. The longitudinal spaces are filled with
cement mortar, which ensures the mechanical rigidity of the yokes.

If the excitation current is increased above a density of about 5A·mm−2, superconducting tech-
nology has to be applied. Neglecting the quantum-mechanical nature of the superconducting material, it
is sufficient to note that the maximum achievable (engineering) current density in the superconducting
coil is by the factor of 100 higher than in copper coils. Magnets in which the coils are superconducting,
but the field shape is dominated by the iron pole are called super-ferric. Fig. 3.3 (left) shows the H-type
superferric magnet with increased excitation. The poles are starting to saturate and the field quality in
the aperture is decreased due to the increasing fringe field. This can be avoided by constructing so-called
window-frame magnets as shown in Fig. 3.3 (right).

The disadvantage of window-frame magnets is that the synchrotron radiation is partly absorbed
in the (superconducting) coils and that access to the beam pipe is even more difficult. The advantages
are that a better field quality is obtained, and that pole shims can be avoided. At higher field levels the
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Fig. 3.2: Magnetic flux density in the iron yoke and field vectors. Left: C-core dipole as used the LEP (Ampere turns

N ·I = 2× 5250 A, B1 = 0.13 T, Source field from the coils onlyBs = 0.042 T) with a filling factor of the yoke laminations

of 0.27. Right: H-magnet as used, e.g., in the transfer line from the SPS to LHC.N ·I = 24000 A , B1 = 0.3 T, the source

field from the coils is onlyBs = 0.065 T, the filling factor of yoke laminations is 0.98.

field quality in the aperture is increasingly affected by the coil layout. Superconducting window-frame
magnets are receiving considerable attention lately as high field dipoles (14-16 T). As the coil winding
is easier for window frame magnets than for the so-calledcos Θ magnets shown in Fig. 3.4 (left), the
application of the mechanically less stable materials with higher critical current density, e.g.,Nb3Sn
becomes feasible.

The LHC superconducting magnets are of thecosnΘ type described in detail in Chapter 14. The
advantage of thecos Θ (dipole) magnets is that the field outside the coil drops with1/r2 and therefore
the saturation effects in the iron yoke are reduced. Fig. 3.4 (right) shows the CTF (coil-test-facility) used
for validating the manufacturing process of the LHC magnets. The CTF resembles the single aperture
dipole magnets which were proposed for the canceled SSC (Superconducting Super Collider) project.
Note the large difference between the field in the aperture (8.3 T) and the field in the iron yoke (max. 2.8
T) which has merely the effect of shielding the fringe field. The field generated by the superconducting
coil in the absence of the yoke would be as high as 7.77 T.

Figure 3.5 (left) shows the so-called two-in-one magnet design [60] as adopted for the LHC with
two coils and beam channels within a common mechanical structure and iron yoke. On the right of
the same figure, an alternative design [78] with two beam apertures in a so-called common coil design
is shown. This design allows for an easier winding of the coil-ends where the coil-blocks in the two-
apertures form a common coil with a mean bending radius of half the beam separation distance. Disad-
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Fig. 3.3: Magnetic flux density in the iron yoke and field vectors. Left: H-magnet with increased excitation current (N · I =

96000 A , B1 = 1.17 T, Bs = 0.26 T). Right: Window frame geometry. (N ·I = 360000 A , B1 = 2.0T,Bs = 1.04 T). Note

the saturation of the poles in the H-magnet.
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Fig. 3.4: Magnetic flux density in the iron yoke and field vectors. Left: So-called cosΘ magnet, e.g., the Tevatron magnet with

warm iron yoke (N ·I = 471000 A , B1 = 4.16 T, Bs = 3.39 T). Right: LHC single aperture coil test facility (N ·I = 960000

A , B1 = 8.33 T,Bs = 7.77 T). Note that even with increased field in the aperture the flux density in the yoke is reduced in the

cosΘ magnet design. Size of aperture and beam separation distance are different for both designs.

vantages are the high saturation effects in the mid-plane (and thus field-quality being highly dependent
on the excitation level) and the high cross-talk between the apertures.

We can summarize that in normal conducting magnets

• the magnetic field is defined by the iron pole shape, limited to about 1.5 T. The conceptual design
can be done using one-dimensional field computation, i.e, application of Ampère’s law.

• Normal conducting magnets feature very high field quality because a high precision in the shap-
ing of the iron yoke is possible. In addition, the field quality can be optimized by pole shims.
Commercial finite element software can be applied to the design as a “black box”.

• Tolerances on conductor placement are not critical.
• Ohmic losses in the coils (16 MW for all LEP dipoles) require water cooling.
• Electrical interconnections in strings of magnets are easy to make and to check.
• Hysteresis effects in the iron yoke have to be modeled.
• The voltage drop across the ohmic resistance has to be considered.

In superconducting magnets
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Fig. 3.5: Magnetic flux density in the iron yoke and field vectors. Left: Two-in-one (LHC) magnet design with two coils and

beam channels within a common mechanical structure and iron yoke (N ·I = 2·944000 A , B1 = 8.32 T, Bs = 7.44 T).

Aperture 56 mm, beam separation distance 194 mm. Right: Alternative design [78] with two apertures in a so-called common

coil design (N ·I = 2·1034000 A , B1 = 8.34 T, Bs = 7.35 T). Aperture and beam separation distance are different in both

designs. Aperture 50 mm, beam separation 180 mm.
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• the field is defined by the coil layout and thus requires accurate coil modeling and adapted com-
putational tools for the optimization of the field quality.

• The shaping of the coils in the end-region requires special attention to limit degradation of perfor-
mance. In addition, the effective magnetic length is shorter than the physical length.

• The high current density in the superconductor allows to build magnets with a maximum field of
about 9T (NbTi) at an industrial scale.

• The contribution of the magnetization in the iron yoke to the main field in the aperture is limited
to about 20%. Thus nonlinearities during a wide range of excitation are also limited.

• The enormous electromagnetic forces (4MN/m in the LHC main dipole) require special force
retaining structures.

• Superconducting magnets require cryogenic installations and consequently electrical interconnects
in so-called cryo-lines.

• A system that protects the string of magnets in case of a quench (the transition of the supercon-
ductor to the normal conducting state) is needed.

• Superconducting filament magnetization results in hysteresis effects and large multipole field er-
rors at injection field level which have to be corrected.

• The voltage drop is limited to the induced voltage during the ramping of the magnets.

3.2 Field quality

Deviations in the nominal field of the dipole bending magnets distort the central closed orbit (the path on
which an ideal particle not performing oscillations will travel through the machine) and thus reduce the
available machine aperture. Nonlinear field imperfections can cause resonances and limit the dynamic
aperture (the maximum initial amplitude of oscillations around the closed orbit below which the particle
motion is stable) particularly at injection, where the errors are large due to the remanent fields, and where
the beam has a large emittance.

The magnetic field in the aperture of the accelerator magnets can either be calculated and printed
in a file as a field map, or the deviation from the ideal field can also be plotted in a color representation
as shown in Fig. 3.6. Both methods illustrate the field distribution, but are not useful for field quality
optimization.

The magnetic field errors in the aperture of accelerator magnets can be expressed as the coeffi-
cients of the Fourier-series expansion of the radial field component at a given reference radius (in the

        

                            

        

                

Fig. 3.6: Coil cross-section of dipole model magnet variant (5-Block design as published in the “Yellow book” [227]) together

with the field in the aperture. Left: Field map. Right: Error on theBy field component.|1 − By

Bnom
y

| < 0.1·10−4 for the dark

blue colored areas,> 2·10−4 for the white areas.
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2-dimensional case). In the 3-dimensional case, the transverse field components are integrated over the
entire length of the magnet. For beam tracking it is sufficient to consider the transverse field compo-
nents, since the effect of the longitudinal component of the field (present only in the magnet ends) on the
particle motion can be neglected. Assuming that the radial component of the magnetic flux densityBr
at a given reference radiusr = r0 inside the aperture of a magnet is measured or calculated as a function
of the angular positionϕ (if nothing else is stated, the local coordinate system(r2, ϕ2) of Aperture 2 is
used and the index is omitted), we get for the Fourier-series expansion of the radial field component1

Br(r0, ϕ) =
∞∑
n=1

(Bn(r0) sinnϕ+An(r0) cosnϕ), (3.1)

with

An(r0) =
1
π

∫ π

−π
Br(r0, ϕ) cosnϕ dϕ, (n = 1, 2, 3, ...) (3.2)

Bn(r0) =
1
π

∫ π

−π
Br(r0, ϕ) sinnϕ dϕ. (n = 1, 2, 3, ...) (3.3)

If the field components are related to the main field componentBN we get withN=1 for the dipole,N=2
for the quadrupole, etc.

Br(r0, ϕ) = BN (r0)
∞∑
n=1

(bn(r0) sinnϕ+ an(r0) cosnϕ). (3.4)

TheBn are called thenormaland theAn theskewcomponents of the field given in tesla,bn the normal
relative, andan the skew relative multipole field coefficients. The latter are dimensionless and are usually
given in units of10−4 at a 17 mm reference radius (about 2/3 of the aperture). For a good field quality
these multipole components have to be smaller than one unit in10−4.

In practice, theBr components are calculated at discrete points

ϕk =
kπ

p
− π (k = 0, 1, 2, ..., 2p− 1) , (3.5)

in the interval[−π, π) and a discrete Fourier transform is carried out:

An(r0) ≈
1
p

2p−1∑
k=0

Br(r0, ϕk) cosnϕk, (3.6)

Bn(r0) ≈
1
p

2p−1∑
k=0

Br(r0, ϕk) sinnϕk. (3.7)

The interpolation error depends on the number of evaluation points and the amount of higher order
multipole errors in the field. For the multipoles up to the ordern = 13, 79 evaluation points (p = 40) are
sufficient.

As the trigonometric functions constitute a complete orthogonal function set for the solution of
the two dimensional Laplace equation, not only the radial component of the magnetic flux density at a
given radius, but bothr, ϕ andx, y components of the field inside the reference radius can be calculated
from the given multipole coefficients.

1As the magnetic flux density is divergence free,A0 = 0.
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Fig. 3.7: Left: Cross-section of the long ceramic measuring shaft for the LHC magnets with the three tangential coils centered

and aligned with ceramic pins. Right: Radial coil assembly.

Remark: The coefficients obviously depend on the choice of origin and orientation of the co-
ordinate system. Unfortunately different coordinate systems are used by the engineers and physicists
involved in accelerator technology: In field computation the coordinate system is defined by the aim of
imposing symmetry conditions on thex− andy-axes and to do the meshing of the geometry in the first
quadrant. The axes for the magnetic measurements are defined by the interconnections and the sense
of rotation of the measurement coil. Beam physics is done with thes-parameter in the direction of the
beam (in LHC in direction of Beam 1 rotating clockwise seen from above the ring) in a direct{ex, ey, es}
frame withex pointing in outward machine direction. Measured and calculated harmonics therefore need
to be subjected to coordinate transformations, see Chapter 17. �

3.3 Field quality measurements with harmonic coils

The expression of field quality through the multipole coefficients is perfectly in line with magnetic mea-
surements using so-called harmonic coils, where the periodic variation of flux in radial or tangential
rotating coils is analyzed with a Fast Fourier Transformation (FFT).

Consider a so-called tangential coil as sketched in Fig. 3.7 (left), rotating in the aperture of a
magnet. Withϕ = ωt+ Θ, whereω is the angular velocity, the flux linkage through the coil at timet is
given by2

Φ(t) = NL

∫ ϕ+δ/2

ϕ−δ/2
Br(rc, ϕ)rcdϕ

=
∞∑
n=1

2NLrc
n

sin(
nδ

2
)[Bn(rc) sin(nωt+ nΘ) +An(rc) cos(nωt+ nΘ)], (3.8)

whereN is the number of turns in the rotating coil,rc is the coil radius,L is the length of the rotating
coil, δ is the opening angle of the coil andΘ is the positioning angle att = 0. The voltage signal at time
t is then

U(t) = −dΦ
dt

=
∞∑
n=1

2NLrcω sin(
nδ

2
)[−Bn(rc) cos(nωt+ nΘ) +An(rc) sin(nωt+ nΘ)] . (3.9)

2 Using the relationscos(x + y) = cos x cos y − sin x sin y andsin(x + y) = sin x cos y + cos x sin y.
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With the geometric parameters of the measurement coil that result in a constant factor which can be
calculated and calibrated, the field harmonics can be obtained by means of the FFT of the voltage signal.
Notice, however, that tangential coils have a blind eye for the mulipole of orderm, if 2π/m is in the
range of the opening angle of the measurement coil. This is the reason why also radial coils, sketched
in Fig. 3.7 (right), are used. The derivation of the voltage signal obtained with this coils has to wait in
line, we first need to derive the scaling laws for multipole coefficients in the aperture of the magnet, see
Section 11.4.

3.4 Field errors in superconducting magnets

The field of a superconducting magnet deviates from the ideal one desired. The three main error sources
(geometrical effects, superconductor magnetization and time transient effects) can be associated with
three types of errors: Systematic errors (average error over the whole LHC ring and in one single aper-
ture), uncertainty (deviations of the systematic error per dipole magnet production line), and random
effects (tolerances).

Systematic errors can be classified as follows:

• Errors caused by the design of the coil windings that can only approximate the idealcos Θ current
distribution as shown in Section 14.4.1.

• Remanent fields caused by so-called persistent currents, induced in the superconducting filaments
during the ramp of the magnets to their nominal field value.

• Eddy currents in the multi-strand cables (inter-strand coupling currents).
• Errors from cross-talk in the asymmetric two-in-one magnet design with its common iron yoke

and asymmetric iron saturation effects.
• Cool-down of the structure and resulting deformations of the nominal coil geometry.
• Effects from beam-screen, vacuum channel, cryostat, and fringe fields in the coil-end regions,

including the effect of bus-bars and interconnections.
• Coil deformations due to electromagnetic forces.

Uncertainty errors include:

• Systematic perturbations arising from manufacturing tooling.
• Variations of the properties of the superconducting cable due to different manufacturing proce-

dures.
• Varying properties of steel in yoke and collar laminations depending on the batch.
• Different assembly procedures at the cold-mass manufacturer’s premises.
• Torsion and sagitta.

The random effects mainly arise from:

• Cable placement errors due to tolerances on coil parts, e.g., insulation thickness, cable keystoning
and size of copper wedges.

• Tolerances on yoke parts, e.g., collar outer shape and yoke laminations.
• Manufacturing tolerances and displacements of coil-blocks due to varying elastic modulus of the

coil, coil winding procedure, curing, collaring, yoking, etc.
• Alignment tolerances of the magnet system.

3.5 The ROXIE program

As previously mentioned, the design and optimization of the LHC magnets is dominated by the require-
ment of an extremely uniform field (no skew multipole coefficientsan, no higher-order normal multipole
coefficientsbn, n = 2, 3, ...), which is mainly defined by the layout of the superconducting coils. For
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the field calculation it is necessary to consider even very small geometrical effects, such as those pro-
duced by insufficient keystoning of the cable, insulation, coil deformations (due to collaring, cool down,
and electromagnetic forces) and grading of the current density in the cable due to different cable com-
paction. If the coils had to be modeled in the finite-element mesh, as is the case in most commercial field
computation software, it would be difficult to define the current density as this would require a further
subdivision of the cables into a number of radial layers.

For the 3-D case in particular, commercial software has proven hardly appropriate for the field
optimization of the LHC magnets. The ROXIE (Routine for theOptimization of magnetX-sections,
Inverse field calculation and coilEnd design) program package was therefore developed at CERN for
the design and optimization of the LHC superconducting magnets. It is now increasingly being used
in institutes outside CERN [78], [202]. The development of the ROXIE program was driven by the
following main objectives:

• To write an easy-to-use program for the design of superconducting coils in two and three dimen-
sions considering field quality, quench margin, and hysteresis effects from the so-called persistent
current.

• To provide for accurate field calculation routines that are specially suited for the investigation of
superconducting magnets, i.e., accurate calculation of the field harmonics, the field distribution
within the superconducting coil, superconductor magnetization etc.

• To integrate the program into a mathematical optimization environment for field optimization and
inverse problem solving.

• To integrate the program into the engineering design procedure through interfaces to Virtual Real-
ity, to CAD/CAM systems (for the making of drawings and manufacturing of end-spacers for the
coil heads), and through interfaces to commercial structural analysis programs.

More information on the licensing, download, and use of the program can be found on the web pages
http://cern.ch/at-mel-em/. A draft version of the ROXIE license agreement can be found in Appendix 53.

3.6 Integrated design

The modeling capabilities of the ROXIE program, together with its interfaces to CAD/CAM and its
mathematical optimization routines, have inverted the classical design process wherein numerical field
calculation is performed for only a limited number of numerical models that only approximate the actual
engineering design. ROXIE is now used as an approach towards an integrated design of superconducting
magnets. The steps of the integrated design process are as follows:

• Feature-based geometry modeling of the coil and yoke, both in two and three dimensions using
only a number of meaningful input data to be supplied by the design engineer. This is a prerequisite
for addressing these data as design variables of the optimization problem.

• Conceptual design using a genetic algorithm, which allows the treatment of combined discrete
and continuous problems (e.g. the change of the number of cables per block) and the solving of
material distribution problems. The applied niching method provides the designer with a number
of local optima which can then be studied in detail.

• Subject to a varying magnetic field, currents that screen the interior of the superconducting fil-
aments are generated. The relative field errors caused by these currents are highest at injection
field level and have to be calculated to allow a subsequent part-compensation by geometrical field
errors. Deterministic search algorithms are used for the final optimization of the coil cross-section.

• Minimization of iron-induced multipoles using a finite-element method with a reduced vector-
potential formulation (developed at IGTE Graz, Austria) or the BEM-FEM coupling method (de-
veloped at ITE Stuttgart and Robert Bosch GmbH, Germany).

• Calculation of the peak voltage and peak temperature during a transition from the superconducting
to the normal conducting state (quench).
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• Sensitivity analysis of the optimal design through Lagrange-multiplier estimation and the set-up
of payoff tables. This provides an evaluation of the hidden resources of the design.

• Tolerance analysis by calculating Jacobian-Matrices and estimation of the standard deviation of
the multipole field errors.

• Generation of the coil-end geometry and shape of the so-called end-spacers using methods of dif-
ferential geometry. Field optimization including the modeling and optimization of the asymmetric
connection side, ramp and splice region as well as external connections.

• 3-D field calculation of the saturated iron yoke using the method of coupled boundary elements
and finite-elements, BEM-FEM.

• Production of drawings by means of a DXF interface for both the cross-sections and the 3-D coil-
end regions.

• End-spacer manufacture by means of interfaces to CAD/CAM (DXF, VDA), rapid prototyping
methods (laser sinter techniques), and computer controlled 5-axis milling machines.

• Tracing of manufacturing errors from measured field imperfections, i.e., the minimization of a
least-squares error function using the Levenberg-Marquard optimization algorithm.

The design process is described with the example of the LHC main quadrupole in [199]. In this book,
the main dipole magnet design will be described in Chapter 34. The required numerical methods are
explained in Chapters 10 - 18 (analytical and numerical field computation) and in Chapters 31 and 32
(mathematical optimization).

3.7 Questions

1. Name at least 5 differences between conventional and superconducting magnets. Which are the
consequences for numerical field computation?

2. Give the definition of the field quality in accelerator magnets.

3. Why is the definition of the field quality in accelerator magnets “perfectly in line” with measure-
ments using rotation coils.



Part II

Mathematical Background

33



Chapter 4

Affine Space and Vector-Fields

The best way is to use the abstract field idea.
That it is abstract is unfortunate, but necessary.

R.P. Feynman (1918-1988), The Feynman Lectures on Physics.

We devote this chapter to the study of the three-dimensional, oriented Euclidean affine space, shortE3, as
the appropriate geometrical framework of computational electromagnetism. The study of the geometrical
relations focuses the attention on how the elements of the physical and linear spaces act on each other,
rather than attempting an explanation of what vector-fields (or the quantities they represent) actuallyare.
To take up a metaphor by R. Feynman,... we can imagine that this complicated array of moving things
which constitutes “the world” is something like a great chess game being played by the gods and we are
observers of the game .., would we explain a chess game by describing the material of the chessmen?

In previous drafts of this book we presented the mathematical background when required for the
field analysis at hand. With increasing volume, however, the text became ultimately cluttered, which
required the treatment of the mathematical foundations in separate chapters. Readers who are sufficiently
“at home” in vector-space may browse these chapters as a refresher, probably noticing some unfamiliar
aspects here and there. For the study of modern approaches in electrodynamics such as differential
forms, chains and cochains, and discrete material laws, the presented material constitutes the very basics,
however.

In case motivation needs to be boosted to read on, reflect on the following questions: 1) What is a
vector? An arrow, a tuple of numbers, a quantity having direction and magnitude, a solution of a linear
equation system, a contravariant tensor? 2) Is there a difference between coefficients, components, and
coordinates? 3) We know (from school) how to add vectors represented as directed line segments in
R2 by means of the parallelogram law. With the spatial vector represented by the vectorr and given in
units of meter, why not add the force vectorF (in units of Newton) represented by an arrow at the tip
of r? What would in this case be the physical unit1·N + 1·m? 4) Why can we not add components of
non-Cartesian vector-fields?

4.1 Mappings

To introduce the mathematical notation used in the next 5 chapters, we shall first generalize the term
function which is often synonymously used with the word mapping. LetW andX be arbitrary nonempty
sets1. Suppose that to each element ofX (called the domain) there is assigned a unique element ofW
(the codomain), then the collection of such assignments is called amapping(or map, or operator) from
X intoW and is denoted by

f : X →W : x 7→ f(x). (4.1)

1In German: Mengen

34
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which should be read as:f(x) is the element ofW that f assigns tox ∈ X. f(x) is called the value off
atx or the image ofx. In particular, the set of all images, i.e.,f(X), is called the range off . The range
of any functionf is always contained in the codomain. Notice that the older notationy = y(x) has the
advantage/disadvantage that an individual notation for the function is not needed/available. We will have
to come back to this point at a later stage. The familiar squaring function inR, f(x) = x2 is written as

f : R → R : x 7→ x2 . (4.2)

This might not look like an improvement at first glance, but the following examples show the advantage
of the notational rigor:

f : [a, b] → R : x 7→ f(x) Real function

+ : R× R → R : (x, y) 7→ x+ y Addition

f : Ω → R : x 7→ f(x) Scalar field

x · y : Rn × Rn → R : (x,y) 7→ x · y := x1y1 + ...+ xnyn Scalar product

γ : I → E3 : x 7→ γ(x) Space curve

f : Ω → R3 : x 7→ f(x) Vector-field

When the domain and the range of a mapping are well defined, there is no need to emphasize the mapping
symbol for the vector-fields with the bold-face characters (or the little arrows) as is common practice in
physics and engineering literature. For example, it is clear from the obove notation that the space curve
denotedγ is described by three component functions. The symbol× in the mappingf : R × R → R
denotes the Cartesian product2 andR × R is defined as the set of all ordered pairs(x, y) with x ∈ R
andy ∈ R. Mappingsf with f : W × W → W are called binary operations inW , e.g., addition
+ : W ×W → W (x, y) 7→ x + y and multiplication· : W ×W → W (x, y) 7→ xy . Let
W,X, Y, Z all denote sets, and suppose we have mappingsf : X → W, g : W → Y, h : Y → Z.
We call

h ◦ g ◦ f = h ◦ (g ◦ f) = (h ◦ g) ◦ f : X → Z (4.3)

that carries elements ofX intoZ and obeys the associative law, the composition ofh with g with f .

Suppose we have a mappingf : X →W, then

1. If two distinct elementsx1, x2 ∈ X are always mapped into two distinct elementsw1, w2 ∈ W ,
thenf is calledinjective(or one-to-one). Iff is a one-to-one mapping, then fromf(x1) = f(x2)
it follows thatx1 = x2.

2. If the range of the functionf is exactly equal to the codomainW , thenf is calledsurjective(or
onto). In this case the equationf(x) = w has at least one solution for eachw ∈W .

3. If f is both injective and surjective, it is calledbijective(or one-to-one onto, or a bijection). In
this case the equationf(x) = w has a unique solution for eachw ∈W and there exists an inverse
functionf−1 : W → X. It yields

f ◦ f−1 = 1W and f−1 ◦ f = 1X (4.4)

with the identity mappings1W and1X. Precisely,1W : W →W : a 7→ f(a) = a.

4.2 Groups

Groups are an important layer of mathematical structure for field analysis and a key to symmetry. Vector-
fields, for example, are groups with added structure. In short, a group is a set equipped with an associative
binary operation, with a neutral element, and with an inverse for each element of the set.

2Rene Descartes (Renatus Cartesius) (1596-1650).
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A groupoidis a pair(G,µ) consisting of a non-empty setG and a binary operationµ in G.

A non-empty setG is called a multiplicative group if the groupoid(G, ·) contains an identity
element, i.e.,1a = a for all a ∈ G, is associative, i.e.,(ab)c = a(bc) for all a, b, c ∈ G and every
elementa ∈ G has an inverseb ∈ G such thatab = 1. The elementb is denoteda−1.

A non-empty setG is called a additive group if the groupoid(G,+) contains a neutral element,
i.e.,a+ 0 = a for all a ∈ G, is associative, i.e.,(a+ b) + c = a+ (b+ c) for all a, b, c ∈ G and every
elementa ∈ G has an element(−a) ∈ G such thata+ (−a) = 1. Examples of groups are:

• The additive group of integers(Z,+).

• The rotation groupSO(3) of the 3 × 3 orthogonal matrices[A] with det [A] = 1 under matrix
multiplication.

• The multiplicative group of nonzero complex numbers with the multiplication defined as
(a+ jb)(c+ jd) = (ac− bd) + j(ad+ bc) and an inverse a

a2+b2
− j b

a2+b2
.

• Affine space, as discussed in Section 4.6.

If all the binary operations in a group commute, it is called an Abelian3 group or commutative group.
Elements of a group are called generators if any element in the group can be represented by finite
products of these generators. The minimal system of such generators in a group with a finite number of
elements is called thebasisof the group. Groups where such a basis can be found are calledmodules.

A groupG is said toact on a setX if for eachx ∈ X there is a mapπ(x) : X → X such that
π(1) is the identity map andπ(gh) = π(g)◦π(h). The same abstract group can act differently on related
geometrical objects such as points, vectors, functions, fields, etc.

4.3 Vector-space

We will now turn to the abstract definition of a vector-space which is mainly due to Hilbert4. Let F be
a given field5 of scalars with elementsλ, µ ∈ F (e.g.,F = R or F = C), and letV (with elementsa,b
andc called vectors) be a non-empty set with rules of addition and scalar multiplication. Then(V,+, ·),
shorthandV , is called an affine vector-space overF if the following axioms are fulfilled:

1. For any vectorsa,b, c ∈ V : (a + b) + c = a + (b + c).
2. There is a zero vector0 for whicha + 0 = a for any vectora.

3. For each vectora ∈ V there is a vector−a in V for whicha + (−a) = 0.

4. For any vectorsa,b ∈ V : a + b = b + a.

5. For any scalarλ ∈ F and any vectorsa,b ∈ V : λ(a + b) = λa + λb.

6. For any scalarsλ, µ ∈ F and any vectora ∈ V : (λ+ µ)a = λa + µa.

7. For any scalarsλ, µ ∈ F and any vectora ∈ V : (λµ)a = λ(µa).
8. For the unit scalar1 ∈ F and any vectora ∈ V : 1a = a.

The properties 1-4 (only concerned with the elementsa,b, c ∈ V ) constitute the axioms for an Abelian
group. The properties 5-8 concern the scalar multiplication of vectors with elements inF and constitute
the second structural layer of the vector-space. We shall denote vector-spaces by capital letters, e.g.,
V,W,W ∗ (omitting the notion of the binary operators) and the elements by lower-case bold face letters,
e.g.,a,b,x1. One should be aware that “vector” is a generic name and may represent translations or
positions, among others, but may also apply to other objects than the familiar two and three-dimensional
vectors of elementary geometry, provided these objects obey the vector-space axioms. Therefore vector-
spaces are frequently namedlinear spaces. Examples of vector-spaces are:

3Niels Henrik Abel (1802-1829).
4David Hilbert (1862-1942).
5A field (in German: Körper denotedK) is a triple(F, +, ·) with a setF and two binary operators+, · where both(F, +)

and(F\0, ·) are Abelian groups and the distributive lawλ(a + b) = λa + λb holds for allλ, a, b ∈ F.
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Fig. 4.1: Geometrically defined rules of vector addition and scalar multiplication for spacial vectors represented by “icons”,

i.e., directed line segments.

1. Functional spaceCm(X) of allm-times continuously differentiable functions from any non-empty
setX ∈ Rn into the field of real numbersR with rules of addition(f + g)(x) = f(x) + g(x) and
scalar multiplication(λf)(x) = λf(x).

2. Matrix spaceM of all m× n matrices[A] = (aij); i = 1, · · · ,m; j = 1, · · · , n over an arbitrary
field Fm×n with addition [A] + [B] = [C] defined bycij = aij + bij and scalar multiplication
λ[B] = [C] defined bycij = λbij . On square matrices (m = n) one can define an associative
multiplication by[A] = (aik), [B] = (bkj), [A][B] = [C] with cij =

∑n
k=1 aikbkj , which yields a

square matrix of same dimension. There also exists the unitary element called the identity matrix
defined by[I] = (δij). Therefore square matrices form anAlgebraoverFn×n.

3. Tuple spaceRn of all n-tuples of elements inR, formally R × R × ... × R = (a1, a2, ..., an) :
a1, ..., an ∈ R , where vector addition and scalar multiplication are defined as

(a1, a2, ..., an) + (b1, b2, ..., bn) = (a1 + b1, a2 + b2, ..., an + bn), (4.5)

λ(a1, a2, ..., an) = (λa1, λa2, ..., λan), (4.6)

and were the zero vector is defined as0 = (0, 0, ..., 0).

4. Polynomial spaceP (t) of all polynomials of the formp(t) = a0+a1t+a2t
2+ .... andq(t) = b0+

b1t+b2t2+....with coefficientsai ∈ F with vector additionp(t)+q(t) = (a0+b0)+(a1+b1)t+....
and scalar multiplicationλp(t) = λa0 + λa1t+ .....

5. Space of “icons” used to display spatial vectors in 2 and 3 dimensions with the geometrically
defined rules of addition and scalar multiplication as shown in Fig. 4.1.

4.4 Linear independence and basis

The vectorsx1,x2, ...,xn in V are said to be linearly independent if

n∑
i=1

λixi = 0 (4.7)

holds only for the trivial solution with all the coefficientsλi = 0, i = 1, ..., n. The
∑n

i=1 λixi are called
linear combinations of the vectorsx1, ...,xn. The vectorsx1, ...,xn in V are said to spanV or to form a
spanning set ofV if everyv in V is a linear combination of these vectors. The vector-space (then denoted
Vn) is calledn-dimensional when there existn linearly independent vectors and whenn+ 1 vectors are
always linearly dependent so that

µx + λ1x1 + λ2x2 + ...+ λnxn = 0 , withµ 6= 0. (4.8)
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Because ofµ 6= 0 we can express the (n+ 1)-th vector through then others in the form

x = − 1
µ

n∑
i=1

λixi. (4.9)

The setS = {x1,x2, ...,xn} of vectors (written in a specified order) is then a basis or frame ofVn and
shall be denoted{g1,g2, ...,gn}. The basis is a minimal spanning set ofV .

The linear independence of the basis vectors yields that there is exactlyone way of expressing
an elementx ∈ Vn through the coefficientsλi

µ in Eq. (4.9) which are denotedxi and are called the
coefficientsof x with respect to the basis{g1,g2, ...,gn}.

x =
n∑
i=1

xigi. (4.10)

The notation follows the convention of the Ricci6 calculus with the indices as superscript. The termsxigi
are called thecomponentsof the vector. By choosing a basis, we assign to every vectorx then-tuple of
coefficients(x1, ..., xn), a unique and reversible linear mapping which is called a(basis)-isomorphism
LV betweenVn andRn

LV : Vn
∼=→ Rn, (4.11)

shortVn ∼= Rn, and defined by

LV (x) = (x1, ..., xn) if x = x1g1 + x2g2 + ...+ xngn . (4.12)

The isomorphism allows us to identify all operations on and all properties of the vector-space with
the operations on and the properties of the tuple spaceRn. The choice of basis is then-dimensional
analogy of the choice of a unit for some physical quantity. Consequently, isomorphism does not mean
an identification ofVn with Rn, as there is no canonical (natural) way to associateVn with Rn, but that
Vn andRn are structurally identical. Vectors are abstract entities which can be added, stretched etc., and
their representation in components is only one possibility to perform calculations.

By applying Einstein’s7 summation convention to Eq. (4.10) it is written

x = xigi instead of x =
n∑
i=1

xigi. (4.13)

Other examples for the application of the summation convention in three-dimensions are:

z = xiyi ≡
3∑
i=1

xiyi , z = xijyiyj ≡
3∑
i=1

3∑
j=1

xijyiyj , (4.14)

zi = xijyj ≡
3∑
j=1

xijyj , gi = xjigj ≡
3∑
j=1

xjigj . (4.15)

Examples (4.15) involve two sorts of indices, the index of summationj called the dummy index and the
indexi, which may take any particular value between one and three, is called the free index.

6Gregorio Ricci-Curbastro (1853-1925).
7Albert Einstein (1879-1955).
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4.5 Linear mappings

In Section 4.1 we have discussed mappings between arbitrary nonempty sets. Let nowV andW be any
two vector-spaces over the same fieldF. A mappingT : V → W is called a linear mapping, a linear
transformation, or ahomomorphism, if it satisfies the following two conditions:

1. For any vectorsx,y ∈ V , T (x + y) = T (x) + T (y).

2. For any scalarλ ∈ F and vectorx ∈ V, T (λx) = λT (x).

Thus a linear mapping is completely characterized by the condition

T (ax + by) = aT (x) + bT (y) (4.16)

and it preserves the two basic operations of a vector-space, i.e., addition and scalar multiplication.

Examples of linear transformations are:

1. The projection mappingT (x, y, z) = (x, y, 0) is linear because of

T (a(x1, y1, z1) + b(x2, y2, z2)) = T (ax1 + bx2, ay1 + by2, az1 + bz2) =

(ax1 + bx2, ay1 + by2, 0) = a(x1, y1, 0) + b(x2, y2, 0) =

aT (x1, y1, z1) + bT (x2, y2, z2) . (4.17)

2. From Point 2 above, substitutingλ = 0, it follows that for linear mappings, the zero vector is
mapped into the zero vector. Thus the translation mappingF (x, y) = (x+x0, y+y0) is not linear
asF (0, 0) = (x0, y0).

3. The bijection between the vector-spaceV andRn preserves the vector-space operations of vector
addition and scalar multiplication and thus the mappingT : V → Rn is linear. Bijective linear
mappings are called isomorphisms.

4. It is an easy task to show that the matrix mapping defined in Example 2 of Section 4.3 preserves
the addition and scalar multiplication in vector-space and is thus linear. If we consider the linear
transformationT : Vn → Wm, then there exists anm × n matrix [A] = (aij) ∈ Rm×n defined
by means of the commutative diagram

Vn
T

- Wm

Rn

LV

? [A]
- Rm

LW

?

i.e., [A] = L−1
V ◦ T ◦ LW . Form = n anddet[A] 6= 0 there exists an inverse[A]−1 and the

groupGLn of linear transformations is isomorphic (via a selection of basis) to the group ofn× n
matrices.

We will now define two important subspaces related to linear transformations: The collection of all
vectorsT (x) in W for which there exists a vectorx ∈ V is called the range (or the image) ofT . The
collection of all vectorsx in V such thatT (x) = 0 is called the kernel or the null-space ofT , denoted
kerT . The kernel of any linear transformation is a subspace of the domainV , see Fig. 4.2. It holds

dimW = dimV − dim (kerT ) . (4.18)

Let {g1,g2, ...,gn} be a basis for the domainV of T . Then the vectorsT (g1), ..., T (gn) in W
span (generate) the range ofT in W . The linear transformation is thus completely determined by its
action on a given basis. However, the vectorsT (g1), ..., T (gn) are not necessary linearly independent
and therefore may, or may not, be a basis for the range ofT .
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D o m a i n  V
C o d o m a i n  W

0

T

K e r n e l  T
R a n g e  o f  T

Fig. 4.2: Kernels and range of the linear transformationT : V → W .

4.6 Affine space

Curves and surfaces are usually considered as sets of points with geometric properties invariant under
certain transformations, e.g., translations, rotations and projections. We will, eventually, model the space
of points as a vector-space, but this is not always convenient, as the point corresponding to the zero vector
plays a dominant role. In addition, the geometric properties of vector-spaces are invariant under the group
of bijective linear mappings, while the mathematical model for physical space should be invariant under
the group of bijective affine maps (translations), and these groups are not isomorphic. Affine spaces
provide a better framework for geometry, as it possible to deal with points, curves, surfaces and volumes,
which we will denote asspace elements, in an intrinsic manner independent of a specific choice of
coordinate system.

Consider a setA with membersP called points, an associated vector-spaceV (of translations, or
free vectors) with scalars in some fieldF, and an operation+ : A× V → A satisfying the conditions:

1. P + x ∈ A if P ∈ A andx ∈ V.

2. (P + x) + y = P + (x + y) for P ∈ A andx,y ∈ V.

3. There is a uniquex ∈ V such thatP1 = P2 + x for P1, P2 ∈ A.

then the set shall be called affine point space associated with the vector-spaceV denoted(A, V,+) or
short affine spaceA. Conditions 1 and 2 state thatV , as an Abelian group, acts onA. Condition 3
states that every pair of points defines a unique free vector inV . It is thus the structure formed by the
vector-space as a bare set, equipped with the additive Abelian group action of translations. PointsP1

andP2 are said to be in the same orbit if there exists some group elementg that transformsP1 into P2.
Affine space inherits the dimension from the associated vector-space. Affine space of dimensionn is
consequently denotedAn.

As an example consider the setH that is the plane passing through the points with coordinates8

(1, 0, 0), (0, 1, 0) and (0, 0, 1). The plane can be made an affine space by defining the group action
+ : H ×R2 → H defined such that for every point(x, y, 1− x− y) onH and any(x1, y1) ∈ R2 we get

(x, y, 1− x− y) + (x1, y1) = (x+ x1, y + y1, 1− x− y − x1 − y1) . (4.19)

It should be clear that affine space is not a vector-space as it is devoid of the zero element. But it is
a way of defining a vector-space structure on a set of points without making a commitment to a fixed
origin inA. On the oder hand, by selecting a specific originO (which is an arbitrary move) we establish
an isomorphism between the (algebraic) vector-space and the (physical) point space. Any pointP ∈ A
is then associated with aspatial vectorrP = rOP ∈ V in direction fromO to P . Spatial vector are

8The precise definition will be given in the next section.
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represented in two and three dimensions by directed line segments, and can in turn be associated with a
tupel of real numbers, i.e.,

P ∈ An
Origin−→ r ∈ Vn

Basis−→ (x1, ..., xn) ∈ Rn . (4.20)

Whenever we emphasize this point, we will denote the vector-space of spatial vectors asA0.

Remark: In magnetic field computation we often refer to the field pointP and the source point
Q (the location of charges and currents) and writer = rP andr ′ = rQ. The vector pointing from the
source point to the field point is then denoted asR = r − r ′ = rQP .9 Vectors of that form are called
vectors atr ′. They form a vector-space, called thetangent spaceatr ′.

�

4.6.1 Barycenters

The corresponding concept in affine space, to that of linear combination in vector-space, is the concept
of affine combinations, better known asbarycenters. Given an affine spaceA, letPi be a family of points
in A and letλi be scalars. For any two pointsQ1, Q2 ∈ A:

Q1 +
∑
i

λi rQ1Pi = Q2 +
∑
i

λi rQ2Pi if
∑
i

λi = 1 , (4.21)

∑
i

λi rQ1Pi =
∑
i

λi rQ2Pi if
∑
i

λi = 0 , (4.22)

(the proof can be found in [75]) and thus the pointB with

B = Q+
∑
i

λi rQPi with
∑
i

λi = 1, (4.23)

called the barycenter of the pointsPi which is independent of (the origin)Q ∈ A. Theλi are called the
weights associated toPi and the pair(Pi, λi) is called a weighted point. We rewrite Eq. (4.23) as

B =
∑
i

λiPi with
∑
i

λi = 1. (4.24)

An affine subspaceS of A is then a subset ofA for which every family of weighted points inS has a
barycenter that belongs toS. An affine subspace is therefore also called aflat.

Affine maps are transformationst : An → An that, by definition, preserve barycenters; formally

t

(∑
i

λi Pi

)
=
∑
i

λi t(Pi) . (4.25)

Important special cases of affine maps are the translations, which are not linear, see Example 2 in Section
4.5. Affine transformations that fix at least one point are called orthogonal transforms (or point groups
in crystallography) and include rotations and mirror reflections.

However, affine transformations do not preserve distances and angles; ametricstructure is needed
for their definition. This will be subject of Section 4.7.

Consider given a pointP in the domain oft and a pointQ in the range oft, and any linear mapping
T : Vn → Vn : v 7→ T (v), then the mappingt with

t(P + v) = Q+ T (v) (4.26)

9It is common practice to denote this vector asx− ξ.
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is an affine mapping.

Proof: Consider the familiesvi andλi with
∑

i λi = 1. Since∑
i

λi(P + vi) = P +
∑
i

λirP,P+vi = P +
∑
i

λiPi (4.27)

and ∑
i

λi(Q+ T (vi)) = Q+
∑
i

λirQ,Q+T (vi) = Q+
∑
i

λiT (Pi) (4.28)

we have

t

(∑
i

λi Pi

)
= t

(∑
i

λi (P + vi)

)
= t

(
P +

∑
i

λi Pi

)
=

Q+
∑
i

λi T (Pi) =
∑
i

λi(Q+ T (vi)) =
∑
i

λit(P + vi) =
∑
i

λi t(Pi) . (4.29)

�

4.6.2 Coordinates

A coordinate chart onAn is a setϕ of n functions that maps an open subsetU ⊂ An (called the domain
of the coordinate chart) to an open subsetϕ(U) ⊂ Rn of the space ofn-tuples, i.e.,

ϕ : U 7→ ϕ(U) . (4.30)

Thecoordinate map(4.30) is ahomeomorphism, i.e., it is bijective and bothϕ andϕ−1 are continuous. A
homeomorphism takes open (closed) sets into open (closed) sets, i.e., they are topologically10 identical.

If U = An the coordinate chart is said to be globally defined, otherwise it is locally defined and
(U,ϕ) is called acoordinate patchonAn. When

⋃
i Ui = An, then the family of patches is called an

atlas. The inverse mappingϕ−1 : ϕ(U) 7→ U is called aparametrizationofU and a local parametrization
of An.

If we consider ap-dimensional subspace ofAn, then a pointP ∈ U ⊂ Ap ⊂ An, has coordinates
(ϕ1(P ), ϕ2(P ), ..., ϕp(P )) ∈ Rp with the coordinatefunctionsϕi, i = 1, p. Notice that the mapping
(4.30) hasp component functions, while the inverse mappingϕ−1 to the spaceAn, into which the subset
Ap is embedded, containsn component functions, see also Fig. 5.1 in Chapter 5.

The mapping (4.30) provides the concept ofAp as a(sub)-manifoldM , i.e., a topological space
that can locally be represented byRp, in the sense that is is covered by a coordinate chart such that a point
that lies in the overlap of two patches(U,ϕU ) and(V, ϕV ) will have the two sets of coordinates related
in the sense of a coordinate transformation valid on the intersectionU ∩ V . Not a rigorous definition,
however, see for example [77] for a comprehensive treatment. A visualization of the concept is given in
Fig. 4.3.

A transformationT : Rn → Rn : u 7→ T (u) written in component form as

T : xi = xi(u1, u2, ..., un) 1 ≤ i ≤ n (4.31)

with functionsxi that map a given regionU ∈ Rn to reals is called acoordinate transformation, if it is
bijective and has continuous second partial derivatives at every point in the region. Coordinates inRn

are calledrectangularor Cartesianif the distance11 between two arbitrary pointsP = (x1, x2, ..., xn)
andQ = (y1, y2, ..., yn) is given by

d(P,Q) =
√

(x1 − y1)2 + (x2 − y2)2 + ...+ (xn − yn)2 . (4.32)

10The notion of topology will allow us to talk about continuity and neighborhood when the distance concept is lacking. For
details see for example [81].

11The distance concept will formally be discussed in the next section.
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U

V

ϕU ϕV(x1, x2, ..., xp) (u1, u2, ..., up)

M ∈ Ap not
necessarily⊂ An, n > p

Rp Rp

ϕU (U) ϕV (V )

ϕU (U ∩ V )

ϕV ◦ ϕ−1
U

T

Fig. 4.3: Visualization of the concept of a (sub)-manifold that can locally be represented byRp, in the sense that is is covered

by a family of local coordinate patches (usually, but not necessarly, rectangular) such that a point that lies in the overlap of

two coordinate patches defined by(U, ϕU ) and(V, ϕV ) will have the two sets of coordinates (usually denoted(x1, x2, ..., xp)

and (u1, u2, ..., up) ) related in the sense of the coordinate transformation (4.31) on the intersectionU ∩ V . ϕU andϕV

are called coordinate maps,ϕU : U → Rp. The figure should not be over-interpreted, as the manifold is not necessarly

embedded in an higher dimensional encompassing space, not necessarly 2-D, and consequently one should not see a surface in

three-dimensional space (some alkohol may help).

If the xi are the ordinary Cartesian coordinates(x, y, z), then theui are calledcurvilinear coordinates
defined by the mappingT in the reverse notation, Eq. (4.31), that takes the system(ui) into a Cartesian
system of the same dimension. IfT is linear, then theui are called affine coordinates.

Then2 first order partial derivatives∂x
i

∂uj arising from Eq. (4.31) are arrangend in ann× n matrix

[J ] = ( ∂x
i

∂uj ) called the Jacobi12 matrix. Its determinantdet[J ] is called the Jacobian of the tranformation
T . Examples of coordinate systems are:

• Local coordinates used in plane triangular finite elements:(x1, x2) = (x, y) and(u1, u2) = (ξ, η)
with ξ, η ≥ 0 andT : x = x3 + (x1 − x3)ξ + (x2 − x3)η, y = y3 + (y1 − y3)ξ + (y2 − y3)η.

• Cylindrical coordinates:(x1, x2, x3) = (x, y, z) and(u1, u2, u3) = (r, ϕ, z) with r > 0, 0 ≤ ϕ <
2π andT : x = r cosϕ, y = r sinϕ, z = z .

• Spherical coordinates:(x1, x2, x3) = (x, y, z) and(u1, u2, u3) = (R,ϑ, ϕ) with R > 0, 0 ≤ ϑ <
π, 0 ≤ ϕ < 2π andT : x = R sinϑ cosϕ, y = R sinϑ sinϕ, z = R cosϕ .

Remark: In physics and engineering literature, usually no ink is wasted for the notion of the domain
of the coordinate chart and neither for the coordinate map and the component functions. The coordi-
nate functionsϕi are usually denotedxi and the coordinates of a particular pointP are then written
as then-tuple of real numbers(x1(P ), x2(P ), ..., xp(P )) ∈ Rp which has the advantage/disadvantage
that a different notion for the point coordinates and the coordinate functions on the domainU are not
needed/available. It is also common practice to omit the notion of the pointP . As we will see in the
next chapter on classical surface theory, the space coordinates are denotedx, y, z and the variables of the
parameter domain are calledu andv. Then we will find notions such asx = x(u, v), y = y(u, v), z =
z(u, v) but also, without warning, equations such asu = u(x, y, z) andv = v(x, y, z) where in contrast
u, v are coordinatefunctions. Then we have also to be careful that only points(x, y, z) from the coor-

12Carl Jacobi (1804-1851).
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dinate patch are considered. It has thus to become clear from the context whether point coordinates or
component functions are to be considered. �

4.7 Inner product space

The abstract definition of vectors was given through the algebraic rules in Section 4.3, not involving the
concepts of orientation and metric. The vectors, so defined, form the so-called affine vector-space. The
concepts of length and angle have not appeared in the definition of the vector-spaces and therefore the
usual physical meaning of a vectoras a quantity having direction as well as magnitude[83], is still not
completely defined.13

We will have to introduce the so-called inner product space(V, 〈·, ·〉), shorthandV , a real vector-
space with an inner product〈a,b〉 : Vn × Vn → R that obeys bilinearity, symmetry, and positive defi-
niteness:

1. 〈a + b, c〉 = 〈a, c〉+ 〈b, c〉 and 〈a, λb + µc〉 = λ〈a,b〉+ µ〈a, c〉.
2. 〈a,b〉 = 〈b,a〉.
3. 〈a,a〉 > 0 and〈a,a〉 = 0 iff 14 a = 0.

A finite dimensional real vector-spaceVn with an inner product declared on it is called inner prod-
uct space. The scalar product is a mappingVn × Vn → R and must not be confused with the scalar
multiplicationx = λy which is a mappingR× Vn → Vn.

As 〈a,a〉 is always positive, a real square root exists which is called the Euclideannormof a.

‖ a ‖=
√
〈a,a〉, (4.33)

for which holds the triangular inequality

‖ a + b ‖≤‖ a ‖ + ‖ b ‖ . (4.34)

The angle between two vectorsa 6= 0 andb 6= 0 is defined by

cosα(a,b) :=
〈a,b〉

‖ a ‖ ‖ b ‖
0 ≤ α ≤ π. (4.35)

That the angle is well defined follows from the Cauchy-Schwarz15 inequality

| 〈a,b〉 |≤ ‖ a ‖ ‖ b ‖ (4.36)

which may be written in the form

− 1 ≤ 〈a,b〉
‖ a ‖ ‖ b ‖

≤ 1 (4.37)

and which carries the angle concept into arbitrary real inner product spaces. Examples of inner products
are:

• The tuple spaceR3 equipped with an origin and with the ordinary scalar product (or dot product)
defined by

a · b := a1b1 + a2b2 + a3b3 (4.38)

is called the Euclidean space.

13Affine vector-spaces don’t even provide the concept of direction. Only if the vectors can be associated with an element in
A0, then direction is defined by the pointing direction fromO to P in the affine space. Magnitude we will discuss here, but
quantity (with physical dimension) will have to wait in line.

14If and only if.
15Augustin Cauchy (1789-1857), Herman Schwarz (1843-1921).
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• Instead of the positive definiteness (3) one can impose the non-degeneration: If for a fixeda,
〈a,b〉 = 0 for all b, thena = 0. This space is called Pseudo-Euclidean. In the four-dimensional
Minkowski16 space of special relativity, the Lorentz inner product is given by

〈a,b〉 = a1b1 + a2b2 + a3b3 − (c)2a4b4 (4.39)

wherec is the speed of light.

• In the (infinite dimensional) vector-space of integrable functionsf, g : [−1, 1] 7→ R, an inner
product is given by

〈f, g〉 =
∫ 1

−1
f(x)g(x)dx. (4.40)

4.7.1 Associated affine space

The associated affine space is turned into a metric space(A, d) by means of the distanced : A×A→ R
between two pointsP andQ by means of

d(P,Q) =‖ rP − rQ ‖ (4.41)

satisfying

1. d(P,Q) = d(Q,P ) ≥ 0 ∀P,Q,
2. d(P,Q) > 0 if P 6= Q,

3. d(P,R) + d(R,Q) ≥ d(P,Q) ∀P,Q,R.

The metric is compatible with the affine structure as it is translation invariant, i.e.,

d(P + v, Q+ v) = d(P,Q) . (4.42)

4.7.2 Metric

We can turn any finite dimensional vector-space into an inner product space by selecting a frame and
then defining the inner product as〈gi,gj〉 = gij with gij ∈ R. Then〈x,y〉 can be constructed by a
so-called bilinear extention.

Selecting a frame one can write for the inner product of the two vectorsx =
∑3

i=1 x
igi and

y =
∑3

j=1 y
jgj in accordance with the above rules

〈x,y〉 = x1y1 〈g1,g1〉+ x1y2 〈g1,g2〉+ x1y3 〈g1,g3〉
+ x2y1 〈g2,g1〉+ x2y2 〈g2,g2〉+ x2y3 〈g2,g3〉
+ x3y1 〈g3,g1〉+ x3y2 〈g3,g2〉+ x3y3 〈g3,g3〉, (4.43)

which can be written as

〈x,y〉 =
3∑
i=1

3∑
j=1

xiyj gij , (4.44)

or again shorter with the summation convention

〈x,y〉 = xiyj 〈gi,gj〉 = xiyjgij . (4.45)

The inner productsgij form a positive definite square matrix called themetric, [G] = (gij) . In some
open domain

16Hermann Minkowski (1864-1909).
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1. [G] is of differentiability classC2, i.e., all second order partial derivatives ofgij exist and are
continuous.

2. [G] is symmetric, i.e.,gij = gji.
3. [G] is positive definit, i.e.,gijxixj > 0 for all vectorsx.
4. The differential arc lengthds2 = gijdxidxj and the distance concept, see Eq. (4.50) below, are

invariant with respect to coordinate transformations.

If the coordinate transformation (4.31) (in its reverse notation) from a given (general) coordinate system
(ui) to a Cartesian system(xi) is given by the Jacobi matrix[J ] = ( ∂x

i

∂uj ), then the matrix[G] of the
metric in the general system(ui) is given by

[G] = [J ]T [J ] . (4.46)

Example: Take the cylindrical coordinates:(x1, x2, x3) = (x, y, z) and(u1, u2, u3) = (r, ϕ, z) with
r > 0, 0 ≤ ϕ < 2π and defined byT : x = r cosϕ, y = r sinϕ, z = z . Then

[G] = [J ]T [J ] =

 cosϕ sinϕ 0
−r sinϕ r cosϕ 0

0 0 1


 cosϕ −r sinϕ 0

sinϕ r cosϕ 0
0 0 1

 =

 1 0 0
0 r2 0
0 0 1

 . (4.47)

�

The norm of a vectorx in the general system, now again denoted(xi), is

‖ x ‖=
√
〈x,x〉 =

√
xixjgij (4.48)

(summation convention!) and the angle between two non-null vectorsx andy can be calculated from

cosα =
〈x,y〉

‖ x ‖ ‖ y ‖
=

xixjgij√
ypyqgpg

√
xrysgrs

. (4.49)

4.7.2.1 Distance in associated affine space

The distance in the associated affine space can then be expressed as

d(P,Q) =
√

(xi(P )− xi(Q))(xj(P )− xj(Q))gij . (4.50)

Notice that this distance concept is non-Euclidean and the Pythogorean17 relation for right angles is not
valid. But Eq. (4.50) is an invariant with respect to coordinate transformations.

Eq. (4.49) can be used in a reverse fashion to obtain the metric for affine coordinates inR3. The
following example is taken from [109]: Carpenters taking distance measurements in a room notice that at
the corner they had used as reference point, the angles were not true. The actual measures of the angles
are given in Fig. 4.4. With the unit vectorsg1 = (δi1),g2 = (δi2),g3 = (δi3) along the oblique axes, Eq.
(4.49) reads

cosα =
gijδ

i
1δ
j
2√

gpgδ
p
1δ
q
1

√
grsδr2δ

s
2

=
g12√
g11
√
g22

= g12 , (4.51)

sinceg11 = g22 = g33 = 1. The symbolδ is called the Kronecker18 delta which has the effect of
annihilating the index terms in the double summation. In the same way we obtaincosβ = g13 and
cos γ = g23. The metric is thus

[G] =

 1 cosα cosβ
cosα 1 cos γ
cosβ cos γ 1

 (4.52)

and the carpenters must use the distance formula Eq. (4.50) with thegij from above.

17Pythagoras of Samos (569-475 BC).
18Leopold Kronecker (1823-1891).
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Fig. 4.4: On the distance measurements in affine coordinates.

4.7.2.2 Orthonormal bases

A set of basis vectorsS = {g1,g2, ...,gn} is said to beorthogonalif the inner product of each pair
i, j; i 6= j of vectors is zero. The set is orthonormal ifS is orthogonal and each vector has unit length,
i.e.,

〈gi,gj〉 = gij = δij =

{
0 for i 6= j

1 for i = j
. (4.53)

It is common practice to denote orthonormal basis vectors instead ofgi with the symbolei. The matrix
[G] = (gij) = diag(1, ..., 1) is called the Euclidean metric, under which holds the Pythagorean relation
for right triangles, i.e.,

d(P,Q) =

√√√√ n∑
i=1

(xi(P )− xi(Q))2 . (4.54)

The inner product then takes the form

〈a,b〉 = a · b = b · a = a1b1 + a2b2 + a3b3 + ...+ anbn. (4.55)

Remark: The right-hand side of Eq. (4.55) resembles the scalar (dot) product in the tuple space
Rn, even though the vector-spaceVn may not be the tuple space at all and may have any inner product
〈·, ·〉. �

4.8 Projections

Let V be an inner product space. The vectorsx,y ∈ V are said the be orthogonal if〈x,y〉 = 0. As
prominent examples we may list

• The trigonometric functionssinϕ andcosϕ in the vector-spaceC∞[−π, π] of smooth functions
on the closed interval[−π, π]. Then

〈sinϕ, cosϕ〉 =
∫ π

−π
sinϕ cosϕdϕ =

1
2

sin2 ϕ|π−π = 0 . (4.56)

Thussinϕ andcosϕ are orthogonal functions in the vector-spaceC∞[−π, π].
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Fig. 4.5: Left: Projection of the vectorx alongy. Right: Gram-Schmidt orthogonalization step for the special case of 3-

dimensions, when two orthogonal vectorsg1 andg2 have already been found.z = proj(f3,g1) + proj(f3,g2).

• The Legendre19 polynomialsPn(x) of degreen ≥ 0 ,i.e.,P0(x) = 1, P1(x) = x and

Pn(x) =
1

2nn!
dn

dxn
(x2 − 1)n ∀n > 1 (4.57)

are orthogonal with respect to the following integral inner product

〈Pn(x), Pk(x)〉 =
∫ 1

−1
Pn(x)Pk(x)dx ∀n 6= k . (4.58)

• The Chebyshev20 polynomialsTn(x) of degreen ≥ 0 ,i.e.,T0(x) = 1, T1(x) = x and

Tn+1 = 2xTn − Tn−1 ∀n ≥ 1 (4.59)

are orthogonal with respect to the following weighted integral inner product

〈Tn(x), Tk(x)〉 =
∫ 1

−1
Tn(x)Tk(x)

1√
1− x2

dx ∀n 6= k . (4.60)

Consider two non-zero vectorsx,y ∈ V . Then the projection ofx alongy is by definition the scaled
vectorλy of y such that the vectorx−λy is orthogonal toy, see Fig. 4.5 (left) for two vectorsx,y ∈ A0.
Consequently

〈x− λy,y〉 = 0, (4.61)

〈x,y〉 − λ〈y,y〉 = 0, (4.62)

λ =
〈x,y〉
〈y,y〉

. (4.63)

The projection is denoted as

proj(x,y) = λy =
〈x,y〉
〈y,y〉

y . (4.64)

The scalarλ is unique and is called the generalized Fourier21 coefficient ofx with respect toy.

19Adrien Marie Legendre (1752-1833)
20Pafnuti Chebyshev (1821-1894)
21Joseph Fourier (1768-1830).
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4.8.1 Gram-Schmidt orthogonalization

Suppose now that{f1, f2, ..., fn} is a basis of ann-dimensional inner product space. It is an important
property of inner product spaces that we can construct an orthogonal basis{g1,g2, ...,gn} of Vn by
means of the Gram-Schmidt22 orthogonalization process, see also Fig. 4.5 (right):

g1 = f1 ,

g2 = f2 −
〈f2,g1〉
〈g1,g1〉

g1 ,

g3 = f3 −
〈f3,g1〉
〈g1,g1〉

g1 −
〈f3,g2〉
〈g2,g2〉

g2 , (4.65)

i.e., fork = 2, 3, ...., n,

gk = fk −
k−1∑
i=1

proj(fk,gi) . (4.66)

An orthonormal basis can be found by dividing the orthogonal projection at each step by its norm to
obtain the unit vectoren orthogonal tofn−1, i.e.,

ek =
fk −

∑k−1
i=1 proj(fk,gi)

‖ fk −
∑k−1

i=1 proj(fk,gi) ‖
. (4.67)

Remark: We emphasize that in inner product space with a given basis, it is always possible to generate
an orthonormal basis. �

4.9 Digression: The dual space

For any real vector-spaceV with elementsx there is an associateddualspace, denotedV ∗, with elements
ω1,ω2, ..., called covectors or linear forms ofV . The dual spaceV ∗ is defined to be the set of all elements
with the mapping

V ∗ × V → R : ω |x 7→ R . (4.68)

The setV ∗ can be given the structure of a vector-space by defining the operations

(ω1 + ω2) |x = ω1 |x + ω2 |x (4.69)

and

(λω1) |x = λ(ω1 |x) , (4.70)

with some scalarλ ∈ R. Examples are the covectors introduced in Chapter 9.

If V has finite dimension, e.g., three and{g1,g2,g3} is a basis ofV3 thenx =
∑3

i=1 x
igi and the

the dual basis{g1,g2,g3} in V ∗
3 can be uniquely determined by the relations

gi |gj = δij , (4.71)

i.e., by the 9 equations

g1 |g1 = 1, g1 |g2 = 0, g1 |g3 = 0,
g2 |g1 = 0, g2 |g2 = 1, g2 |g3 = 0,
g3 |g1 = 0, g3 |g2 = 0, g3 |g3 = 1.

22Jörgen Pederson Gram (1876-1916); Erhard Schmidt (1876-1959).
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The scalarω |x, a linear continuation of Eq. (4.71), which is also referred to as “the effect of the covector
ω on the vectorx ”, is equal to

ω |x =
3∑
i=1

ωix
i, (4.72)

or again abbreviated using Einstein’s conventionω | x = ωix
i. Formally this expression looks very

similar to the ordinary scalar product in Euclidean space. But the coefficients of the scalar product are
from the same vector-space, whereas the coefficients of the duality product are from different vector-
spaces, i.e.,V and its dualV ∗. However, if we assume that a metric is given, defined by the inner
productgij := 〈gi,gj〉 then an isomorphism between the dual space and the vector-space is established
through the Riesz23 vectorw = ι−1(ω) which is defined such that

ω |x = 〈ι−1(ω),x〉 = 〈w,x〉 = gijw
jxi = ωix

i. (4.73)

Notice the summation convention. In tensor calculus it is said that the metric tensor(gij) has lowered
a contravariant index to a covariant index. Because the matrix(gij) is invertible, the conjugate metric
tensor(gij) = (gij)−1 can be used to raise a covariant index. The termgijw

jxi defines the tensor inner
product that depends on the vectorsw andx only, and not on the particular coordinate system used to
specify these vectors. The coefficientsωi of ω with

ωi = gijw
j (4.74)

are called thecovariantcoefficients of the vectorw (notω) whereas the coefficientswj in the expansion
w = wjgj are called thecontravariantcoefficients. Thegj forming the original basis are called the
covariant andgi the contravariant basis vectors. The one-to-one mappingι is formally written as

ι : V → V ∗ : w 7→ ι(w) , (4.75)

ι−1 : V ∗ → V : ω 7→ ι−1(ω) , (4.76)

with the property

ω |x = ι(w) |x = 〈ι−1(ω),x〉 = 〈w,x〉. (4.77)

In components, the mappingι can be represented by the metric[G] = (gij). If we setw = gj and
x = gk then

ι(gj) |gk = 〈gj ,gk〉 = gjk = gijδ
i
k = gijgi |gk (4.78)

and consequently

ι(gj) = gijgi . (4.79)

Easy relations result for orthonormal bases. In this case

ι(ej) = ei, ωi = wi, (4.80)

i.e., covariant and contravariant coefficients are identical.

23Frigyes Riesz (1880-1956).
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4.10 Orientation

In order to study the appropriate geometrical framework for field analysis (in particular the integration
of vector-fields over lines, surfaces and volumes) we have to discuss orientation of space elements and
the linear algebraic version thereof: The orientation of vector-spaces.

Consider two frames inVn, i.e.,{g1, . . . ,gn} and{f1, . . . , fn}. One may express the basis vec-
torsgi as a linear combination of thefj by means of a transition matrix[A] such thatgi =

∑
j aijfj .

Two frames are said to have the same orientation if the determinant of the transition matrix is positive,
det[A] > 0. The groupGLn of linear transformations withdet[A] > 0 preserve the orientation and con-
stitute the subgroupGL+

n . Transformations withdet[A] < 0 reverse the orientation and do not constitute
a subgroup.

The matching of the orientation defines on the set of all frames inVn an equivalence relation that
does not depend on the basis and is therefore intrinsic to the structure ofVn. The equivalence relation
separates the frames inVn into two so-called equivalence classes. Each one of these classes, denotedOr
and−Or in [35], defines an orientation onVn.

Orienting a vector-space consists of designating one of the orientation classes as positively ori-
ented. The privileged frame serves, however, no other purpose than fixing the orientation class and does
not impose coordinate axis. For each vector-space there are two oriented vector-spaces:(Vn, Or) which
is called the positive oriented space (abbreviated+Vn) with frames therein calleddirect and(Vn,−Or),
also denoted−Vn, with frames therein calledskew. In three dimensions the direct frame can geometri-
cally be described by the right-handed screw24.

4.10.1 Inner orientation

An affine space is oriented by orienting its associate tangent space, i.e., by choosing direct or skew frames
at all pointsP in a consistent25 way. Connected patches of affine subspaces (subsequently referred to as
space elements) such as line segments or polygonal faces are oriented by orienting all their tangents or
tangent planes26.

Orienting a point, i.e. a zero-dimensional affine subspace, is done by attributing a plus or minus
sign (and thus defining the point as a source or a sink) , orienting a line means selecting a vector parallel
to it (and thus defining a direction along the line), orienting a surface is done by selecting a sense of
rotation, and inner orienting a volume is done by deciding on a helix (hop or vine), see Fig. 4.6.

4.10.2 Outer orientation

The orientations as described above areinner orientations which do not depend on the object being
embedded in a larger dimensional space. In contrast, giving a crossing direction through a surface for
example, is calledouterorientation. Generally, when a space element of dimensionp is embedded into a
higher dimensional spaceAn, an outer orientation of the tangent space at a point is by definition an inner
orientation of its complement ofco-dimensionn− p.

Outer orienting a line means thus to inner orient a transverse surface, i.e., to make a choice between
the two ways to turn around the line. As an example [221], a one-lane street is a line with an inner
orientation while the axis of rotation of Earth is a line with outer orientation because of it’s direction of
rotation around the axis.

Outer orienting a surface means to select a crossing direction through it. It is equivalent to selecting
one face of the surface, which is done by a tailor before cutting the cloth for a dress.

24Prof. W.H. Miller has suggested to me that as the tendrils of the vine are right-handed screws and those of the hop left-
handed, the two systems of relations in space might be called those of the vine and the hop respectively. James Clerk Maxwell
(1831-1879).

25Let’s not be forced to be precise here. The consistency rules out non-orientable manifolds such as the famous Möbius
band, August Möbius (1790-1868).

26How this can be done precisely, requires the study of analysis on manifolds, see for example [77].
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Fig. 4.6: Inner and outer orientation of space elements [221]. Induced orientation of the boundary (blue). As an example, inner

orienting a line means selecting a vector parallel to it, outer orienting a line means to inner orient a transverse surface, i.e., to

make a choice between the two ways to turn around the line.

Outer orienting a volume is done by attributing the plus or minus sign to a point within the volume
(and thus define a direction from inside-out), outer orienting a point means attributing a sense of screw
rotation to the volume enclosing the point. Inner and outer orientation of space elements is visualized in
Fig. 4.6, [221].

To ensure consistent orientation of the space elements and their complements in an oriented en-
compassing spaceAn , take a frame in the tangent spaceWp consisting ofp vectors, add (append) the
n− p vectors of a positively oriented frame inUn−p (the tangent space to the complement) and check if
the resulting frame inVn (the tangent space toAn) has the same orientation as the frame inWp, see Fig.
4.7 (left). In this case we don’t need to distinguish between inner and outer orientation and happily go
ahead27.

4.11 The boundary operator

Although topological concepts can be introduced without reference to a distance concept [81], each
metric space is an example of a topological space. LetA denote a metric affine space:

An open ball centered atP is defined asBε = {Q ∈ A | d(P,Q) < ε}. A subsetV ⊂ A is
called open ifV contains for everyP ∈ V also an open ball centered atP . The set of all open subsets
of A are called the topology of the metric space(A, d).

The distanced(P,W ) of a pointP to a partW is defined asinf{d(P,Q)} for all Q ∈ W . The
interior ofW is the set of all pointsP ∈ A such thatd(P,A−W ) > ∅ where∅ denotes the empty set.

Theboundary∂W of W is the set of all points for whichd(P,W ) = ∅ andd(P,A−W ) = ∅.

With these preliminaries we can turn to the special cases of lines, surfaces and volumes. The
boundary∂s of a connected inner oriented curves consists of the starting pointP1 and the end point

27Hermann Weyl (1885-1955) states that this practise, however,in some way hides the essential feature. We will have to
come back to this point in future editions of this book.
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Fig. 4.7: Left: Consistent inner and outer orientation of a surface in an oriented encompassing space:{v1,v2,v} has the same

orientation as{ex, ey, ez}. Right: Conistent orientation of the boundary of an inner oriented surface:{v,v1} has the same

orientation as the surface.

P2, i.e., ∂s = {P1, P2}. If we assign a minus to the starting point and a plus to the end point, then
the boundary is said to beconsistentlyinner oriented. The curve can be composed of a number of non-
connected parts. In this case a multiple of points define the boundary. Closed curves, denotedsc, have
no boundary, i.e.,∂sc = ∅.

An orientable surfacea has a boundary∂a of closed curves, which are called contours. The inner
orientation of the contours is said to be consistent if the movement along the contour fits the sense of
rotation of the surface, see Fig. 4.6 left. Closed surfacesac have no contour, i.e.,∂ac = ∅.

The boundary∂V of a volumeV consists of closed surfaces which are consistently oriented if the
sense of rotation of the boundary surface matches the sense of the screw of the domain when the surface
is approached from the inside of the domain.

For consistent orientation of the boundary∂M of an inner oriented space elementM of dimension
p ≥ 2 takep − 1 tangent vectors at a point of∂M , i.e.,v1, ...,vp−1 and append them to the outward
normal vectorv. Then check if the frame{v,v1, ...,vp−1} is in the same orientation class asM , see
Fig. 4.7 (right).

For consistent outer orientation, first establish the consistent inner orientation by means of the
orientation of ambient space and then check the inner orientation of the space element and its boundary.

Since the boundary of a surface is a closed line and the boundary of a volume is a closed surface,
we have the two important topological properties

∂(∂V ) = ∅ , ∂(∂a) = ∅ , (4.81)

i.e., closed lines and closed surfaces have no boundary.

4.12 Exterior products andp-vectors

The exterior product is defined as a bilinear mapping that assigns to each ordered pair of vectorsa andb
a so-called 2-vector, i.e., a mappingVn × Vn → ∧2V : (a,b) 7→ a ∧ b which obeys

a ∧ (λb + µc) = λ(a ∧ b) + µ(a ∧ c), (4.82)

(λa + µb) ∧ c = λ(a ∧ c) + µ(b ∧ c), (4.83)

but which is (in contrast to the inner product) alternating, i.e.,

a ∧ b = −(b ∧ a) (4.84)

from which follows

a ∧ a = 0. (4.85)
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The need of such alternations as an appropriate algebraic structure for integrands will become obvious
in Section 6.5. If we select a frame, thenn products out of then2 possible products of the basis vectors
are zero because of the property (4.85). Only half of the remainingn(n − 1) products are linearly
independent due to the property (4.84), therefore

dim(∧2V ) = n(n− 1)/2 . (4.86)

In particular forn = 3, the dimension of∧2V is three. Because of the linearity we get

a ∧ b = (a1g1 + a2g2 + a3g3) ∧ (b1g1 + b2g2 + b3g3)

= (a1b2 − a2b1)g1 ∧ g2 + (a2b3 − a3b2)g2 ∧ g3 + (a3b1 − a1b3)g3 ∧ g1, (4.87)

which can also be expressed by means of a determinant

a ∧ b =

∣∣∣∣∣∣∣
g2 ∧ g3 g3 ∧ g1 g1 ∧ g2

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣ . (4.88)

As in three dimensionsdim(∧2V ) is also three, the space∧2V is isomorphic toV3 and it exists a one-
to-one mapping of 2-vectors to the ordinary 1-vectors ofV3 (its the one that represents the surface of the
parallelogram spanned by the 2-vector). This metric and orientation dependent mapping is represented
by the Hodge28 or star operator that mapsp-vectors to(n− p) vectors, see for example [35], [77]. Then
the exterior product can be identified with thecross-productV3 × V3 → V3 : (a,b) 7→ a× b by means
of gi × gj = ∗3(gi ∧ gj).

Given two basis vectorsg1 andg2, the cross-productf is a vector orthogonal to both of them, i.e.,

〈f ,g1〉 = 〈f ,g2〉 = 0 (4.89)

and of a length representing the surface of the parallelogram spanned by the two vectors

‖ f ‖=‖g1 × g2 ‖ =
√
‖g1 ‖2 ‖g2 ‖2 − 〈g1,g2〉2

= ‖g1 ‖ ‖g2 ‖
√

1− cos2 α

= ‖g1 ‖ ‖g2 ‖sinα , (4.90)

and such that the frame {g1,g2, f } is direct. Obviously this definition requires both metric and orienta-
tion.

For a directorthonormal basis29, denoted{e1, e2, e3}, it yields

e1 × e2 = −e2 × e1 = e3 ,

e2 × e3 = −e3 × e2 = e1 ,

e3 × e1 = −e3 × e1 = e2 . (4.91)

As the covariant and contravariant coefficients are identical, the cross-product between two vectors
a andb can be written, with the indices now always in subscript, as

a× b = (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3, (4.92)

or again in form of a determinant

a× b =

∣∣∣∣∣∣∣
e1 e2 e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣ . (4.93)

28William Hodge (1903-1975).
29Which is not a restriction as in inner product spaces an orthonormal basis can always be obtained by means of the Gram-

Schmidt orthogonalization procedure.
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Fig. 4.8: Visualization of the wedge- and cross-product in three-dimension. Whereasx ∧ y is the oriented parallelogram

spanned by the two vector, the cross-product yields a vector orthogonal to bothx andy with its lengthrepresentingthe surface

of the parallelogram. Whereas the cross-product requires metric, the wedge product owes nothing to this concept.

Remark: Not only can the exterior product (metric independent) be extended top vectors in higher
dimensional spaces, while the identification of the cross-product (metric dependent) is only valid in
three dimensions. Thep-vectors form together with the reals as0-vectors, a vector-space in its own right,
which is denoted∧V and forms together with the operations+ and∧ the so-called Grassmann-algebra30.
The wedge symbol∧ should therefore not be abused for the ordinary cross-product in three-dimensional
Euclidean space. �

In contrast to the inner product, the exterior product can also act on three vectors assigning to each
triple of vectors inVn a 3-vector, i.e.,Vn × Vn × Vn → ∧3V : (a,b, c) 7→ a ∧ b ∧ c. This product is
alternating in the sense that it becomes zero if two of the three factors are identical, that is

a ∧ b ∧ b = a ∧ b ∧ a = a ∧ a ∧ b = 0 (4.94)

anda1 ∧ b ∧ a3 = −a3 ∧ b ∧ a1 or generally

ai ∧ aj ∧ ak = εijk a1 ∧ a2 ∧ a3 (4.95)

whereεijk is the generalized Kronecker31 symbol. Selecting a frame, only

n(n− 1)(n− 2)
3!

(4.96)

basis vectors are linearly independent. Forn = 3 the dimension of∧3V is one, i.e., the space∧3V is
isomorphic toV . We get

a ∧ b ∧ c = det(a,b, c)g1 ∧ g2 ∧ g3 (4.97)

with the determinant

det(a,b, c) =

∣∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣ . (4.98)

The Hodge operator maps thep-vector to the(n−p)-vector; forn = 3 the 3-vector is mapped to a scalar.
The Hodge operator serves to identify the exterior product with the triple product

a · (b× c) = ∗3(a ∧ b ∧ c) . (4.99)

30Herman Grassmann (1809-1877).
31εijk = 1 for s(1, 2, 3) and any cyclic (even) permutation, it is -1 for other (odd) permutations and zero for two or more

indices equal. The permutation is defined as a composition of transpositions between two adjacent elements of the ordered set
{1, 2, 3}.
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It is in absolute value equal to the volume of the parallelopiped with sidesa , b andc.

For orthonormal bases we again write the indices in subscript and have

a · (b× c) =

∣∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣ . (4.100)

If the three vectors are linearly dependent, then the triple product is zero. The triple product is positive,
if (a,b, c) is positively oriented.

4.13 Identities of vector-algebra

We shall now summarize some identities of vector-algebra in three-dimensional oriented inner-product
space:

(λa) · b = a · (λb) = λa · b , (4.101)

(λa)× b = a× (λb) = λa× b , (4.102)

a · (b + c) = a · b + a · c , (4.103)

a× (b + c) = a× b + a× c , (4.104)

(a + b)× (c + d) = (a× c) + (b× c) + (a× d) + (b× d) , (4.105)

a · (b× c) = b · (c× a) = c · (a× b) , (4.106)

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c) , (4.107)

a× (b× c) = b(a · c)− c(a · b) , (4.108)

x(abc) = a(xbc) + b(axc) + c(abx) , (4.109)

x(abc) = (a · x)(b× c) + (b · x)(c× a) + (c · x)(a× b) , (4.110)

(abc)2 = (a× b)(b× c)(c× a) . (4.111)

4.14 Vector-fields

The pair{P,x(P )} which consists of a pointP ∈ U ⊂ A and a vectorx ∈ V is called a bound vector.
Note that it makes no sense to add{P1,x(P1)} and{P2,y(P2)} unlessP1 = P2 and in which case

λ{P,x} = {P, λx} P ∈ U , λ ∈ R (4.112)

{P,x}+ {P,y} = {P,x + y} P ∈ U , x,y ∈ V. (4.113)

The bound vectors form a vector-space at pointP which is called the tangent space toU in P , denoted
TPU . In other words, the tangent space is the set of all possible vectors located atP . The name is
inspired by the image of tangent vectors spanning a tangent plane attached to a point on a 2-D surface
embedded inR3. The concept which is not limited to three dimensions, and which does not require the
embedding, thus requires a more rigorous definition, see for example [77] and Chapter 9. A visualization
of the concept is shown in Fig. 4.9 for the abstract manifold (left), and the embedded two-dimensional
surface described by the locus of a spatial vector (right).

Bound vectors can be associated with the pair of points{P, P + x} and consequently with the
spatial vectorsr ∈ A0 at pointP . In electromagnetics we study not only single bound vectors but so-
called vector-fields which assign to each pointP ∈ U ⊂ A an element of its tangent space. Different
representations of such vector-fields (magnetic flux density) are shown in Fig. 4.10. Notice that the icons
have been constructed by means of{P − x/2, P + x/2} in order to optically center them atP .

Obviously the (bound) vectors{O,x(O)} and{P,x(P )} at different points are not the same. They
form an affine space, however. By a translation of the origin we can identify{O,x(O)} and{P,x(P )}
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Fig. 4.9: Visualization of the concept of a vector-field as an assignment of one tangent vector to every point on the manifold.

Left: Vector-field on an open subsetU of an abstract manifoldM . Right: Vector-field on an open subsetΩ of R3.

with the samefreevectorx. Thus, denoting the electric and magnetic field intensities with the usual ink
savingE,H does not mean that it has become non-relevant where these vectors are located, but that it is
known indeed: They have been translated into the pointP .

The vector-space of free vectors is defined as the union of all tangent spaces

Vfree =
⋃
P∈U

TPU , (4.114)

which is also called atangent bundle. With this definition, a vector-field can be characterized by means
of the mapping

x : U → Vfree : P 7→ x(P ) , (4.115)

which leaves us algebraically only with the sole vector-spaceVfree and we need only the information on
the position to turn free vectors into physical vectors atP .

Some aspects of electromagnetism (Faraday’s32 law of induction and Ampère’s33 magneto-motive
force law, for example) can indeed be described using affine notations only, with operators onA such as
the exterior derivative of differential geometry. Also the existence of a scalar field of the formϕ : A3 →
R owes nothing to the Euclidean structure.

However, electric fields represented by the gradient of some scalar field requireA3 with a scalar
product of the associated vector-spaceA0. Magnetic fields are even more demanding as they require
orientation. The fact that Faraday’s and Ampère’s law are affine mappings is thus hidden in classical
electrodynamics by the modeling of electromagnetic quantities with vector-fields. The framework for
electromagnetism is the so-called Euclidean affine spaceE3, which is endowed with the (group) structure
of the affine point spaceA3, the vector-space structure of its associated vector-spaceA0 and an Euclidean
structure which gives rise to concepts such as distance and angles between points. We will further define
the spaceE3 to be endowed with an orientation (necessary for all the operations involving cross-products)
in the sense of the right handed screw. As we have no ambition to address relativity, we will consider
time as an universal parameter and thus limit ourselves to three dimensions.

We will further (except in the digressions and in Chapter 9) consider only space elementsem-
beddedinto the encompassing spaceR3 of classical vector-analysis. Indeed, in classical vector-analysis

32Michael Faraday (1791-1867).
33André-Marie Ampère (1175-1836).
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Fig. 4.10: Representation of vector-fields by means of icons in 2 and 3 dimensions. To avoid the impression of asymmetries,

the icons are centered at the field point. Top left: Representation of the field modulus by means of a color scheme. Bottom

right: 3-D representation (the so-called hedgehog plot) of the magnetic flux density in the coil end region of a quadrupole. Top

right and bottom left: Representation of the field modulus by size scaling of the icons. Of course, one cannot plot an icon at

any point but it should be understood this way. Indeed, all two-dimensional plots represent the same vector-field.

manifolds are not even mentioned and only that we find integrals over directed line and surface elements
reminds us of some relations to the analysis on manifolds. The link to the modern approach is established
by the fact thatE3 andR3 are special cases of a 3-dimensional manifold [80].

4.15 Basis fields and the coordinates of a vector-field

In three dimensions, the projection of the spatial vectorr ∈ A0 at the origin(0, 0, 0) onto the canonical
(standard) basis34 {e1, e2, e3} of R3, i.e.,

e1 = (1, 0, 0) , e2 = (0, 1, 0) , e3 = (0, 0, 1) , (4.116)

34Also denotedex, ey, ez or i, j,k.
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yields the coordinates(x1, x2, x3) of a point on the space element. The canonical basis can then be made
to a globally definedbasis fieldby means of a translation into the pointP . A vector-field onΩ ∈ R3 can
then be written as

a : Ω → R3 : r 7→ a(r) : a(r) = (a1(r), a2(r), a3(r)) , (4.117)

where theai(r) are called the Cartesian coordinates (but now depending on the pointP and thus to be
interpreted as smooth component functions,ai ∈ C∞) of the vector-field. The inifinite dimensional
vector-space (also called functional space, see Chapter 7) ofC∞ (smooth) vector-fields is denoted

V(Ω) := C∞(Ω,R3) (4.118)

as in [80]. A scalar field is a smooth mapping

ϕ : Ω → R : ϕ 7→ ϕ(r) , (4.119)

and the vector-space of theC∞ functionsϕ is denoted

S(Ω) := C∞(Ω,R) . (4.120)

Notice that we have not defined the smoothness ofϕ and the component functions of the vector-field.
Thus we have to turn to (classical) vector-analysis and some aspects of infinite dimensional spaces in the
next chapters.



Chapter 5

Classical Vector-Analysis

While in the preceding chapter we deduced the concepts from the more general to the special ones, we
will have to gear down for the moment in order to avoid the comprehensive study of exterior differential
forms on manifolds; glimpses of which will be presented in Chapter 9.

We will consider space elementsembeddedinto the Euclidean spaceR3. In classical vector-
analysis it is common practice to introduce the coordinates on the space elements (lines, surfaces and
volumes) denoteds, a, V by means of mappings “upside down” ,i.e,ϕ−1 instead ofϕ; in case of a surface
given by itsthree coordinate functionsx(u, v), y(u, v), z(u, v) whereu, v denote the local coordinates
(or parameters) of the surface, see Fig. 5.1.

The space metric is assumed to be the Euclidean metric, and when we work in coordinates we
will use the familiar notations(x, y, z), (x1, x2, x3) or (u1, u2, u3) instead of(x1, x2, x3). The coordi-
nates are declared on an open rectangular domainΩ ⊂ R3, the notion of which is often omitted. The
component functions of the vector-fields will be written as the triplesa1, a2, a3 of fx, fy, fz of functions,
against the conventions of the Ricci calculus, which is permitted as long as we stick to the globally de-
fined Cartesian basis field, denoted{ex, ey, ez} or {e1, e2, e3}. This is not too much a constraint, as
spatial domains will later be discretized by means of modern mesh generators which allow the model-
ing of difficult geometries in Cartesian coordinates (and as long motion and deformations of the space
elements do not need to be considered). In Chapter 6 we will present the operators of classical vector-

u u

v v

ϕ(u, v) r(u, v)

U ⊂M2 Ω ⊂ R3

x
y

z

r

Fig. 5.1: Left: Coordinate patch of a two-dimensional manifold. Right: Surface embedded intoR3, traced out by the locus of

r at a fixed origin, as a function (with three component functions) of the two independent parametersu, v ∈ R.

60
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analysis in orthogonal curvilinear coordinates1.

5.1 Space curves

In this spirit, let us consider the space curver(t), which is a vector function of the real parametert, that
may or may not represent time. If the spatial vectorr of a pointP = (x, y, z) is given as a smooth2

function int, i.e.,

r(t) = x(t)ex + y(t)ey + z(t)ez , (5.1)

and if t changes in some open intervalI = (a, b) ⊂ R, then the locus ofr traces aspace curve. A space
curve is the image of a smooth mappingr : I → R3 : t 7→ r(t) as indicated in Fig. 5.2.

The derivativedr(t)
dt at pointr(t)

dr(t)
dt

= lim
∆t→0

∆r
∆t

= lim
∆t→0

r(t+ ∆t)− r(t)
∆t

(5.2)

(if it exists) is used to define the tangent to the space curve atr(t). In component form:

dr(t)
dt

=
dx
dt

ex +
dy
dt

ey +
dz
dt

ez . (5.3)

If we regard the parametert as the time, then the tangent vector has the physical meaning of the velocity
v(t) = dr(t)

dt . The acceleration is

dv(t)
dt

= a(t) =
d2x

dt2
ex +

d2y

dt2
ey +

d2z

dt2
ez . (5.4)

Remark: Take good note that the easy relation (5.3) holds only for globally defined coordinates and
consequently basis vectors which are independent of the position. Take the example of a space curve
defined in cylindrical coordinates(r, ϕ, z)

dr(t)
dt

= v(t) =
d
dt

(rer + zez) =
dr
dt

er + r
der
dt

+
dz
dt

ez + z
dez
dt

, (5.5)

1Just in case motivation needs to be boosted to read on; try to answer the following questions: 1) How can a space curve
have a velocity? 2) What is a directional derivative? 3) We may writey = curlx = ∇ × x. Does that mean thatx is
orthogonal toy? 4) How arediv and curl defined? Are there inverse differential operators such asgrad−1 and curl−1? 5)
What is ∂ϕ

∂n
wheren denotes the outward normal on a domain boundary? Should we have writtenn? Does that mean we can

divide by vectors?
2Smooth is by definitionC∞ but often used for functions of classCm with m high enough for the purpose. To avoid

confusion we will use the termm-smooth when necessary.

x

y

z

v

ra b

t
r(t)

Fig. 5.2: Real intervalI and the space curver(t) as a mappingr : I → R3 : t 7→ r(t) .
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where
der
dt

=
dϕ
dt

eϕ , (5.6)

(for a proof see Section 6.7.2). The derivative of the unit vector is normal to the unit vector. With
dez
dt = 0,

v(t) =
dr
dt

er + r
dϕ
dt

eϕ +
dz
dt

ez . (5.7)

�

The tangent vectorT(t) is defined as the unit vector in the direction ofv(t). With the convention
‖ v(t) ‖= v(t) we get

T(t) :=
v(t)
v(t)

= Tx(t)ex + Ty(t)ey + Tz(t)ez . (5.8)

A curver(t) is said to beregular if it is differentiable and if its velocity is non-zero at all points of the
open interval(a, b). Clearly, if all functionsx, y, z are constants, then the curve would degenerate into a
single point. If‖ v(t) ‖= 1 the curve is said to be of velocity one.

By means of the parametric representation of the space curve witht increasing froma to b in the
intervalI, the space curve is oriented. A regular oriented space curve is then said to be anequivalence
classof parametric representations, where any two parameters, e.g.,t ands, are related by an allowable3

change of parameters = s(t) such thatdsdt > 0.

The direction of the tangent vector is independent of the parametric representation. The space
curve can be expressed as a function of its arc length

s(t) :=
∫ t′=t

t′=0
vdt′ =

∫ t′=t

t′=0

√(
dx
dt′

)2

+
(

dy
dt′

)2

+
(

dz
dt′

)2

dt′ . (5.9)

By the differentiation rule of composite functions we have

df(s(t))
dt

=
df
ds

ds
dt

= v
df
ds

, (5.10)

and forv 6= 0 this yields d
ds = 1

v
d
dt . For, e.g., thex-component of T we get

Tx(s) =
1
v

dx
dt

=
dx
ds

, (5.11)

or in vector notation

T(s) =
1
v

dr(t)
dt

=
dr(s)
ds

. (5.12)

Thus a curve with velocity one is said to be parameterized with respect to its arc length.

5.2 Differentiation rules for vector functions of a real parameter

If a andb are differentiable vector functions of a scalart (a,b : R → R3), and ifϕ is a differentiable
scalar function oft (ϕ : R → R) then

d
dt

(a + b) =
da
dt

+
db
dt

, (5.13)

d
dt

(a · b) = a · db
dt

+
da
dt
· b , (5.14)

d
dt

(a× b) = a× db
dt

+
da
dt
× b , (5.15)

d
dt

(ϕa) = ϕ
da
dt

+
dϕ
dt

a . (5.16)

3s = s(t) has to be 1-smooth withds
dt
6= 0.
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5.3 Surfaces

We have discussed a space curve as the locus of points whose coordinates depend on a single parameter
t (or s). In Gauss’ form, surfaces are defined as the locus of a point whose coordinates are functions of
two independent parameters, i.e., the spatial vector to any point on that surface is

r(u, v) = x(u, v)ex + y(u, v)ey + z(u, v)ez. (5.17)

whereu, v vary in some open domainD. Formallyr : D → R3 : u, v 7→ r(u, v) , see Fig. 5.1 (right).

If now u, v are eliminated from the component functions ofr, Monge’s4 form of the surface
equation is obtained:

F (x, y, z) = 0. (5.18)

The vector∂r∂u at a given pointP = (u0, v0) is obtained by differentiatingr with respect tou while
keepingv constant. From the theory of space curves we know that∂r

∂u represents a tangent vector to the
curvev = v0. Similarly, ∂r∂v represents a tangent vector to the curveu = u0. Consequently

n =
∂r
∂u

× ∂r
∂v

(5.19)

represents a vector normal to the surface. The equation of the tangent plane is given by

(r0 − r) · n = 0 , (5.20)

wherer0 is the position of any arbitrary point on the tangent plane. If we assign this point to

r0 = r + λT , λ ∈ R (5.21)

with T being the tangent vector to a space curve at point P traced out on that surface, then we see that
(r0 − r) is orthogonal ton, as it should be.

The distance from the origin to the plane is the projection of the spatial vectorr of a point in the
plane on the direction ofn, i.e.,

d = r · n
‖ n ‖

. (5.22)

Example: As an example we will derive the equation of the tangent plane to the paraboloidx = u, y =
v, z = u2 + v2 in Cartesian coordinates at the pointP = (u0, v0) = (1, 1), which is shown in Fig. 5.3.
The spatial vector to any point on the paraboloid is

r = uex + vey + (u2 + v2)ez. (5.23)

Therefore
∂r
∂u

∣∣∣∣
(1,1)

= (1ex + 2uez)|(1,1) = ex + 2ez , (5.24)

∂r
∂v

∣∣∣∣
(1,1)

= (1ey + 2vez)|(1,1) = ey + 2ez . (5.25)

A normaln to the surface at this point is

n|(1,1) =
(
∂r
∂u

× ∂r
∂v

)∣∣∣∣
(1,1)

= (ex + 2ez)× (ey + 2ez) = −2ex − 2ey + ez . (5.26)

Eliminating the parametersu, v from the parametric form of the surface yields the equation

x2 + y2 − z = 0. (5.27)

Using Eq. (5.20) the equation of the tangent plane atP can be derived:

(r0 − r) · n = [(x− 1)ex + (y − 1)ey + (z − 2)ez] · (−2ex − 2ey + ez)

= −2(x− 1)− 2(y − 1) + z − 2 = −2x− 2y + z + 6 = 0. (5.28)

�
4Gaspard Monge (1746-1818).
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Fig. 5.3: Tangent plane to the paraboloid.

5.4 The directional derivative

Suppose we are given a space curve withr(t) = (x(t), y(t), z(t)) parametrized such that it goes through
the pointP at t = 0, i.e,r(0) = P .

If we consider a smooth scalar fieldϕ ∈ S(Ω) on an open domainΩ including the orbit of the
space curve, then it will become the functionϕ(r(t)) at parameter (time)t. Thedirectional derivative
(denoted∂v), that is thus the derivative ofϕ in the direction of a (unit) vectorv at pointP , is defined by

∂vϕ :=
d
dt

[ϕ(r + tv)]t=0 = lim
t→0

ϕ(r + tv)− ϕ(r)
t

(5.29)

which is an intrinsic definition and does not depend on the choice of coordinates. Now suppose the
canonical basis is given, then the derivative in the direction of the basis vectorex is called the partial
derivative of the scalar field with respect to thex-coordinate atP :

∂exϕ :=
∂ϕ

∂x
= lim

∆x→0

ϕ(x+ ∆x, y, z)− ϕ(x, y, z)
∆x

. (5.30)

Using the differentiation rule of composite functions we can express the rate of which the functionϕ(t)
varies with changing parametert:

∂vϕ =
d
dt
ϕ(r(t)) =

∂ϕ

∂x

dx
dt

+
∂ϕ

∂y

dy
dt

+
∂ϕ

∂z

dz
dt

(5.31)

which reads in a more general notation

∂vϕ =
3∑
i=1

∂ϕ

∂xi
vi . (5.32)

The directional derivative is the projection of the gradient

gradϕ :=
∂ϕ

∂x
ex +

∂ϕ

∂y
ey +

∂ϕ

∂z
ez. (5.33)

onto the tangent vectorv to the space curve atP , i.e.,

∂exϕ = gradϕ · v (5.34)

and the mapping

∂vϕ : R3 → R : v 7→
3∑
i=1

∂ϕ

∂xi
vi (5.35)

can be interpreted as the best linear approximation of the mapping

v 7→ ϕ(r + v)− ϕ(r). (5.36)
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5.5 Gradient, divergence and curl

With the vector differential operator5 Nabla defined in Cartesian coordinates as

∇ :=
∂

∂x
ex +

∂

∂y
ey +

∂

∂z
ez , (5.37)

it follows that

∇ϕ = gradϕ :=
∂ϕ

∂x
ex +

∂ϕ

∂y
ey +

∂ϕ

∂z
ez (5.38)

for ϕ ∈ S(Ω) and grad : S(Ω) → V(Ω).
Remark: Consider the surface of the equipotentialϕ(x, y, z) = λ and a space curver(t) of

velocity one traced out on this surface. Then it follows from Eq. (5.31) thatgradϕ ·v = 0. Herev is the
tangent vector to the space curve and at the same time the tangent vector to the surface of equipotential.
As one can trace out an arbitrary number of space curves through a pointP on the surface, with the
tangent vectors to these curves spanning the tangent plane to the surface, we can conclude thatgradϕ
is normal to the surface of equipotential at pointP . This is an important result we will need for the
calculation of ideal pole shapes of conventional accelerator magnets in Chapter 12.6. �

The Nabla operator can also act on vector-fieldsa,b ∈ V(Ω):

∇ · a := div a =
∂ax
∂x

+
∂ay
∂y

+
∂az
∂z

, (5.39)

with div : V(Ω) → S(Ω) and

∇× a := curla = (
∂az
∂y

− ∂ay
∂z

)ex + (
∂ax
∂z

− ∂az
∂x

)ey + (
∂ay
∂x

− ∂ax
∂y

)ez , (5.40)

where curl : V(Ω) → V(Ω). The nabla operator can also act as(a · ∇) such that

(a · ∇)b = (a · grad )b = (ax
∂

∂x
+ ay

∂

∂y
+ az

∂

∂z
)b

= (ax
∂bx
∂x

+ ay
∂bx
∂y

+ az
∂bx
∂z

)ex + (...)ey + (...)ez

= (a · grad bx)ex + (a · grad by)ey + (a · grad bz)ez . (5.41)

We shall also recall the Laplace operator

∆ = ∇2 := ∇ · ∇ =
∂2

∂y
+

∂2

∂y2
+

∂2

∂z2
. (5.42)

When the Laplace operator acts on a scalar function the result is a scalar, when it acts on a vector function,
the result is a vector. Formally,∇2 : V(Ω) → V(Ω) and∇2 : S(Ω) → S(Ω) .

Remark: One should not conclude that the vector-fieldb = ∇ × a is everywhere perpendicular
to the vector-fielda. As a matter of factb can include every angle with the vectora at some point.
The reader is advised to verify this important fact by calculating the angle betweenb anda at point
(1,−1, 1), with the vector-fielda given asa = xz3ex− 2yzey +2yz4ez . This is the reason why we use
grad , div and curl as notation for the differential operators. �

5An operator is a common designation for a linear transformation linking objects of different types.
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5.6 The Differential

If a function of a single real variable is smooth at a point, it can be linearly approximated in a neigh-
borhood of that point. We will use this property to define the differentiability of a mappingf : U → V
(for openU, V ⊂ R3) at pointP ∈ U . The mapping is said to be differentiable atP (represented by the
spatial vectorr) if there exists a linear functionT (tv) such that

f(r + tv) = f(r) + T (tv) +R(r, tv) (5.43)

with an error termR(r, tv) vanishing “faster thanv”. SinceT is linear we can write

f(r + tv)− f(r)
t

= T (v) +
R(r, tv)

t
. (5.44)

If the error term is vanishing in the senses of

lim
t→0

R(r, tv)
t

= 0 , (5.45)

it follows that the derivative off atP exists ineverydirectionv and is given by

lim
t→0

f(r + tv)− f(r)
t

= lim
t→0

T (v) + lim
t→0

R(r, tv)
t

= T (v) , (5.46)

thus for the linear part we have

T (v) =
d
dt

[f(r + tv)]t=0 = ∂vf , (5.47)

which is the directional derivative of the mappingf in the direction ofv atr. The linear mappingT atr
is called the (total)differentialof f atr and is written asdf |r, c.f. Fig. 5.4.

Formally

df |r(v) = ∂vf(r) . (5.48)

We will subsequently omit the notion of the pointP and its position vectorr.

How is the differential calculated for a givenv? Assume a basis is fixed inP . The directional
derivative into the direction of one of the basis vectors, e.g.,ex (atr) is

T (ex) = ∂exf =
∂f
∂x

, (5.49)

v
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Fig. 5.4: The differential as the best linear approximation of a mappingf : U → V , U, V ⊂ R3.
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with similar equations forT (ey) andT (ez). Due to the linearity ofdf in v we can write in components

df(v) = df(vxex + vyey + vzez)

= vxdf(ex) + vydf(ey) + vzdf(ez)

= vx
∂f
∂x

+ vy
∂f
∂y

+ vz
∂f
∂z

. (5.50)

Assume now a cartesian basis fixed inf(r). If we write f = fxex + fyey + fzez then

∂f
∂x

=
∂fx
∂x

ex +
∂fy
∂x

ey +
∂fz
∂x

ez (5.51)

with equivalent equations fory andz. Then Eq. (5.50) becomes

df(v) = vx

(
∂fx
∂x

ex +
∂fy
∂x

ey +
∂fz
∂x

ez

)
+ vy

(
∂fx
∂y

ex +
∂fy
∂y

ey +
∂fz
∂y

ez

)
+vz

(
∂fx
∂z

ex +
∂fy
∂z

ey +
∂fz
∂z

ez

)
(5.52)

=
(
∂fx
∂x

vx +
∂fx
∂y

vy +
∂fx
∂z

vz

)
ex +

(
∂fy
∂x

vx +
∂fy
∂y

vy +
∂fy
∂z

vz

)
ey

+
(
∂fz
∂x

vx +
∂fz
∂y

vy +
∂fz
∂z

vz

)
ez . (5.53)

Hence

dfx(v) =
∂fx
∂x

vx +
∂fx
∂y

vy +
∂fx
∂z

vz , (5.54)

dfy(v) =
∂fy
∂x

vx +
∂fy
∂y

vy +
∂fy
∂z

vz , (5.55)

dfz(v) =
∂fz
∂x

vx +
∂fz
∂y

vy +
∂fz
∂z

vz . (5.56)

The matrix representation ofdf is thus given by the Jacobi matrix

[J ] =


∂fx

∂x
∂fx

∂y
∂fx

∂z
∂fy

∂x
∂fy

∂y
∂fy

∂z
∂fz

∂x
∂fz

∂y
∂fz

∂z

 . (5.57)

Remark: It is an easy task to extend the above concept to mappings betweenRn andRm. As special
cases we list:

• Consider a column vector{b} ∈ Rm and the linear mapping which is in coordinates represented by
the matrix[A] ∈ Rm×n. The affine mappingf : Rn → Rm : {r} 7→ [A]{r}+{b} is differentiable
and at all points and we havedf |r = [A].

• The Jacobi matrix att ∈ I of a space curver : I → R3 : t 7→ r(t) is the special case forn = 1;
dr|t is the linear approximation of the mapping∆t 7→ r(t + ∆t) − r(t). Thendr(∆t) = [J ]∆t
and thus

dr(1) = [J ] =


∂x
∂t
∂y
∂t
∂z
∂t

 (5.58)

is the tangent vector to the space curve of velocity one.
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• Form = 1 we have the special case of the real functionsf : R3 → R. Thendf is the linear
approximation of the mappingv 7→ f(r + v)− f(r) given bydf(v) =

∑3
i=1

∂f
∂xi
vi and thus the

Jacobi matrix is given by[J ] = ( ∂f∂x1
, ∂f∂x2

, ∂f∂x3
), i.e., the gradient off .

�

It is easy to verify that the coordinate functionsx = x(r), y = y(r), z = z(r) are differential functions
and that their differentialsdx,dy,dz, which are linear functions, satisfydx(v) = vx etc. for any vector
v. Hence

df(v) = dx(v)
∂f
∂x

+ dy(v)
∂f
∂y

+ dz(v)
∂f
∂z

(5.59)

which establishes the formula

df =
∂f
∂x

dx+
∂f
∂y

dy +
∂f
∂z

dz . (5.60)

Remark: In modern mathematicsdf is thusnot interpreted as an infinitesimal increment of the vector
function, but as a linear operator. If we write the test vectorv = vxex+vyey+vzez then the increments
of the coordinatesvx, vy, vz may be infinitesimal or of finite size. The differentialdx of the coordinate
functionx then extracts from the test vector the incrementvx = dx(v) of thex-coordinate. �

5.7 Identities of vector-analysis

Some useful identities of vector-analysis fora,b ∈ V(Ω), ϕ,ψ ∈ S(Ω), λ ∈ R are summarized below.

grad (ϕ+ ψ) = gradϕ+ gradψ , (5.61)

grad (ϕψ) = ψ gradϕ+ ϕ gradψ , (5.62)

grad (a · b) = (a · grad )b + (b · grad )a + a× curlb + b× curla (5.63)

div (a + b) = div a + div b , (5.64)

div λa = λ div a + a · gradλ , (5.65)

div (a× b) = b · curla− a · curlb , (5.66)

curlλa = λ curla− a× gradλ , (5.67)

curl (a + b) = curla + curlb , (5.68)

curl (a× b) = adiv b− bdiv a + (b · grad )a− (a · grad )b , (5.69)

curl curla = grad div a−∇2a , (5.70)

div gradϕ = ∆ϕ (5.71)

div curla = 0 , (5.72)

curl gradϕ = 0 . (5.73)

Eq. (5.72) and (5.73) state that the curl of an arbitrary vector-field is source free, and that an arbitrary
gradient field is curl free. These statements and their reversal are the Lemmata of Poincaré6 and are the
basis for the introduction of scalar and vector-potentials in computational electromagnetism. Therefore
Chapter 8 is entirely devoted to these lemmata.

6Jules Henri Poincaré (1854-1912)
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5.8 Gradients involving spatial vectors

Consider the scalar field that depends on the position in spacer = |r| (or r = |r − r′|), wherer is the
spatial vector. We obtain the following relations:

grad r =
r
r

= er (5.74)

and

grad
1
r

= − r
r3

= − 1
r2

er . (5.75)

Proof: The differential of the norm of the spatial vector is

dr = ( grad r) · dr = d
√

r · r =
1
2

1√
r · r

(r · dr + dr · r) =
r
r
· dr (5.76)

from which follows relation (5.74). In a similar way we find

d
1
r

= ( grad
1
r
) · dr = d

1√
r · r

= −1
2

1
√

r · r3 (r · dr + dr · r) = − r
r3
· dr (5.77)

which proves Eq. (5.75). �

5.9 Integration of vector functions

Let r(t) = x(t)ex + y(t)ey + z(t)ez be a space curve of parametert on a closed interval[a, b] and let
x(t), y(t), z(t) be continuous in that interval. Then∫ b

a
r(t)dt =

∫ b

a
x(t)dt ex +

∫ b

a
y(t)dt ey +

∫ b

a
z(t)dt ez (5.78)

is called the definite vector integral.

Let nowr(t) = x(t)ex + y(t)ey + z(t)ez be a paths on a space curve joining the pointsP1 and
P2. Then let bea ∈ V(Ω) given in an open domain including the path

a = ax(x, y, z)ex + ay(x, y, z)ey + az(x, y, z)ez . (5.79)

The integral of the tangential component ofa along the path fromP1 to P2, written as∫ P2

P1

a · dr =
∫ P2

P1

axdx+ aydy + azdz (5.80)

is called a line integral.

If a = gradϕ with ϕ(x, y, z) ∈ S(Ω) in an open domainΩ including the paths, then∫ P2

P1

a · dr =
∫ P2

P1

gradϕ · dr =
∫ P2

P1

dϕ = ϕ(P2)− ϕ(P1), (5.81)

i.e., the integral is independent of the paths. In particular∮
s
a · dr = 0 (5.82)

on a closed path. This yields a coordinate free definition of the gradient,grad : S(Ω) → V(Ω) for an
open domainΩ ⊂ R3,

v · gradϕ = lim
s→0

ϕ(P2)− ϕ(P1)
s

= lim
∆t→0

ϕ(r(t+ ∆t))− ϕ(r(t))
∆t

, (5.83)

the integral, so to speak, over the boundary∂s consisting of the end-pointsP1 andP2 related to the
length of the paths. The vectorv(t) is the tangent to the path.
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Fig. 5.5: On the calculation ofcurlg (left) and div g (right) in Cartesian coordinates.

5.10 Coordinate free definitions of the curl and div operators

A coordinate free definition of thecurl operator is given bycurl : V(Ω) → V(Ω) for an open domain
Ω ⊂ R3,

n · curlg = lim
a→0

∫
∂a g · ds
a

(5.84)

which relates the line integral of the vector-field along the boundary∂a of the surfacea to the size of the
surface. It holds without saying that the surface normal vectorn, a and the boundary∂a are consistently
oriented, i.e., the crossing direction ofn obeys the right-hand screw rule with the orientation of the
surface. For Cartesian coordinates the way of calculating thex component ofcurlg is explained by
means of Fig. 5.5 (left). Integrating along the rectangle gives

ex · curlg = lim
a→0

∫
∂a g · ds
a

= lim
dy,dz→0

gydy + (gz + ∂gz

∂y dy)dz − (gy + ∂gy

∂z dz)dy − gzdz

dy dz

=
∂gz
∂y

− ∂gy
∂z

. (5.85)

Repeating this step for the other two components results in:

curlg = (
∂gz
∂y

− ∂gy
∂z

)ex + (
∂gx
∂z

− ∂gz
∂x

)ey + (
∂gy
∂x

− ∂gx
∂y

)ez. (5.86)

A coordinate free definition of thediv operator is given bydiv : V(Ω) → S(Ω) for an open domain
Ω ⊂ R3,

div g = lim
V→0

∫
∂V g · da
V

, (5.87)

which relates the integral over the boundary surface∂V of the volumeV to the size of the volume. For
the calculation of the divergence we can write, see Fig. 5.5 (right) for the gray pair of surfaces:

lim
V→0

∫
a1,a2

gxda

V
= lim

dx,dy,dz→0

−gxdydz + (gx + ∂gx

∂x dx)dydz
dxdydz

=
∂gx
∂x

. (5.88)
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Repetition for the other two pairs of surfaces yields

div g =
∂gx
∂x

+
∂gy
∂y

+
∂gz
∂z

. (5.89)

5.11 Integral theorems

We shall first list some of the integral theorems:

∫
V

div g dV =
∫
∂V

g · da , (5.90)∫
a

curlg · da =
∫
∂a

g · ds , (5.91)∫
V

gradϕdV =
∫
∂V
ϕda , (5.92)∫

V
curlgdV = −

∫
∂V

g × da , (5.93)∫
V

( gradϕ · gradψ + ϕ∇2ψ)dV =
∫
∂V
ϕ gradψ · da , (5.94)∫

V
(ϕ∇2ψ − ψ∇2ϕ)dV =

∫
∂V

(ϕ gradψ − ψ gradϕ) · da , (5.95)

of which Eq. (5.94) and (5.95) play a vital role in numerical field computation. They are Green’s7 first
and second identity and are the generalization of the integration by parts rule to two or three dimensions.
Eq. (5.90) is the Gauss8 (Ostrogradski’s)9 divergence theorem and Eq. (5.91) is the Stokes theorem.

5.11.1 Stokes’ theorem

For an oriented simply connected and piecewise smooth surfacea with a simply connected, closed, and
piecewise smooth boundarys = ∂a and for a smooth vector-fieldg ∈ V(Ω), the Stokes’ theorem reads∫

a
curlg · da =

∫
∂a

g · ds , (5.96)

if the boundary is traced in a positive sense with respect to the surface, see Fig. 4.6 and where the
vectorial surface and line elements areda = nda andds = Tds .

Proof: According to Fig. 5.6 (left) we split up the surfacea into two surfacesa1 anda2 with
boundariess1 = s11 + s12 ands2 = s21 + s22, respectively. Then∫

∂a
g · ds =

∫
s1

g · ds +
∫
s2

g · ds, (5.97)

because the line integrals over the boundariess12 ands21 cancel out. If the surface is now repeatedly
segmented, one obtains in a limiting process∫

∂a
g · ds = lim

I→∞

I∑
i=1

∫
si

g · ds = lim
I→∞

I∑
i=1

∆ai
1

∆ai

∫
si

g · ds

= lim
I→∞

I∑
i=1

( curlg)i ·∆ai =
∫
a

curlg · da . (5.98)

�

7George Green (1793-1841).
8Carl Friedrich Gauss (1777-1855).
9Michel Vassilievitch Ostrogradski (1801-1862).



CHAPTER 5. CLASSICAL VECTOR-ANALYSIS 72

5.11.2 Green’s theorem in the plane

Consider the special case of an areaa in thexy-plane, with its unit normal vectorn = ez and with a
closed piecewise smooth boundary∂a. Any two-dimensional smooth vector-fieldg in this plane can be
expressed asg = Mex+Ney withM andN being smooth functions inx andy. With the spatial vector
on the boundary given ass = xex + yey it follows that

g · ds = Mdx+Ndy , (5.99)

curlg · n =
(
−∂N
∂z

ex +
∂M

∂z
ey + (

∂N

∂x
− ∂M

∂y
)ez

)
· ez =

∂N

∂x
− ∂M

∂y
. (5.100)

Therefore from
∫
a curlg · nda =

∫
∂a g · ds we get∫

a
(
∂N

∂x
− ∂M

∂y
)dxdy =

∫
∂a
Mdx+Ndy (5.101)

which is called Green’s theorem in the plane or the Green-Gauss theorem.

5.11.3 Gauss’ (Ostrogradski’s) divergence theorem

Let V be a three-dimensional domain which is bounded by the closed (piecewise smooth and consis-
tently oriented) surfacea = ∂V and let be given a smooth vector-fieldg ∈ V(Ω), then the Gauss’
(Ostrogradski’s) divergence theorem states∫

V
div g dV =

∫
∂V

g · da , (5.102)

where the surface normal vector of the surfacea = ∂V points to the outward direction.

Proof: According to Fig. 5.6 (right) we split up the volumeV into two volumesV1 andV2 with
surfacesa1 = a11 + a12 anda2 = a21 + a22, respectively. Then∫

∂V
g · da =

∫
a1

g · da +
∫
a2

g · da (5.103)

because the surface integrals over the surfacesa12 anda21 cancel out. If the volume is now repeatedly
segmented, one obtains in a limiting process∫

∂V
g · da = lim

I→∞

I∑
i=1

∫
ai

g · da = lim
I→∞

I∑
i=1

∆Vi
1

∆Vi

∫
ai

g · da

= lim
I→∞

I∑
i=1

( div g)i∆Vi =
∫
V

div g dV . (5.104)
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Fig. 5.6: Left: Segmentation of a surface for the proof of Stokes’ theorem. Right: Segmentation of a volume for the proof of

the Gauss theorem.
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�

5.11.4 Variant of Gauss’ theorem

We proof Eq. (5.93), which is a variant of Gauss’ theorem, for a position dependent vector-fieldg and a
constant vector-fieldd: ∫

V
div (g × d) dV =

∫
∂V

(g × d) · da , (5.105)∫
V

d · curlg dV −
∫
V

g · curlddV = −
∫
∂V

d · g × da , (5.106)

d ·
∫
V

curlg dV = −d ·
∫
∂V

g × da , (5.107)∫
V

curlg dV = −
∫
∂V

g × da . (5.108)

5.11.5 Green’s first identity

Green’s theorems can be derived from Gauss’ (Ostrogradski’s) divergence theorem (5.90)∫
V

div g dV =
∫
∂V

g · da (5.109)

by settingg = ψ gradϕ with scalar fieldsψ andϕ:∫
V

div g dV =
∫
V

div (ψ gradϕ) dV =

=
∫
V

(ψ div gradϕ+ gradψ · gradϕ) dV =
∫
∂V
ψ gradϕ · da . (5.110)

Interchangingψ andϕ yields:∫
V

(ϕ div gradψ + gradϕ · gradψ) dV =
∫
∂V
ϕ gradψ · da . (5.111)

With div gradψ = ∇2ψ and the commonly used notation for the directional derivative

gradψ · a = gradψ · n a = ( gradψ)n a =
∂ψ

∂n
a, (5.112)

Eq. (5.111) can be rewritten as∫
V

( gradϕ · gradψ + ϕ∇2ψ) dV =
∫
∂V
ϕ
∂ψ

∂n
da , (5.113)

which is Green’s first identity. Notice the removal of the second derivatives ofψ. With ϕ = ψ it follows

∫
V

(( gradϕ)2 + ϕ∇2ϕ) dV =
∫
∂V
ϕ gradϕ · da . (5.114)

If the scalar fieldϕ depends only on two or one variable(s), respectively, Eq. (5.114) further reduces to∫
a
(( gradϕ)2 + ϕ∇2ϕ) da =

∫
∂a
ϕ
∂ϕ

∂n
ds (5.115)

and ∫ x2

x1

(ϕϕ′′ + ϕ′
2
) dx = [ϕϕ′]x2

x1
(5.116)



CHAPTER 5. CLASSICAL VECTOR-ANALYSIS 74

which is nothing else than an integration by parts, better known in the form∫ b

a
f(x)g′(x) dx = g(x)f(x) |ba −

∫ b

a
g(x)f ′(x) dx (5.117)

for theC1 functionsf, g : I → R.

5.11.6 Green’s second identity (Green’s theorem)

With div gradϕ = ∇2ϕ and subtracting Eq. (5.110) from Eq. (5.111) yields Green’s second theorem

∫
V

(ϕ∇2ψ − ψ∇2ϕ) dV =
∫
∂V

(ϕ gradψ − ψ gradϕ) · da, (5.118)

the right-hand side of which can again be written with the unfortunate notation for the directional deriva-
tive as ∫

∂V
(ϕ gradψ − ψ gradϕ) · da =

∫
∂V

(
ϕ
∂ψ

∂n
− ψ

∂ϕ

∂n

)
da, (5.119)

wheren is the normal direction to the surfacea. Green’s second theorem reduces in two dimensions to∫
a
(ϕ∇2ψ − ψ∇2ϕ) da =

∫
∂a

(
ϕ
∂ψ

∂n
− ψ

∂ϕ

∂n

)
ds (5.120)

and reads in one-dimension∫ x2

x1

(ϕψ′′ − ψϕ′′) dx = [ϕψ′ − ψϕ′]x2
x1
. (5.121)

5.11.7 Vector form of Green’s theorem

With div (a× b) = b · curla− a · curlb we get∫
V

a · curlbdV =
∫
V

b · curladV −
∫
V

div (a× b) dV. (5.122)

Applying Gauss’ divergence theorem to the right-hand side of Eq. (5.122)∫
V

div g dV =
∫
∂V

g · nda (5.123)

and considering thatn · (a× b) = a · (b× n) gives∫
V

a · curlbdV =
∫
V

b · curladV −
∫
∂V

a · (b× n) da. (5.124)

5.11.8 Generalization of the integration-by-parts rule

The generalization of the integration-by-parts rule needed for the for the treatment of the penalty term
grad 1

µ div A in a magnetic vector-potential formulation (Section 18.3) can be obtained from the diver-
gence product rule

div (ϕ · a) = ϕ div a + a · gradϕ (5.125)

and the Gauss’ divergence theorem forϕ · a, i.e.,∫
V

div (ϕ · a)dV =
∫
∂V
ϕ(a · n)da. (5.126)

Therefore

−
∫
V

a · gradϕdV =
∫
V
ϕdiv adV −

∫
∂V
ϕ(a · n)da. (5.127)



Chapter 6

Curvilinear Coordinates

Walk one mile east, then north, then west, then south.
Have you really returned?

T. Frankel, The Geometry of Physics.

In this chapter we will come back to the notation of(x1, x2, x3) as the Cartesian coordinates of a point
P in R3. Let the Cartesian coordinates of that point be expressed as functions of the general coordinates
u1, u2, u3 so that

xi = xi(u1, u2, u3), i = 1, 2, 3. (6.1)

Recall that the (physical) notation does not distinguish between the coordinatesxi and the smooth co-
ordinate functionsxi(u1, u2, u3), on some domainΩ = (u1, u2, u3) ∈ (u1

l , u
1
u) × (u2

l , u
2
u) × (u3

l , u
3
u).

As all functions in (6.1) are assumed to be single-valued and smooth, the correspondence between thexi

anduj is unique with the Jacobian

det [J ] =

∣∣∣∣∣∣∣
∂x1

∂u1
∂x1

∂u2
∂x1

∂u3

∂x2

∂u1
∂x2

∂u2
∂x2

∂u3

∂x3

∂u1
∂x3

∂u2
∂x3

∂u3

∣∣∣∣∣∣∣ 6= 0 (6.2)

so that Eqns. (6.1) can be solved foru1, u2, u3, i.e.,

u1 = u1(x1, x2, x3), u2 = u2(x1, x2, x3), u3 = u3(x1, x2, x3). (6.3)

Then the set of functions (6.3) defines a coordinate transformation. If thexi are the ordinary Cartesian
coordinates, then theuj are called curvilinear coordinates.

6.1 Convariant basis

Letr = (x1, x2, x3) be the spatial vector of a pointP that can be expressed as a function of the curvilinear
coordinatesuj , i.e.,

r = r(x1, x2, x3)

= r̃(u1, u2, u3)

= x1(u1, u2, u3)e1 + x2(u1, u2, u3)e2 + x3(u1, u2, u3)e3 . (6.4)

Then the tangent vector to the coordinate curve

u1 7→ r̃(u1, β, γ), u1
l ≤ u1 ≤ u1

u, (6.5)

75
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whereβ, γ are constants, is given at pointP by

T1 =
∂r̃
∂u1

=
∂x1(u1, β, γ)

∂u1
e1 +

∂x2(u1, β, γ)
∂u1

e2 +
∂x3(u1, β, γ)

∂u1
e3 . (6.6)

The three tangent vectors are linearly independent and thus the set forms acovariantbasis of the tangent
spaceTPR3. The choice of coordinates induces basis vectors in the tangent space atP .

We write

Ti = gi =
∂r̃
∂ui

=
∣∣∣∣∣∣∣∣ ∂r̃∂ui

∣∣∣∣∣∣∣∣ ei = hi ei , (6.7)

where the quantitieshi are calledscale-factors.

6.2 Contravariant basis

The coordinate surface

u1, u2 7→ r̃(u1, u2, γ), u1
l ≤ u1 ≤ u1

u, u
2
l ≤ u2 ≤ u2

u (6.8)

can be expressed in Monge’s form as

u3(x1, x2, x3) = γ (6.9)

whereγ is a constant. The normal vector to the coordinate surface at pointP is thus given by

N3 = gradu3 =
∂u3(x1, x2, x3)

∂x1
e1 +

∂u3(x1, x2, x3)
∂x2

e2 +
∂u3(x1, x2, x3)

∂x3
e3 (6.10)

and we write

Ni = gi = gradui =
∣∣∣∣ gradui

∣∣∣∣ ei = hiei , (6.11)

for i = 1, 2, 3 with the scale factorshi =
∣∣∣∣ gradui

∣∣∣∣. The basis{N1,N2,N3} is called thecontravari-
antbasis.

6.3 Co- and contravariant components of a vector-field

At each pointP of the curvilinear coordinate system there exist two sets of local basis vectors; the
covariant{g1,g2,g3} tangent to the coordinate lines and the contravariant{g1,g2,g3} normal to the
coordinate surfaces, see Fig. 6.1. They form dual sets of basis vectors, i.e.,gi · gj = δij . This can be
proved as follows:

Proof: From r̃ = r̃(u1, u2, u3) we have

dr̃ =
∂r̃
∂u1

du1 +
∂r̃
∂u2

du2 +
∂r̃
∂u3

du3 . (6.12)

Scalar multiplication withgradu1 gives

gradu1 · dr̃ = du1 = ( gradu1 · ∂r̃
∂u1

)du1 + ( gradu1 · ∂r̃
∂u2

)du2 + ( gradu1 · ∂r̃
∂u3

)du3 (6.13)

and therefore

gradu1 · ∂r̃
∂u1

= 1 , gradu1 · ∂r̃
∂u2

= 0 , gradu1 · ∂r̃
∂u3

= 0 . (6.14)

Repeating these steps for thegradu2 and gradu3 proves thatgi · gj = δij . �
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r

u1

u2

u3

u3 = γ

u2 = β

u1 = α

x1

x2

x3

e1

e1

e2

e2

e3 e3

u1

u2

u3

h1dx1e1

h2dx2e2

h3dx3e3

Fig. 6.1: Left: Curvilinear (non-orthogonal) coordinate system with the two sets of unit basis vectors. Right: Volume element

for an orthogonal curvilinear coordinate system.

The bases become identical iff the curvilinear coordinate system is orthogonal.

A vector-fielda can be represented in terms of the co- or contravariant basis as

a = c1g1 + c2g2 + c3g3 = c1
∂r̃
∂u1

+ c2
∂r̃
∂u2

+ c3
∂r̃
∂u3

, (6.15)

a = c1g1 + c2g2 + c3g3 = c1 gradu1 + c2 gradu2 + c3 gradu3 , (6.16)

where thecj are called the covariant andci the contravariant components ofa and also (risk of con-
fusion) the co- and contravariant coordinates of the vector-field. The notion comes from the type of
transformation of components and bases under changes of coordinates.

Let another set of curvilinear coordinates be given by(v1, v2, v3) that is (smoothly) related to the
ui by

ui = ui(v1, v2, v3), i = 1, 2, 3. (6.17)

with non-vanishing Jacobian. Then

dr̃ =
∂r̃
∂u1

du1 +
∂r̃
∂u2

du2 +
∂r̃
∂u3

du3 = du1g1 + du2g2 + du3g3 (6.18)

and

dr =
∂r
∂v1

dv1 +
∂r
∂v2

dv2 +
∂r
∂v3

dv3 = dv1h1 + dv2h2 + dv3h3 . (6.19)

With

dui =
∂ui

∂v1
dv1 +

∂ui

∂v2
dv2 +

∂ui

∂v3
dv3, i = 1, 2, 3 (6.20)

substituted into Eq. (6.18) we get by comparing the coefficients ofdvi.

hi =
∂u1

∂vi
g1 +

∂u2

∂vi
g2 +

∂u3

∂vi
g3, i = 1, 2, 3, (6.21)

or shorter with Einstein’s summation convention

hi = T ji gj i = 1, 2, 3, (6.22)
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with T ji = ∂uj

∂vi . The change of coordinates thus induces a change of basis in the tangent space. The
vector can now be expressed in terms of the two bases by

a = d1h1 + d2h2 + d3h3 = c1g1 + c2g2 + c3g3 (6.23)

or shorter

a = dihi = cjgj . (6.24)

Combining Eq. (6.24) with (6.22) yields

di = (T−1)ijc
j , (6.25)

i.e., the components transform the other way (contravariant) with respect to the basis vectors. A similar
calculation shows that the covariant components ofa transform the same way as the basis vectors. We
write the vector in the covariant form as

a = c1 gradu1 + c2 gradu2 + c3 gradu3 = c1g1 + c2g2 + c3g3 (6.26)

and

a = d1 grad v1 + d2 grad v2 + d3 grad v3 = d1h1 + d2h2 + d3h3 . (6.27)

With Eq. (6.11) we have after a comparison of the coefficients ofei:

c1
∂u1

∂xi
+ c2

∂u2

∂xi
+ c3

∂u3

∂xi
= d1

∂v1

∂xi
+ d2

∂v2

∂xi
+ d3

∂v3

∂xi
, i = 1, 2, 3. (6.28)

Application of the chain rule yields

∂uj

∂xi
=
∂uj

∂v1

∂v1

∂xi
+
∂uj

∂v2

∂v2

∂xi
+
∂uj

∂v3

∂v3

∂xi
, j = 1, 2, 3. (6.29)

Substituting the terms (6.29) into Eq. (6.28) and comparing the coefficients of∂vj

∂xi yields

di = c1
∂u1

∂vi
+ c2

∂u2

∂vi
+ c3

∂u3

∂vi
, i = 1, 2, 3, (6.30)

of again shorter with the summation convention:

di = T ji cj , (6.31)

i.e., the covariant components transform the same way as the basis vectors. Had we defined the change
of frames the way thegi change, however, then it would be thedi that are “contra”.

As an important theorem, it follows that the generalized inner product is an invariant with respect
to coordinate transformations, i.e.,

E = dkdk = ((T−1)ki c
i)(T lkcl) = (T−1)ki T

l
kc
icl = δlic

icl = cici . (6.32)

6.4 Arc length, surface and volume elements

From r̃(u1, u2, u3) = x1(u1, u2, u3)e1 + x2(u1, u2, u3)e2 + x3(u1, u2, u3)e3 we have

dr̃ =
∂r̃
∂u1

du1 +
∂r̃
∂u2

du2 +
∂r̃
∂u3

du3

= h1du1e1 + h2du2e2 + h3du3e3 = gidui . (6.33)
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Then the differential arc lengthds is determined fromds2 = dr̃ · dr̃ which equals

ds2 = dr̃ · dr̃ =
3∑
i=1

3∑
j=1

∂r̃
∂ui

· ∂r̃
∂uj

duiduj = gijduiduj . (6.34)

The metric[G] = (gij) is given by

gij = gi · gj =
∂r̃
∂ui

· ∂r̃
∂uj

=
∂x1

∂ui
∂x1

∂uj
+
∂x2

∂ui
∂x2

∂uj
+
∂x3

∂ui
∂x3

∂uj
. (6.35)

Eq. (6.34) is called the fundamental quadratic form (or metric form) and reads in a less elegant notation:

ds2 =

[(
∂x1

∂u1

)2

+
(
∂x2

∂u1

)2

+
(
∂x3

∂u1

)2
]

d(u1)2 +[(
∂x1

∂u2

)2

+
(
∂x2

∂u2

)2

+
(
∂x3

∂u2

)2
]

d(u2)2 +[(
∂x1

∂u3

)2

+
(
∂x2

∂u3

)2

+
(
∂x3

∂u3

)2
]

d(u3)2 +

2
[(

∂x1

∂u1

∂x1

∂u2
+
∂x2

∂u1

∂x2

∂u2
+
∂x3

∂u1

∂x3

∂u2

)
du1du2+(

∂x1

∂u1

∂x1

∂u3
+
∂x2

∂u1

∂x2

∂u3
+
∂x3

∂u1

∂x3

∂u3

)
du1du3 +(

∂x1

∂u2

∂x1

∂u3
+
∂x2

∂u2

∂x2

∂u3
+
∂x3

∂u2

∂x3

∂u3

)
du2du3

]
. (6.36)

6.5 Orthogonal coordinate systems

If the general coordinate system is orthogonal, it is written as(ui) against the conventions of the Ricci-
calculus. This is permitted as for orthogonal coordinate systems, co- and contravariant components are
identical. In the following we will also write(x, y, z) for the Cartesian system. For orthogonal coordinate
systems of dimension three we have

∂r̃
∂u1

· ∂r̃
∂u2

=
∂r̃
∂u2

· ∂r̃
∂u3

=
∂r̃
∂u1

· ∂r̃
∂u3

= 0 (6.37)

and

g11 = h2
1, g22 = h2

2, g33 = h2
3 . (6.38)

The metric thus becomes a diagonal matrix of the form

[G] = (gij) =
(
∂r̃
∂ui

· ∂r̃
∂uj

)
= diag(h2

1, h
2
2, h

2
3) (6.39)

and

ds2 = h2
1du

2
1 + h2

2du
2
2 + h2

3du
2
3 , (6.40)

which is called Pythagoras’ theorem in the small. With

dsi = hidui (6.41)

the surface element of a coordinate surfacer̃(u1, u2, γ) is

da =
∣∣∣∣∣∣∣∣ ∂r̃∂u1

× ∂r̃
∂u2

∣∣∣∣∣∣∣∣ du1du2 = h1h2du1du2 (6.42)
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and involving the modulus of the Jacobian:

dxdy =

∣∣∣∣∣ ∂x∂u1

∂x
∂u2

∂y
∂u1

∂y
∂u2

∣∣∣∣∣ du1du2 . (6.43)

The differential volume in orthogonal curvilinear coordinates is given by

dV = |(h1du1e1) · [(h2du2e2)× (h3du3e3)]| = h1h2h3du1du2du3 . (6.44)

or

dxdydz =

∣∣∣∣∣∣∣
∂x
∂u1

∂x
∂u2

∂x
∂u3

∂y
∂u1

∂y
∂u2

∂y
∂u3

∂z
∂u1

∂z
∂u2

∂z
∂u3

∣∣∣∣∣∣∣ du1du2du3 . (6.45)

Remark 1: If we setx = y or x = z or y = z the Jacobian has equal rows and thus vanishes. Odd
permutations ofx, y, z change the sign of the determinant while an even permutation does not. Hence
we have

dxdydz = dydzdx = dzdxdy = −dydxdz = −dxdzdy = −dzdydx . (6.46)

It is this alternating algebraic structure of integrands that gave rise to the development of exterior algebra,
see for example [77] and Chapter 9. �

Remark 2: When the vector fielda is differentiated one has to consider that the coordinate lines are not
straight and therefore the basis vectors change their direction. Consequently the basis vectors have to be
differentiated as well, i.e.,

∂a
∂uj

=
3∑
i=1

∂ai

∂uj
ei + ai

∂ei
∂uj

. (6.47)

�

6.6 Differential operators

6.6.1 Gradient

The coordinate free definition (5.83) of the gradient states that the component ofgradϕ in an arbitrary
direction can be calculated from the difference of the scalar function in two neighboring points in this
direction divided by the distance between these points. Consequently we obtain for the component in the
direction of the coordinate axisu1 with ∆s1 = h1∆u1

e1 · gradϕ = lim
∆u1→0

ϕ(u1 + ∆u1, u2, u3)− ϕ(u1, u2, u3)
h1∆u1

=
1
h1

∂ϕ

∂u1
. (6.48)

As a result, the gradient of a scalar fieldϕ ∈ S(Ω) is

gradϕ =
1
h1

∂ϕ

∂u1
e1 +

1
h2

∂ϕ

∂u2
e2 +

1
h3

∂ϕ

∂u3
e3 . (6.49)

We emphasize again that the direction of the basis vectors in curvilinear coordinates changes from point
to point. The components of the gradient are then the projections of the vectorgradϕ onto these basis
vectors at each point.
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6.6.2 Curl

Using the coordinate free definition of thecurl operator, we calculate the line integral along the two
edgess12 ands34 shown in Fig. 6.2 (right).

e1 · curla = lim
a→0

∫
s12,s34

g · ds
a

= lim
du2,du3→0

(
g2h2du2 − du3

2
∂
∂u3

(g2h2)du2

)
−
(
g2h2du2 + du3

2
∂
∂u3

(g2h2)du2

)
h1h2du2du3

= − 1
h1h2

∂

∂u3
(h2g2) . (6.50)

Considering the contribution of the line integral over the other two edges yields

e1 · curlg =
1

h2h3

(
∂

∂u2
(h3g3)−

∂

∂u3
(h2g2)

)
. (6.51)

With equivalent calculations for the other two components we can write thecurl in curvilinear orthog-
onal coordinates in form of a determinant

curlg =
1

h1h2h3

∣∣∣∣∣∣∣
h1e1 h2e2 h3e3

∂
∂u1

∂
∂u2

∂
∂u3

h1g1 h2g2 h3g3

∣∣∣∣∣∣∣ . (6.52)

6.6.3 Divergence

In the central pointP of the volume element shown in Fig. 6.2 (left), the differential arc lengths in
direction of the coordinate lines areds2 = h2du2 andds3 = h3du3 and therefore the differential surface
element of the surfacea throughP which is normal tou1 is given byds2ds3 = h2h3du2du3. The
surface integral is therefore ∫

a
g · da =

∫
a
g1h2h3du2du3. (6.53)

The other components of the vector-fieldg do not contribute because they lie in the surface. On the
front and back side the value of the surface integral changes not only because of the change of the vector

u

u

u

1

2

3

u1+ du1
2

u1− du1
2

1

2

3

4

u

u

u

1

2

3

u3+ du3
2

u3− du3
2

Fig. 6.2: Left: On the calculation of the divergence in orthogonal curvilinear coordinates. Right: On the calculation ofcurl in

curvilinear coordinates.
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coefficients but also because the scale factorsh2 andh3 are dependent onu1. Front and back side
therefore contribute

lim
V→0

∫
a1,a2

g · da
V

= lim
du1,du2,du3→0

−
(
g1h2h3 − ∂

∂u1
(g1h2h3)du1

2

)
du2du3 +

(
g1h2h3 + ∂

∂u1
(g1h2h3)du1

2

)
du2du3

h1h2h3du1du2du3

=
1

h1h2h3

∂

∂u1
(g1h2h3). (6.54)

Considering the 4 other sides yields

div g =
1

h1h2h3

[
∂

∂u1
(h2h3g1) +

∂

∂u2
(h3h1g2) +

∂

∂u3
(h1h2g3)

]
. (6.55)

6.6.4 Scalar Laplace operator

From∇2ϕ = div gradϕ we obtain

∇2ϕ =
1

h1h2h3

[
∂

∂u1

(
h2h3

h1

∂ϕ

∂u1

)
+

∂

∂u2

(
h3h1

h2

∂ϕ

∂u2

)
+

∂

∂u3

(
h1h2

h3

∂ϕ

∂u3

)]
. (6.56)

6.6.5 Vector Laplace operator

From∇2g = grad div g − curl curlg we derive

∇2g =
[

1
h1

∂Γ
∂u1

+
h1

h1h2h3

(
∂Γ2

∂u3
− ∂Γ3

∂u2

)]
e1

+
[

1
h2

∂Γ
∂u2

+
h2

h1h2h3

(
∂Γ3

∂u1
− ∂Γ1

∂u3

)]
e2

+
[

1
h3

∂Γ
∂u3

+
h3

h1h2h3

(
∂Γ2

∂u1
− ∂Γ1

∂u2

)]
e3 (6.57)

with

Γ =
1

h1h2h3

[
∂

∂u1

(
h1h2h3

h1
g1

)
+

∂

∂u2

(
h1h2h3

h2
g2

)
+

∂

∂u3

(
h1h2h3

h3
g3

)]
(6.58)

and

Γ1 =
h2

1

h1h2h3

(
∂(h3g3)
∂u2

− ∂(h2g2)
∂u3

)
(6.59)

Γ2 =
h2

2

h1h2h3

(
∂(h1g1)
∂u3

− ∂(h3g3)
∂u1

)
(6.60)

Γ3 =
h2

3

h1h2h3

(
∂(h2g2)
∂u1

− ∂(h1g1)
∂u2

)
(6.61)

6.7 Special coordinate systems

6.7.1 Cartesian coordinates

For the special case(u1, u2, u3) = (x, y, z) and thush1 = h2 = h3 = 1 we find our well known
equations

gradϕ =
∂ϕ

∂x
ex +

∂ϕ

∂y
ey +

∂ϕ

∂z
ez , (6.62)
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div g =
∂gx
∂x

+
∂gy
∂y

+
∂gz
∂z

, (6.63)

curlg =
(
∂gz
∂y

− ∂gy
∂z

)
ex +

(
∂gx
∂z

− ∂gz
∂x

)
ey +

(
∂gy
∂x

− ∂gx
∂y

)
ez , (6.64)

∇2ϕ =
∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
. (6.65)

∇2A =
(
∂2Ax
∂x2

+
∂2Ax
∂y2

+
∂2Ax
∂z2

)
ex +

(
∂2Ay
∂x2

+
∂2Ay
∂y2

+
∂2Ay
∂z2

)
ey +(

∂2Az
∂x2

+
∂2Az
∂y2

+
∂2Az
∂z2

)
ez = (∇2Ax)ex + (∇2Ay)ey + (∇2Az)ez (6.66)

6.7.2 Cylindrical coordinates

Now (u1, u2, u3) = (r, ϕ, z), with r ≥ 0, 0 ≤ ϕ < 2π, −∞ < z < ∞. The relations between the
coordinates are

x = r cosϕ, y = r sinϕ, z = z, (6.67)

and

r =
√
x2 + y2, ϕ = arctan

(y
x

)
. (6.68)

The spatial vector becomes

r̃ = r cosϕex + r sinϕey + zez . (6.69)

The tangent vectors to ther, ϕ, z lines yield

e1 = er =
∂r̃
∂r∣∣∣∣∂r̃
∂r

∣∣∣∣ = cosϕex + sinϕey , (6.70)

e2 = eϕ =
∂r̃
∂ϕ∣∣∣∣∣∣ ∂r̃∂ϕ ∣∣∣∣∣∣ = − sinϕex + cosϕey , (6.71)

e3 = ez =
∂r̃
∂z∣∣∣∣∂r̃
∂z

∣∣∣∣ = ez . (6.72)

Differentiation int of the unit vectorser andeϕ yields

der
dt

= −(sinϕ)
dϕ
dt

ex + (cosϕ)
dϕ
dt

ey = (− sinϕex + cosϕey)
dϕ
dt

=
dϕ
dt

eϕ , (6.73)

deϕ
dt

= −(cosϕ)
dϕ
dt

ex − (sinϕ)
dϕ
dt

ey = −(cosϕex + sinϕey)
dϕ
dt

= −dϕ
dt

er . (6.74)

A space curve has the form

r = x(t)ex + y(t)ey + z(t)ez = r(t)er + z(t)ez , (6.75)

and the velocity vector in pointP on this space curve is then

v =
dr
dt

=
dr
dt

er + r
der
dt

+
dz
dt

ez =
dr
dt

er + r
dϕ
dt

eϕ +
dz
dt

ez . (6.76)
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The scale factorshi are

h1 =
∣∣∣∣∣∣∣∣∂r̃∂r

∣∣∣∣∣∣∣∣ =√cos2 ϕ+ sin2 ϕ = 1, (6.77)

h2 =
∣∣∣∣∣∣∣∣ ∂r̃∂ϕ

∣∣∣∣∣∣∣∣ =√(r sinϕ)2 + (r cosϕ)2 = r, (6.78)

h3 =
∣∣∣∣∣∣∣∣∂r̃∂z

∣∣∣∣∣∣∣∣ = 1. (6.79)

Therefore

∇ =
∂

∂r
er +

1
r

∂

∂ϕ
eϕ +

∂

∂z
ez , (6.80)

gradϕ =
∂ϕ

∂r
er +

1
r

∂ϕ

∂ϕ
eϕ +

∂ϕ

∂z
ez , (6.81)

div g =
1
r

∂

∂r
(rgr) +

1
r

∂gϕ
∂ϕ

+
∂gz
∂z

, (6.82)

curlg = (
1
r

∂gz
∂ϕ

− ∂gϕ
∂z

)er + (
∂gr
∂z

− ∂gz
∂r

)eϕ + (
1
r

∂

∂r
(rgϕ)− 1

r

∂gr
∂ϕ

)ez , (6.83)

∇2ϕ =
1
r

∂

∂r
(r
∂ϕ

∂r
) +

1
r2
∂2ϕ

∂ϕ2
+
∂2ϕ

∂z2
. (6.84)

∇2A = (∇2Ar −
1
r2
Ar −

2
r2
∂Aϕ
∂ϕ

)er + (∇2Aϕ −
1
r2
Aϕ +

2
r2
∂Ar
∂ϕ

)eϕ +∇2Azez (6.85)

6.7.3 Spherical coordinates

Now (u1, u2, u3) = (R,ϑ, ϕ), with R ≥ 0, 0 ≤ ϑ < π, 0 ≤ ϕ < 2π. The relations between the the
coordinates are

x = R sinϑ cosϕ, y = R sinϑ sinϕ, z = R cosϑ, (6.86)

and

R =
√
x2 + y2 + z2 , ϑ = arctan

√
x2 + y2

z2
, ϕ = arctan

(y
x

)
. (6.87)

The spatial vector becomes

r̃ = R sinϑ cosϕ ex +R sinϑ sinϕR ey +R cosϑ ez . (6.88)

The tangent vectors to theR,ϑ, ϕ lines yield the basis vectors

e1 = eR =
∂r̃
∂R∣∣∣∣ ∂r̃
∂R

∣∣∣∣ = sinϑ cosϕex + sinϑ sinϕey + cosϑez , (6.89)

e2 = eϑ =
∂r̃
∂ϑ∣∣∣∣ ∂r̃
∂ϑ

∣∣∣∣ = cosϑ cosϕex + cosϑ sinϕey − sinϑez , (6.90)

e3 = eϕ =
∂r̃
∂ϕ∣∣∣∣∣∣ ∂r̃∂ϕ ∣∣∣∣∣∣ = − sinϕex + cosϕey . (6.91)
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Differentiation int of the unit vectorseR andeϑ andeϕ yields:

deR
dt

=
dϑ
dt

eϑ + sinϑ
dϕ
dt

eϕ, (6.92)

deϑ
dt

= −dϑ
dt

eR + cosϑ
dϕ
dt

eϕ, (6.93)

deϕ
dt

= − sinϑ
dϕ
dt

eR − cosϑ
dϕ
dt

eϑ. (6.94)

The scale factorshi are

h1 =
∣∣∣∣∣∣∣∣ ∂r̃∂R

∣∣∣∣∣∣∣∣ =√sin2 ϑ cos2 ϕ+ sin2 ϑ sin2 ϕ+ cos2 ϑ = 1, (6.95)

h2 =
∣∣∣∣∣∣∣∣ ∂r̃∂ϑ

∣∣∣∣∣∣∣∣ =√R2 cos2 ϑ cos2 ϕ+R2 cos2 ϑ sin2 ϕ+R2 sin2 ϑ = R, (6.96)

h3 =
∣∣∣∣∣∣∣∣ ∂r̃∂ϕ

∣∣∣∣∣∣∣∣ =√R2 sin2 ϑ sin2 ϕ+R2 sin2 ϑ cos2 ϕ = R sinϑ . (6.97)

Therefore

∇ =
∂

∂R
eR +

1
R

∂

∂ϑ
eϑ +

1
R sinϑ

∂

∂ϕ
eϕ , (6.98)

gradϕ =
∂ϕ

∂R
eR +

1
R

∂ϕ

∂ϑ
eϑ +

1
R sinϑ

∂ϕ

∂ϕ
eϕ , (6.99)

div g =
1
R2

∂

∂R
(R2gR) +

1
R sinϑ

∂

∂ϑ
(sinϑgϑ) +

1
R sinϑ

∂gϕ
∂ϕ

, (6.100)

curlg =
1

R sinϑ

[
∂

∂ϑ
(sinϑgϕ)− ∂gϑ

∂ϕ

]
eR +[

1
R sinϑ

∂gR
∂ϕ

− 1
R

∂

∂R
(Rgϕ)

]
eϑ +

1
R

[
∂

∂R
(Rgϑ)−

∂gR
∂ϑ

]
eϕ , (6.101)

∇2ϕ =
1
R2

∂

∂R
(R2 ∂ϕ

∂R
) +

1
R2 sinϑ

∂

∂ϑ
(sinϑ

∂ϕ

∂ϑ
) +

1
R2 sin2 ϑ

∂2ϕ

∂ϕ2
. (6.102)



Chapter 7

Functional Spaces and Fourier Series

7.0.4 Normed space

We have already mentioned that the function spaceCm(X) of all m-times continuously differentiable
functions from any non-empty setX ∈ Rn into the field of real numbersR has the structure of a (infinite
dimensional) vector-space. In a vector-spaceV a function‖ · ‖: V → R is called a norm onV if it
satisfies the following axioms.

1. ‖ f ‖≥ 0.

2. ‖ f ‖= 0 iff f = 0 .

3. ‖ λf ‖= |λ| ‖ f ‖ .

4. ‖ f1 + f2 ‖≤‖ f1 ‖ + ‖ f2 ‖.

Property 4 is called the triangular inequality. A vector-space with a norm is called a normed space.

7.0.5 Completeness

Having a norm, we can study convergence in the sense of this norm. Let{fn} be a convergent series of
elements in a linear normed space. If for eachε > 0 there exists aN(ε) such that for alln,m ≥ N(ε)
the functionsfn, fm form a sequence with decreasing distance, i.e,

1. ‖ fn − fm ‖< ε ,

2. limn→∞ ‖ fn − f ‖= 0 ,

and if the ultimate functionf is an element of the same vector-space, then the space is called complete
and{fn} is called a Cauchy sequence. A complete normed linear space is called a Banach1 space. A
Hilbert2 space is a complete linear space with scalar product. The need for completeness is demonstrated
with two examples:

• In the linear space of real number0 < x < 1 the limit of the Cauchy sequencexn = 1/(n+1) → 0
is not contained in the space itself.

• Silvester [211] gives a nice example of a function space that does not contain its limits: The
convergent sequence of truncated Fourier seriessn(t) of smooth periodic time functionsp(t) with

periodT , sn(t) =
∑n

k=1
4(k−1)−1

(2k+1)π cos (2k+1)πt
T approaches a unit amplitude square wave asn

increases. Although every termsn ∈ C∞, the sequence does not converge to a differentiable
function. Thus the differentiable periodic functions constitute an inner product space but no Hilbert

1Stefan Banach (1892-1945).
2David Hilbert (1862-1943).

86



CHAPTER 7. FUNCTIONAL SPACES AND FOURIER SERIES 87

space. However, the square integrable periodic functions overT do constitute a Hilbert space, as
every functionsn is square integrable over the periodT .

In the Hilbert spaceL2(Ω) of square Lebesque3 integrable functions inΩ, the scalar product is con-
structed with

〈f, g〉 =
∫

Ω
f(x)g(x)dx , (7.1)

which gives rise to the norm

‖ f ‖=
√
〈f, f〉 =

√∫
Ω
|f(x)|2dx (7.2)

the distance

d(f, g) =‖ f − g ‖=

√∫
Ω
|f(x)− g(x)|2dx (7.3)

and the concept of angle and orthogonality so that all concepts of Euclidean geometry can be employed.
In [35] one reads: Hilbert spaces are therefore those spaces in which notions and concepts of ordinary Eu-
clidean geometry hold, without any restriction on the dimension: their theory extends intuitive geometry
to infinite dimensions.

Every metric space is a normed space. However, there are norms on a vector-space that do not
come from a metric space as in (7.2), e.g., the one-norm and the infinity-norm

‖ f ‖1=
∫

Ω
|f(x)|dx ‖ f ‖∞= max {|f(x)|} . (7.4)

A functionu ∈ L2(Ω) is endowed with a weak derivativev = ∂αu if v ∈ L2(Ω) and

〈f, v〉 = (−1)|α|〈∂αf, u〉 ∀f ∈ C∞(Ω). (7.5)

If a function is differentiable in the classical (strong) sense then there exists also a weak derivative
identical to the strong one. Then Eq. (7.5) is the integration by parts rule. For integerm ≥ 0 the Sobolev4

spaceHm(Ω) is the set of all functionsu ∈ L2(Ω), which are endowed with the weak derivatives∂αu
for all |α| ≤ m.

Remark: It is of particular importance in numerical field calculation that functions with jump
discontinuities are still square integrable, i.e., they areL2 functions although they are notC0. Hence,
to check forL2 (and consequently finite energy) is a more general way of measuring smoothness of
functions than establishing theCm class. For example, the electrical fieldE should belong toL2(Ω) so
that the integral

∫
Ω |E|

2dΩ is finite. For similar reasons one requires thatcurlE is also inL2(Ω). Hence
the notationH1( curl ,Ω) for all square integrable vector fields whosecurl is also inL2(Ω). Fields
of this kind obey the tangential continuity at material interfaces, as is required forE. These continuity
conditions are often added to the set of equations, see Chapter 21, but could also be inforced by restricting
the search toH1( curl ,Ω). �

Some functional spaces useful in numerical field calculation are listed in Table 7.1.

3Henri Lesbesque (1875-1941).
4Sergei Sobolev (1908-1989).
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C0(Ω) Continuous functions inΩ.

Cm(Ω) m times continuously differentiable functions inΩ (m-smooth).

V(Ω) m-smooth vector-fields inΩ.

C∞(Ω) Arbitrarily often continuously differentiable (smooth) functions inΩ.

C∞0 (Ω) Arbitrarily often continuously differentiable functions inΩ
which are6= 0 only on a closed domain inΩ, i.e., withcompact support.

L2(Ω) Hilbert space of all square integrable functions inΩ, i.e.,

‖ f ‖2=
√∫

Ω
|f(x)|2dx <∞ .

Lp(Ω) Space of all p integrable functions inΩ, i.e.,

‖ f ‖p=
(∫

Ω
|f(x)|pdx

)1/p
<∞.

Hm(Ω) Sobolev space ofL2 functions with square integrable differentials of orderm.

H1( div ,Ω) Sobolev space of all vector-fields with{a ∈ [L2(Ω)]n; div a ∈ [L2(Ω)]},Ω ∈ E3.

H1( curl ,Ω) Sobolev space of all vector-fields with{a ∈ [L2(Ω)]n; curla ∈ [L2(Ω)]d},Ω ∈ E3,

with d=3 forn=3 andd=1 forn=2.

X(Ω) H( div ,Ω) ∩H( curl ,Ω) .

Table 7.1: Functional spaces.

7.0.6 Fourier series

Every elements of a vector-space (which includes the linear space of real and complex functions) can be
expressed through a sum of basis vectors of the vector-space. The well known Fourier series expansion
is then defined as a linear approximation of a periodicL2 functionf(ϕ), as element of a Hilbert space
with scalar product〈f, g〉 and norm‖ f ‖=

√
〈f, f〉, through a projection onto trigonometric functions

gn(ϕ) = cosnϕ andg−n(ϕ) = sinnϕ for n ≥ 1 which form a Hilbert basis together withg0 =
√

1
2 .

Then

f(ϕ) =
∑
n

〈f(ϕ), gn(ϕ)〉gn (7.6)

with

〈f(ϕ), gn(ϕ)〉 = cn =
1
π

∫ π

−π
f(ϕ)gn(ϕ)dϕ . (7.7)

For eachε > 0 there exists someN = N(ε) such that for alln ≥ N the defect off and its approximation

f̂ =
n∑
i=1

cigi (7.8)

is smaller thanε,

‖ f − f̂ ‖< ε . (7.9)



Chapter 8

The Lemmata of Poincaré

I learned to distrust all physical concepts as the basis for a theory.
Instead, one should put one’s trust in a mathematical scheme,

even if the scheme does not appear at first sight to be connected with physics.
One should concentrate on getting an interesting mathematics.

P.M. Dirac (1902-1984).

8.1 First Poincaré Lemma

The curl of an arbitrary vector-field is source free, i.e.,

div curlg = 0 , (8.1)

and an arbitrary gradient field is curl free, i.e.,

curl gradϕ = 0. (8.2)

This is the first Poincaré lemma.

8.1.1 Proof, employing orthogonal curvilinear coordinates

We are now able to prove Eqns. (8.1) and (8.2) employing orthogonal curvilinear coordinates:

div curlg = div
[

1
h2h3

(
∂(h3g3)
∂u2

− ∂(h2g2)
∂u3

)
e1+

1
h3h1

(
∂(h1g1)
∂u3

− ∂(h3g3)
∂u1

)
e2 +

1
h1h2

(
∂(h2g2)
∂u1

− ∂(h1g1)
∂u2

)
e3

]
=

1
h1h2h3

[
∂

∂u1

(
∂(h3g3)
∂u2

− ∂(h2g2)
∂u3

)
+

∂

∂u2

(
∂(h1g1)
∂u3

− ∂(h3g3)
∂u1

)
+

∂

∂u3

(
∂(h2g2)
∂u1

− ∂(h1g1)
∂u2

)]
= 0 . (8.3)

curl gradϕ = curl
[

1
h1

∂ϕ

∂u1
e1 +

1
h2

∂ϕ

∂u2
e2 +

1
h3

∂ϕ

∂u3
e3

]
=

1
h2h3

(
∂2ϕ

∂u2∂u3
− ∂2ϕ

∂u3∂u2

)
e1 +

1
h3h1

(
∂2ϕ

∂u3∂u1
− ∂2ϕ

∂u1∂u3

)
e2 +

1
h1h2

(
∂2ϕ

∂u1∂u2
− ∂2ϕ

∂u2∂u1

)
e3 = 0 . (8.4)

This shows how cumbersome the calculation with coordinates can be. Notice that we had already re-
stricted ourselves to orthogonal coordinate systems.
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8.1.2 Proof, employing the boundary operator

A more general and elegant proof of the Poincaré Lemma can be obtained by employing the boundary
operator. If we accept the topological fact that the boundary surface of a closed volume has no edge, i.e.,

∂(∂V ) = ∅ (8.5)

and that the contour of a surface is always closed, i.e.,

∂(∂a) = ∅ , (8.6)

then ∫
V

div curlgdV =
∫
∂V

curlg · da =
∫
∂(∂V )

g · ds = 0 (8.7)

which holds for arbitrary domains only ifdiv curlg = 0. On the other hand∫
a

curl gradϕ · da =
∫
∂a

gradϕ · ds = ϕ|∂(∂a) = 0 (8.8)

which holds for arbitrary surfaces only ifcurl gradϕ = 0.

8.2 Second Poincaré Lemma

Reversal of the first Lemma yields the second Lemma of Poincaré:

A source free, smooth vector fieldb over an open star shaped domain inR3 can always be expressed
through a (smooth) vector-potentiala.

div b = 0 → b = curla. (8.9)

A curl free smooth vector fieldh over an open star shaped domain inR3 can always be expressed through
a (smooth) scalar potentialϕ.

curlh = 0 → h = gradϕ. (8.10)

It is a sufficient precondition that the domain, usually denotedΩ, is star shaped, i.e., there exists a
pointP called the center such that for allQ ∈ Ω, the line

P + λ(Q− P ) λ ∈ [0, 1] (8.11)

belongs toΩ. In particular an open ball is star shaped so that the lemma holds at least locally in the
neighborhood of a point. A domain is said to beconvexif Eq. (8.11) holds for any two pointsP and
Q. The proof of the Poincaré lemma involves the less stringent condition of contractablity, that is the
existence of a so-calleddeformation retract, i.e, a family of of continuous maps with which the domain
can be collapsed onto the center point. In particular, asimply connecteddomain inR2 is contractible. As
an example, the inside of a ring is connected but not simply connected. A bounded, simply connected
domain inR3 with a connected boundary is contractible. As a counter example, the inside of two nested
spheres is simply connected but the boundary is not connected and thus the domain is not contractible.

8.3 DeRahm cohomology

8.3.1 Contractible domains

Fig. 8.2 shows the so-called DeRahm1 complex for contractible domains. The image ofgradϕ is identi-
cal to the kernel of thecurl operator. The image ofcurla is identical to the kernel of thediv operator.
This is called anexactsequence. The second Lemma of Poincaré always holds.

1Georges deRahm (1903-1990).



CHAPTER 8. THE LEMMATA OF POINCARÉ 91

a ) b ) c ) d )

Q

P

BC A
P

Q

Fig. 8.1: a) Convec domain. b) and c) Star shaped domains. The bullet marks eligible centers. c) No center can be found

such that lines from the center to any other pointP ∈ Ω are entirely inside the domain. The surface is thus not star shaped d)

Multiply connected domain thus not contractible. Path A and C constitute a loop or a 1-cycle. Notice that in three dimensions

the domain has to be simply connected with connected boundary to be contractible (absence of bubbles).

8.3.2 Inverse differential operators

We will now address the question if it is possible to calculate a vector-fielda from a given vector-field
b such thatb is the curl (or the divergence) ofa. We may also ask if it is possible to calculate a scalar
potential from a given vector-fieldb if b = gradϕ. In other words, do there exist inverse differential
operatorsgrad−1, div−1, curl−1?

For contractible domains we can express anycurl free vector-fieldb trough a scalar potentialϕ.
However, as can be seen from Fig. 8.2,ϕ can only be determined up to an additive constant from a given
vector-fieldb, as the constant is in the kernel of thegrad operator. In case the vector-fielda0 is sought
after, such that a given scalar fieldλ can be derived fromdiv a0 = λ, then botha0 anda0 + curlb
are possible solutions. In case the vector-fielda0 is sought after, such that a given vector-fieldb can be
derived fromcurla0 = b, then botha0 anda0 + gradψ are possible solutions. These examples show
that the knowledge of the sourcesor the curls alone is not sufficient to characterize the field problem.
Instead, any vector-field on a closed contractible domainΩ can be uniquely determined through all its

P o i n t L i n e S u r f a c e V o l u m e
g r a d c u r l d i v

I m a g e  
o f  g r a d

K e r n e l
o f  c u r l

0

con
st.

S c a l a r
f i e l d

V e c t o r
f i e l d

V e c t o r
f i e l d

S c a l a r
f i e l d

I m a g e  
o f  c u r l

K e r n e l
o f  d i v

Fig. 8.2: DeRahm complex for contractible domains. The diagram has to be parsed as follows: The image ofgrad ϕ is identical

to the kernel of thecurl operator. The image ofcurla is identical to the kernel of thediv operator. The corresponding spaces

of scalar and vector-potentials constitute together with thegrad , curl anddiv operators an exact sequence. The blue sequence

is curl grad ϕ = 0, the red sequence isdiv curla = 0. They are said to be exact. In this case the second Lemma of Poincaré

holds.
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P o i n t L i n e S u r f a c e V o l u m e
g r a d c u r l d i v

0

con
st.

S c a l a r
f i e l d

V e c t o r
f i e l d

V e c t o r
f i e l d

S c a l a r
f i e l d

n u l l

e x a c t

c l o s e d

a r b i t r a r y

H1(Ω) H2(Ω)

Fig. 8.3: In topologically non-contractible domains there may existcurl free vector-fields which cannot be expressed as the

gradient of a scalar function. There may be also source free vector-fields which cannot be expressed as thecurl of a vector-

field. These two vector-fields constitute the first and second deRham cohomology space, denotedH1(Ω) andH2(Ω).

sourcesand curls if the normal component of the field is prescribed on the domain boundary2.

8.3.3 Non-contractible domains

In topologically non-contractible domains theremay exist curl free vector-fields which cannot be ex-
pressed as the gradient of a scalar function. There may also be source free vector-fields which cannot be
expressed as thecurl of a vector-field. These two vector-fields constitute the first and second deRham
cohomology space, denotedH1(Ω) andH2(Ω), see Fig. 8.3.

Example 1: Consider a toroidal domainΩ1 centered at thez-axis of a cylindrical coordinate
system(r, ϕ, z) which does not contain the axis and is therefore not simply connected. The magnetic
field strength of a line current at thez-axis is given byHϕ = I

2πr which is curl free atr > 0:

curlH =
1
r

∂

∂r
(rHϕ) = 0. (8.12)

Nevertheless, this field cannot be expressed as the gradient of a scalar potential in the formH = gradϕ.
This can be shown by comparing

∮
C H·ds = I whereC is a circle located inΩ1, with

∮
C gradϕ·ds = 0

which is contradictory. The vector-fieldH is said to lay in the first deRahm cohomology spaceH1(Ω1).
It is said to beclosedbut not exact. �

Example 2: Take the domainΩ2 between two nested spheres centered at the origin.Ω2 is simply
connected but has non-connected boundaries and is thus not contractible. The electric flux density of a
charge located at the origin given by

DR =
Q

4πR2
(8.13)

is divergence free atR > 0

div D =
1
r2

∂

∂R
(R2DR) = 0 . (8.14)

2This is the theorem of Herman von Helmholtz (1812 - 1894).
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Nevertheless this field cannot be expressed as thecurl of some vector potential. This can be
shown by comparing

∮
aD · da = Q wherea is a sphere located inΩ2, with

∮
a curlA · da = 0 which is

contradictory. The vector-fieldD is said to lay in the second deRahm cohomology spaceH2(Ω2). �

Formally, for a domainΩ ⊂ R3 open, the first and second deRahm cohomology spaces are the
quotient spaces

H1(Ω) =
Kernel( curl )
Image( grad )

, H2(Ω) =
Kernel( div )
Image( curl )

, (8.15)

and the second Poincaré Lemma can be rewritten as:

• A curl free, smooth vector fieldh canalwaysbe expressed through a (smooth) scalar potentialϕ
if H1(Ω) = 0. There existsno sulution that is divergence free and yet cannot be expressed as the
divergence of a vector field.

• A source free (divergence free), smooth vector fieldb can always be expressed through a smooth
vector-potentiala if H2(Ω) = 0. There exists no solution that iscurl free and yet cannot be
expressed as the gradient of a scalar field.

As an alternative we state:

• If h1, ...,hb1 is a basis ofH1(Ω) then each curl free, smooth vector fieldh can be expressed in the
form h =

∑b1
i=1 λihi + gradϕ .

• If b1, ...,bb2 is a basis ofH2(Ω) then each source free (divergence free), smooth vector fieldb
can be expressed in the formb =

∑b2
i=1 λibi + curla ,

whereb1 andb2 are the dimensions of the first and second cohomology space and are called first and
secondBetti number3, respectively. Formally

bp(Ω) := dimHp(Ω) . (8.16)

The Betti numbers only depend on the topology of the domains, i.e., on the so-called homology class.
For trivial domainsb1 = b2 = 0.

8.3.4 Betti numbers

In Example 1 above, the two-dimensionalΩ1 is not simply connected, thus it is not possible to find a
surface bounded by the circleC which is entirly inΩ1. In this caseb1 = 1, b2 = 0. In order words,
b1 is the number of loops or 1-cycles. For a torus the first Betti number is 2; it is possible to find two
loops that are not boundaries of the mantle of the torus. In Example 2 above, it is not possible to find a
volume bounded by the surfacea which is entirely inΩ2 (which is simply connected with non-connected
boundary), thusb1 = 0, b2 = 1. The second Betti number is the number of holes or 2-cycles. For the
torus,b2 = 1 for the same arguments.

8.4 Questions

1. Write down the first and second lemma of Poincare. What has to be said about the spacial domain
for the Poincare lemma to be valid. What is the consequence for the field computation in the
aperture of accelerator magnets.

3Enrico Betti, (1823-1892).



Chapter 9

Cartan’s Calculus at a Glance

In physics one encounters situations in which it is necessary to integrate over arcs, surfaces, or their
higher dimensional generalizations calledmanifolds. The integration of the electric field strength along
directed line segments, or the magnetic flux density over oriented surfaces are prominent examples.

Consider our physical (affine) space, denotedA, which is modeled such thatRn (or open subsets
of Rn) is being “pasted” ontoA (or open, overlapping subsetsU, V thereof) by a one-to-one mapping
ϕU : U ⊂ A → Rn, i.e., an assignment of coordinates to a pointP ∈ A such thatP is represented
by x = (x1, x2, ..., xn) ∈ Rn. Naturally, many different ways of assigning coordinates toP exist.
Given another mappingϕV : V ⊂ A → Rn, we require a differentiable mappingf : Rn → Rn such
thatϕV = ϕU ◦ f (and alsof = ϕV ◦ ϕ−1

U ). This turns our physical point space into a differentiable
manifold.

Cartan’s calculus deals with vector-fields and differential forms on manifolds, i.e., with (multi)-
vectors and (multi) co-vectors at each point of these manifolds. It culminates in the general Stoke’s
theorem ∫

M
dω =

∫
∂M

ω (9.1)

whereM is a two or three dimensional manifold andd is the exterior (or the Cartan) derivative which
generalizes on a manifold, the classical differential operatorsgrad , div , and curl .

9.1 Tangent vectors to manifolds

The basic idea of differential calculus is to linearly approximate differentiable mappings between mani-
folds in order to treat analytical problems (difficult) with algebraic methods (easy). The linear approxi-
mation of the mappingf : Rn → Rp locally at some pointP represented byx ∈ Rn is the differential
df |x : Rn → Rp characterized byf(x + v) = f(x) + df |x(v) + ϕ(v) with limv→0

ϕ(v)
‖v‖ = 0 with

df |x(v) = [J ]x{v} where[J ] is the Jacobi matrix and{v} is the (test) vector written as a column vec-
tor. If we want to extend this concept to mappings between differentiable manifolds locally at pointP ,
the manifolds have first to be approximated by means of linear spaces at the pointsP andf(P ). The
differential can then be declared as a linear mapping between these so-calledtangent-spaces.

We are thus taking a gentle step towards abstraction. In Eq. (5.29) the point on the space curve was
characterized by its spatial vectorr. The space curve, however, does not need to be embedded into the
Euclidean 3-space. We are aiming at definitions which are intrinsic, i.e., independent of an embedding
and thus without commitment to a fixed origin inE3. Consider a pointP ∈ U ⊂ M , whereM is
a manifold (e.g., affine space as introduced in Section 4.6) andU is an open subset thereof. A curve,
denotedγ through this point is characterized by a differential mapping

γ : I → U : t 7→ γ(t) (9.2)

wheret is a parameter in the open intervalI, with γ(0) = P . Notice that the curve is thus defined to
be the mapping itself and not the set of image points traced out by the curve. In addition, assume given
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a smooth (C∞) functionf on the manifold as an element of the spaceF0(M). We consider again the
intrinsic definition of the directional derivative at pointP .

∂vf =
d
dt
f(γ(t))|t=0 . (9.3)

The differential operator∂v thus assignes the directional derivative to the function at pointP , where the
direction is given through the space curve. Introducing general (local) coordinates we have

∂vf =
d
dt
f(γ(t)) =

∂f

∂x1

dx1

dt
+

∂f

∂x2

dx2

dt
+

∂f

∂x3

dx3

dt
. (9.4)

In particular iff is the coordinate functionxi then

∂vx
i =

dxi

dt
. (9.5)

If we consider thatγ is the set ofall smooth curves throughP we can write for the operator

∂v =
dx1

dt
∂

∂x1
+

dx2

dt
∂

∂x2
+

dx3

dt
∂

∂x3
= v1 ∂

∂x1
+ v2 ∂

∂x2
+ v3 ∂

∂x3
, (9.6)

where(v1, v2, v3) ∈ R3, or shorter

∂v =
3∑
i=1

(∂vxi)
∂

∂xi
. (9.7)

The set of all directional derivations has the structure of a 3-dimensional linear space called the (alge-
braically defined) tangent space toU in P , denotedTPU . The concept can also be extended to higher
dimensions than three. The tangent space can be regarded as the best local approximation ofU ⊂ M in
P .

The partial derivations in Eq. (9.6) are the basis vectors of the tangent space. Elements from the
tangent space are called contravariant vectors in tensor analysis. We have

∂v = v1 ∂

∂x1
+ v2 ∂

∂x2
+ v3 ∂

∂x3
= v1g1 + v2g2 + v3g3 = vigj , (9.8)

which motivates the notation of∂v asvP, [77]. One makes thus no distinction between a vector and its
associated differential operator.

9.2 Vector-fields

A vector-field on an open subsetU ⊂ M will be a smooth assignment of such a tangent vector to each
point ofU ,

v : U → TPU : P 7→ ∂v(P ) , (9.9)

which reads in terms of local coordinates:

v =
∑
j

vj
∂

∂xj
(9.10)

where the componentsvj are differentiable functions of(xj). In particular, each∂
∂xj is a vector-field in

the coordinate patch(U,ϕU ). A vector-field can thus be seen as an operator, acting on functions, with
the formal properties of derivations.

A derivationat a pointP ∈ U is a map∂v : F0(U) → R such that withf, g ∈ F0(U), λ ∈ R

∂v(f + g) = ∂vf + ∂vg , (9.11)

∂v(λf) = λ∂v(f) , (9.12)

∂v(fg) = f∂vg + g∂vf , (9.13)

with the Leibniz1 rule, Eq. (9.13). The set of all derivations atP is a space isomorphic toTPU , [102].
1Gottfried Wilhelm Leibniz (1646-1716).
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9.3 Differential 1-forms

We recall that on a manifoldM , a tangent vector∂v atP is a differential operator on functions defined
onU ∈ M includingP , i.e., the operator of the directional derivative off in direction ofv. The union
of all tangent vectors in that point spans the tangent spaceTPU . We now define the differential of the
scalar functionf : U → R atP as the linear functional (a best linear approximation)df : TPU → R by

df |∂v = ∂vf . (9.14)

With this definition, which is independent of any basis, the differential is declared as an element from
the dual spaceT ∗PU , ref. Section 4.9. We further recall that in local coordinates, thegj = ∂

∂xj define a
basis forTPU and

df |∂v = df
∣∣∣∣(v1 ∂

∂x1
+ v2 ∂

∂x2
+ v3 ∂

∂x3

)
= v1 ∂f

∂x1
+ v2 ∂f

∂x2
+ v3 ∂f

∂x3
. (9.15)

In particular, consider the differential of a coordinate functionxi and set∂v = ∂
∂xj , then

dxi
∣∣∣∣ ∂∂xj =

∂xi

∂xj
= δij , (9.16)

establishes thedx1,dx2,dx3, as the dual basis to∂
∂x1 ,

∂
∂x2 ,

∂
∂x3 . The dual basis spans the so-called

cotangentspaceT ∗PU . The elements of the dual basis are denotedgi with the index in superscript. Thus

gj =
∂

∂xj
, gi = dxi . (9.17)

Elements of the cotangent space (called covectors or covariant vectors) are written in coordinates as

ω =
(

ω

∣∣∣∣ ∂∂x1

)
dx1 +

(
ω

∣∣∣∣ ∂∂x2

)
dx2 +

(
ω

∣∣∣∣ ∂∂x3

)
dx3 = ω1dx1 + ω2dx2 + ω3dx3 , (9.18)

with the differential

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

∂f

∂x3
dx3 (9.19)

as an example. Formally

df |∂v = ∂vf =
3∑
i=1

(∂vxi)
∂f

∂xi

=
3∑
i=1

∂f

∂xi
(dxi|∂v) (9.20)

from which follows

df =
3∑
i=1

∂f

∂xi
dxi . (9.21)

Recall that in Section 5.6 we defined the mappingv 7→ df(v) at pointP as the best linear approximation
of the mappingv 7→ f(P +v)− f(P ). Thus a mapping of the typeVn → R which establishesdf as an
element of the dual spaceV ∗

n .

A field of covectors, one at each point, is called adifferential form, not covector-field, to emphasize
the fact that they are linear functionals acting on tangent vectors. Formally:

ω : U →
⋃
P∈U

T ∗PU : P 7→ ω . (9.22)
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Remark: The components∂f
∂xi of the differential 1-form, are similar to the components of the gradient

vector in elementary vector-analysis. A great risk of confusion, however. It is important to realize that
the local expression (9.18) holds inany coordinate system, for example in cylindrical coordinates:

df =
(
∂f

∂r

)
dr +

(
∂f

∂ϕ

)
dϕ+

(
∂f

∂z

)
dz , (9.23)

while ∂f
∂r ,

∂f
∂ϕ ,

∂f
∂z are not! the components of the gradient in cylindrical coordinates (a metric has to be

in place to establish the link, see Sections 4.9 and 6.6). �

9.4 P -forms and the exterior derivative

Looking at the coordinate free definitions of the differential operators of classical vector analysis, which
relate quantities on the domain boundaries∂Ω to the domainsΩ, it comes by no surprise that differential
geometry provides a generalization of the concept, though in the dual space. It is the exterior differential
that mapsp-forms to(p+1)-forms. The differential of a function was shown to map vectors to reals and
thus to constitute a covector. A field of such covectors over a manifold is called a 1-form.

9.4.1 Exterior algebra overV ∗

We will have to take a preliminary step; the definition of alternatingp-forms asp-linear mapsωp :
V × ...× V → R.

The algebraic dual ofp-vectors (Section 4.12) are thep-forms. We define a 1-formω1 ∈ F1(U)
by

ω1 = a1 dx1 + a2 dx2 + a3 dx3 , (9.24)

a 2-formω2 ∈ F2(U) by

ω2 = a1 dx1 ∧ dx3 + a2 dx3 ∧ dx1 + a3 dx1 ∧ dx2 , (9.25)

a 3-formω3 ∈ F3(U) by

ω3 = ω dx1 ∧ dx2 ∧ dx3 (9.26)

and the functionf ∈ F0(U) as a 0-form. Similarly we haveη1 = b1 dx1 + b2 dx2 + b3 dx3 and
η2 = b1 dx1 ∧ dx3 + b2 dx3 ∧ dx1 + b3 dx1 ∧ dx2. Then the exterior product of two 1-forms yields a
2-form

ω1 ∧ η1 = (a2b3 − a3b2) dx2 ∧ dx3 + (a3b1 − a1b3) dx3 ∧ dx1 + (a1b2 − a2b1) dx1 ∧ dx2 , (9.27)

which resembles the expression(a×b)·ds in classical vector-analysis for Cartesian coordinates involving
the surface integral over the surfacea with its surface normal vectors. The exterior product of a 1-form
and a 2-form is the 3-form

ω1 ∧ η2 = (a1b1 + a2b2 + a3b3) dx1 ∧ dx2 ∧ dx3 , (9.28)

which resembles the expression(a ·b)dV in classical vector-analysis for Cartesian coordinates involving
the volume integral over the volumeV .

9.4.2 Exterior derivative

By definition, the exterior (or the Cartan) derivative, denotedd, mapsp-forms to(p+ 1)-forms with the
following properties:

d(ωp + ηp) = dωp + dηp , (9.29)
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df of the 0-form is the usual derivative of the scalar functionf : E3 → R , i.e,

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

∂f

∂x3
dx3 . (9.30)

and the differentials of the coordinate functions, i.e.,dx1, dx1 ∧ dx2 are treated like constants, e.g., we
get

d(a1 dx1 + a2 dx2 + a3 dx3) = da1 ∧ dx1 + da2 ∧ dx2 + da3 ∧ dx3 . (9.31)

Formally

dω = dωjdxj =
n∑
i=1

∂ωj
∂xi

dxi ∧ dxj (9.32)

(Einstein convention). We remarked in Section 9.3 thatdf resembles the expressiongrad f · dx in clas-
sical vector-analysis, wherex is some displacement vector. However, the components ofdf (themselves
invariants with respect to frame changes) resemble the components of thegrad operator only in case of
Cartesian coordinates. The exterior derivative of a 1-form yields with the above rules

dω1 = d(a1 dx1 + a2 dx2 + a3 dx3)

= da1 ∧ dx1 + da2 ∧ dx2 + da3 ∧ dx3

=
(
∂a1

∂x1
dx1 +

∂a1

∂x2
dx2 +

∂a1

∂x3
dx3

)
∧ dx1 + (...) ∧ dx2 + (...) ∧ dx3

=
∂a1

∂x2
dx2 ∧ dx1 +

∂a1

∂x3
dx3 ∧ dx1 +

∂a2

∂x1
dx1 ∧ dx2 +

∂a2

∂x3
dx3 ∧ dx2

+
∂a3

∂x1
dx1 ∧ dx3 +

∂a3

∂x2
dx2 ∧ dx3

=
(
∂a3

∂x2
− ∂a2

∂x3

)
dx2 ∧ dx3 +

(
∂a1

∂x3
− ∂a3

∂x1

)
dx3 ∧ dx1 +

(
∂a2

∂x1
− ∂a1

∂x2

)
dx1 ∧ dx2.

(9.33)

The components of the resulting differential 2-form are identical to the Cartesian components of the
vector-field curla. Similar

dω2 = d(a1dx2 ∧ dx3 + a2dx3 ∧ dx1 + a3dx1 ∧ dx2)

=
∂a1

∂x1
dx1 ∧ dx2 ∧ dx3 +

∂a2

∂x2
dx2 ∧ dx3 ∧ dx1 +

∂a3

∂x3
dx3 ∧ dx1 ∧ dx2

=
(
∂a1

∂x1
+
∂a2

∂x2
+
∂a3

∂x3

)
dx1 ∧ dx2 ∧ dx3 . (9.34)

The single component of the differential 3-form is identical to the component of the vector-fielddiv a in
Cartesian components.

We emphasize again that the above operations on thep-forms are valid in any coordinate system,
whereas the vector-field representation is not an invariant under frame changes, see Section 6. The
correlations calledtranslation isomorphismsin [80], between differential forms and their contravariant
versions, calledvector proxiesin [35], are established by the Euclidean metric of theR3 by means of the
ι-isomorphism introduced in Digression 4.9. This is expressed in the commutative diagram

F0(U)
d
- F1(U)

d
- F2(U)

d
- F3(U)

S(U)

=

? grad
- V(U)

∼=

? curl
- V(U)

∼=

? div
- S(U)

∼=

?
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9.4.3 The first Poincaré lemma

For each differential formω we have

d(dω) = 0 . (9.35)

Proof: As in three dimensions there exist only forms up to the rank 3, and the grade is augmented by
one for each exterior differentiation, the proposition has only to be proved for 1-forms and real functions.
For the 1-formω1 we have

ddω1 =

= dd(a1 dx1 + a2 dx2 + a3 dx3)

= d
[(

∂a3

∂x2
− ∂a2

∂x3

)
dx2 ∧ dx3 +

(
∂a1

∂x3
− ∂a3

∂x1

)
dx3 ∧ dx1 +

(
∂a2

∂x1
− ∂a1

∂x2

)
dx1 ∧ dx2

]
=
(

∂2a1

∂x3∂x2
− ∂2a1

∂x2∂x3
+

∂2a2

∂x3∂x1
− ∂2a2

∂x1∂x3
+

∂2a3

∂x2∂x1
− ∂2a3

∂x1∂x2

)
dx1 ∧ dx2 ∧ dx3 = 0. (9.36)

For the 0-formf we get

ddf = d
(
∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

∂f

∂x3
dx3

)
=

∂2f

∂x2∂x1
dx1 ∧ dx2 +

∂2f

∂x3∂x1
dx1 ∧ dx3 +

∂2f

∂x1∂x2
dx2 ∧ dx1 +

∂2f

∂x3∂x2
dx2 ∧ dx3 +

∂2f

∂x1∂x3
dx3 ∧ dx1 +

∂2f

∂x2∂x3
dx3 ∧ dx2 = 0 . (9.37)

�
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Chapter 10

Foundations of Electromagnetism

War es ein Gott der diese Zeichen schrieb, die mit geheimnisvoll verborg’nem Trieb
die Kräfte der Natur um mich enthüllen und mir das Herz mit stiller Freude füllen.

Ludwig Boltzmann’s (1844-1906) remarks on Maxwell’s equations.

Was it a god whose inspirations led him to write these fine equations,
nature’s field to me he shows and so my heart with pleasure glows.

Translation by J.P. Blewett.

In this chapter we will review the foundations of electromagnetism, i.e., Maxwell’s1 equations in global
and integral form, and in the form of classical vector-analysis. For the solution of Maxwell’s2quations
in various circumstances we further treat constitutive equations as well as boundary and interface condi-
tions.

10.1 Maxwell’s equations in global form

We first summarize the governing laws of electromagnetism in their global form for all geometrical
objects at rest.

Vm(∂a) = I(a) +
d
dt

Ψ(a) , (10.1)

U(∂a) = − d
dt

Φ(a) , (10.2)

Φ(∂V ) = 0 , (10.3)

Ψ(∂V ) = Q(V ) . (10.4)

Eq. (10.1) is Ampère’s magneto-motive force law (augmented by Maxwell) and Eq. (10.2) is Faraday’s
law of electromagnetic induction. Eq. (10.3) is the magnetic flux conservation law and Eq. (10.4) is
Gauss’ fundamental theorem of electrostatics. These are topological laws that do not depend on the
nature of the medium, nor on dimension, which is reflected by the absence of meters or inches in the
physical units of the global physical variables. In SI units3:

• Q is the electric charge in an outer oriented volumeV , [Q] = 1 C = 1 A·s.
• I(a) = lim∆t→0

∆Q
∆t = dQ

dt is the electric current[I] = 1 A across the surfacea which is thus
outer oriented. Notice that although we speak of a direction of the current (positive when positive

1James Clerk Maxwell (1831-1879).
2e
3The rationalized International System of Units (SI) with quantities length, mass, time, and current expressed in meters,

kilograms, seconds and amperes. Rationalized means that the factor4π does not appear in the Maxwell equations but with the
potentials as in Eq. 13.10. Books such as [104] dealing with electrodynamics of charged particles frequently use the Gaussian
system of units which simplifies Coulomb’s law but results in the appearance of the velocity of light in Maxwell’s equations.
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charges are moving through the surface), the electric current is not a geometrically directed quan-
tity and therefore not represented by a vector. The key point is that every global physical variable
referring to a space element reverses its sign when the orientation of the space element is reversed.
This is called the oddness principle [221].

• U(s) denotes the electric voltage between the start and end point of an inner oriented lines, defined
by the mechanical work done by a displacement of a charge along the line, i.e,U(s) = W (s)/Q
reflected by the physical unit[U ] = 1 V = 1 J ·C−1. If a is some arbitrary inner oriented surface
and∂a its boundary, thenU(∂a) is called circulation voltage, which is zero if the surface is not
penetrated by a time varying magnetic flux.

• Vm is the magneto-motive force[Vm] = 1 A along the boundary∂a of an outer oriented surface
a. Outer orientation is induced by the fact that the sign ofVm depends on the sign of the current
crossing the surface.

• The electric flux through an outer oriented surfacea is denotedΨ with the physical unit coulomb,
[Ψ] = 1 C = 1 A ·s. It is a measure of the electric charge that can be influenced on a surface and
thus requires the choice of one face of the surface, i.e., its outer orientation. Although the quantity
is called flux, it is important to notice that nothing is actually flowing in a physical sense; the name
is inspired by the mathematical structure of the quantity.

• The magnetic flux through a surfacea is denotedΦ with [Φ] = 1 Wb = 1 V·s and is a measure for
the electric voltage that can be induced along∂a. Thus, magnetic flux refers to a surface endowed
with inner orientation.

Modern approaches to field computation use these global variables directly, while approximating the
space domain with so-called cell-complexes of algebraic topology. Many links to recent work can be
found at http://discretephysics.dic.univ.trieste.it/.

10.2 Maxwell’s equations in integral form

Unfortunately, some say [221], the mathematical treatment of field problems has for long been based on
differential models employing vector fields. With the densities of the global variables (understood as the
limit of the ratio between the corresponding global variable and the size of the space element it refers to)
we obtain the integral form of Maxwell’s equations, which read for the stationary case in SI units:∫

∂a
H · ds =

∫
a
J · da +

d
dt

∫
a
D · da, (10.5)∫

∂a
E · ds = − d

dt

∫
a
B · da, (10.6)∫

∂V
B · da = 0, (10.7)∫

∂V
D · da =

∫
V
ρdV. (10.8)

The vector-fieldsE,H are the electric and magnetic field intensities, andD,B are the electric and
magnetic induction (or flux density). The sources are the electric charge densityρ and electric current
densityJ. In classical electrodynamics, the vector-fields and sources are assumed to be finite in the
entire domain and to be continuous functions of position and time. Discontinuities in the field vectors
may occur, however, on surfaces with an abrupt change of the physical properties of the medium. Such
discontinuities must therefore be excluded until we have treated the interface conditions in Section 10.8.
Localized distributions of sources will, from time to time, be approximated by point and surface charges,
and by line and surface currents. These concepts will also be discussed in Section 10.8.

The relations between the electromagnetic fields and their corresponding global physical values
are summarized in Table 10.1.

The global variables can be reconstructed by an integration process. The field intensitiesE and
H are integrated along a line,[E] = 1 V·m−1, [H] = 1 A·m−1, whereas the flux and current densities
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Global quantity SI-unit Relation SI-unit Field

Magneto-motive force 1A Vm(s) =
∫
sH · ds 1A·m−1 Magnetic field

Electric voltage 1V U(s) =
∫
sE · ds 1V·m−1 Electric field

Magnetic flux 1V·s Φ(a) =
∫
aB · da 1V·s·m−2 Magnetic flux density

Electric flux 1A·s Ψ(a) =
∫
aD · da 1A·s·m−2 Electric flux density

Electric current 1A I(a) =
∫
a J · da 1A·m−2 Electric current density

Electric charge 1A·s Q(V ) =
∫
V ρ · dV 1A·s·m−3 Electric charge density

Table 10.1: Relation between the electromagnetic fields and their integral values.

D, B andJ are integrated over a surface,[D] = 1 A·s·m−2, [B] = 1 V·s·m−2, [J] = 1 A·m−2. In
this integration process appears the vectorial surface elementda = nda wheren is the surface normal
vector directed such that it matches, together with the orientation of the surface, the right-handed screw
orientation of the ambient space.

The electric charge densityρ is integrated on a volume,[ρ] = 1 A·s·m−3. As remarked by
Maxwell in his treatise, the field intensities and the fluxes have different natures. In modern terminology,
Maxwell thus defined a so-called 1-form (associated with lines) and a 2-form (associated with cross-
sectional areas). The product of these is a three-form associated with a volume, which gives the local
energy density of the field.

The line integrals ofE andH are the electric voltage and magneto-motive force, respectively. The
surface integrals ofD,B,J are the electric flux, the magnetic flux and the electric current across the
surface.

10.3 Maxwell’s equations in classical vector-analytical notation

As long as the necessary conditions (smooth vector-fields, smooth surfaces with a simply connected,
closed, piecewise smooth and consistently oriented boundary, volumes with piecewise smooth, closed
and consistently oriented surfaces) hold for the application of the Stokes and Gauss theorems∫

a
curlg · da =

∫
∂a

g · ds , (10.9)∫
V

div g dV =
∫
∂V

g · da , (10.10)

see Sections 5.11.1 and 5.11.3, the field equations can be written as follows:∫
a

curlH · da =
∫
a
(J +

∂

∂t
D) · da, (10.11)∫

a
curlE · da = −

∫
a

∂

∂t
B · da, (10.12)∫

V
div BdV = 0, (10.13)∫

V
div DdV =

∫
V
ρdV. (10.14)
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These equations can only hold for arbitrary volumes and surfaces if the following equation hold for the
integrands:

curlH = J + ∂tD, (10.15)

curlE = −∂tB, (10.16)

div B = 0, (10.17)

div D = ρ. (10.18)

This is the classical vector analytical form of Maxwell’s equations. Divergence free vector-fields such
as the magnetic induction are said to be solenoidal. The use of notation∂t instead of ∂∂t is a way to
establish∂t as an operator on the same footing with the differential operatorsgrad , div and curl . The
notation in Eqns. (10.15) - (10.18) is mainly due to O. Heaviside4 and J.W. Gibbs5, who eliminated the
vector-potential and the scalar potential in Maxwell’s original set of equations, see Appendix 35.

Remark: To cite Bossavit [35]:The first remark, predictable as it was, may still come as a shock;
This formulation doesn’t really make sense.A number of issues will have to be addressed in subsequent
sections in order to have the problem properly posed.

• Eqns. (10.15) - (10.18) have too many unknowns: Additional material relations have to be invoked.
• The vector differential operators require the vector fields to be at least 1-smooth. However, on

material boundaries of permeable media, bothB andH are discontinuous and thereforecurlH
and div B cease to make sense there.

• The solution of the problem (if one exists) is not unique. As an example, take the static case
(∂t = 0) with J = 0 andµ = µ0 everywhere. Then bothH andB are zero. But this in not implied
by Eqns. (10.15) - (10.18) as forH = gradϕ the equations are fulfilled, even though there is no
source to create the nonzero static field.

We will not address all the issues at once, but will come back to them in due time. �

From the first Poincaré lemma,div curlg = 0, it follows directly that

div (J + ∂tD) = div J + ∂tρ = 0 , (10.19)

which is called the conservation of charge law. The commutation of thediv and∂t operators is admis-
sible if the fields and charge distributions are smooth. The law can be written in integral form as∫

∂V
J · da +

d
dt

∫
V
ρdV = 0 (10.20)

or in global form as

I(∂V ) +
d
dt
Q(V ) = 0 . (10.21)

If at every point within a volumeV the charge density is constant in time we get∫
V

div J dV = 0 , (10.22)∫
∂V

J · da = 0 , (10.23)

I(∂V ) = 0 , (10.24)

the latter known as Kirchhoff’s node-current law.
4Oliver Heaviside (1850-1925).
5Josiah Willard Gibbs (1839-1903).
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Remark: We could have derived Kirchhoff’s node-current law directly by applying Ampère’s
magneto-motive force law (10.1) to a closed surfacea = ∂V which yields together with Eq. (10.4):

Vm(∂(∂V )) = I(∂V ) +
d
dt
Q(V ) . (10.25)

As the ideal node in network theory cannot carry charges, we have the above result. �

For the sake of completeness we note that for surfaces not penetrated by time varying magnetic flux we
obtain

U(∂a) = 0 (10.26)

which is Kirchhoff’s mesh voltage law.

10.4 Constitutive equations

Maxwell’s equations consist of two vector equations (2× 3 equations) and two scalar equations; all-
together 8 equations for the unknownE,D,H,B,J andρ (16 unknowns). If we also consider that
Eq. (10.17) follows from Eq. (10.16), then Maxwell’s equations can only be solved with the additional 9
material relations which are thus called theconstitutiveequations

B = µH, D = εE, J = κE, (10.27)

whereµ, ε,κ are the permeability[µ] = 1 V·s·A−1 ·m−1 = 1H·m−1, the permittivity
[ε] = 1A·s·V−1 ·m−1 and the conductivity[κ] = 1A·V−1 ·m−1, respectively. (The international IEC
standard recommends to use the symbolσ for the conductivity which is, however, also used for the sur-
face charge density. Therefore we use the symbolκ as proposed in DIN 1324). These most simple forms
of constitutive equations hold only for linear (field independent), homogeneous (position independent),
isotropic (direction independent) and stationary media. The material parameters may, however, depend
on the spatial position. The global forms of the constitutive equations read

Φ = LI, Ψ = C U, I =
1
R
U, (10.28)

whereL,C,R are the inductance[L] = 1 V·s·A−1 = 1H, the capacitance[C] = 1 A·s·V−1 and the
resistance[R] = 1V·A−1, respectively.

In case the physical properties in a specimen are the same in all directions, i.e., the material
is isotropic, it is customary to express the permeability and permittivity as a function of the free space
(vacuum) field constants withµ = µrµ0 andε = εrε0 whereµ0 = 4π·10−7 H·m−1 andε0 = 8.8542... ·
10−12 F·m−1. The permeability and the permittivity of free space are related through the velocity of
light in vacuum by

c0 =
1

√
ε0µ0

= 299, 792, 458 m·s−1 . (10.29)

In a more general case, e.g., with a permanent magnetic or electric polarization which are volume den-
sities of magnetic and electric dipole moments, respectively, it will prove convenient to introduce new
vectors; the electric polarizationPel, the magnetic polarizationPmag, and the impressed current density.
Often the magnetic polarization is replaced by themagnetizationM, in units ofA·m−1. The material
relations can then be expressed as

B = µ0H + Pmag(H) = µ0(H + M(H)) , (10.30)

D = ε0E + Pel(E) , (10.31)

J = κE + Jimp . (10.32)

Eq. (10.30) holds also for permanent magnets where a magnetization is present without an excitation
field.

Remark: The definition of the magnetization is not unique in literature and sometimes, e.g., [130],
M containsµ0. This also has consequences for the definition of the magnetic dipole momentm defined
in Eq. (13.66).
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The polarization vectors are associated with matter and vanish in free space. For linear isotropic material,
the polarization vectors are parallel to the field vectors and are found to be proportional according to
Pel = χeε0E andM = χmH so that for magnetic materials

B = µ0H + µ0χmH = µ0(1 + χm)H = µ0µrH = µH, (10.33)

whereµr = 1 + χm is the relative permeability,[µr] = 1U andχm is called magnetic susceptibility
[χm] = 1U.

We emphasize again that these equations hold only for the linear isotropic material. In general,
e.g., inside permanent magnets,B andH have different directions; see Fig. 10.13. Outside the material,
of course, we have the easy relation in vacuum withB = µ0H.

10.5 Maxwell’s House

Employing the second Lemma of Poincaré we can express the magnetic field by means of a magnetic
vector potential

B = curlA, (10.34)

as the magnetic flux density is source free. IfB in Eq. (10.16) is replaced bycurlA one obtains

curl (E + ∂tA) = 0 (10.35)

and therefore the electric field can be expressed as

E = − gradϕ− ∂tA. (10.36)

In the electrostatic case with∂t = 0 the electric field is curl free (irrotational)

curlE = 0, (10.37)

and hence

E = − gradϕ . (10.38)

Since thecurl of the magnetic flux density is, in general, non-zero, it cannot always be written as the
gradient of a scalar potential function. If, however, a vector-fieldT is found such that

curlT = J , (10.39)

then the vector fieldH−T is curl -free, i.e.,

curl (H−T) = 0 (10.40)

and thereforeH can be expressed as

H = − gradϕred
m + T . (10.41)

T is called the electric vector-potential in [48] in the context of the so-calledT−Ω method for steady-
state field problems6 andϕred

m is the reduced magnetic scalar potential. Several options for the choice

6For steady state problems the Maxwell equations reduce tocurlH = J, curlE = −jωB, div B = 0, div D = 0 which
gives rise to parabolic diffusion equations for both the electric and magnetic field:∇2H = jωµκH and∇2E = jωµκE.
With B = curlA andJ = curlT and henceH = T + gradΩ andE = −∂tA− grad ϕ one obtains

curl

(
1

µ
curlA

)
+ jωκA + κ grad ϕ = J (10.42)

and

curl

(
1

κ
curlT

)
+ jωµT + jωµ grad Ω = 0. (10.43)
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Fig. 10.1: Left: Maxwell’s House [35] with scalar and vector-potential as well as the material relations in classical vector ana-
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facade: Magnetic fields and impressed currents. Right: Maxwell’s House for electromagnetic fields expressed in differential

forms on inner oriented space elements (on the Faraday complex) and outer oriented space elements on the Maxwell complex.

Notice how the exterior differentiald generalizes the differential operators of classical vector analysis.

of T exist [28]. The straightforward one is to use the Biot-Savart fieldHs computed from the impressed
current distribution.

The structure of the Maxwell equations and the electromagnetic potentials is revealed in a classifi-
cation diagram which is called “Maxwell’s House” in [35], see Fig. 10.1. The left facade is the Faraday
complex. The right facade the Maxwell’s complex. The front facade contains electric fields and charges,
the rear facade magnetic fields and impressed currents. The vertical links do not depend on the nature of
the medium and do not contain physical constant. They are thus called topological laws. The horizontal
links are the constitutive (or material) equations containing physical constants.

10.6 Digression: Field quantities expressed in differential forms

Consider the field quantities expressed as differential 1-formsE, H̃ ∈ F1(Ω)

E = E1 dx1 + E2 dx2 + E3 dx3 , (10.44)

H̃ = H1 dx1 +H2 dx2 +H3 dx3 , (10.45)

[E] = 1 V, [H̃] = 1 A, 2-formsB, D̃, J̃ ∈ F2(Ω)

B = B1 dx1 ∧ dx3 +B2 dx3 ∧ dx1 +B3 dx1 ∧ dx2 , (10.46)

D̃ = D1 dx1 ∧ dx3 +D2 dx3 ∧ dx1 +D3 dx1 ∧ dx2 , (10.47)

J̃ = J1 dx1 ∧ dx3 + J2 dx3 ∧ dx1 + J3 dx1 ∧ dx2 , (10.48)

[B] = 1 V·s, [D̃] = 1 A·s, [J̃ ] = 1 A, and the 3-form̃ρ ∈ F3(Ω)

ρ̃ = ρdx1 ∧ dx2 ∧ dx3 , (10.49)
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with [ρ̃] = 1 A·s. The tilde indicates that the forms have to be integrated over outer oriented mani-
folds. These differential forms are calledtwistedforms as opposed tostraight forms on inner oriented
manifolds. Maxwell’s equations can then be written with the exterior differential, see Section 9.4.2, as

dH̃ = J̃ + ∂tD̃ (10.50)

dE = −∂tB (10.51)

dB = 0 (10.52)

dD̃ = ρ̃ . (10.53)

The correlations calledtranslation isomorphismsin [80] between differential forms and scalar/vector-
fields is given by the commutative diagram

F0(U)
d
- F1(U)

d
- F2(U)

d
- F3(U)

S(U)

=

? grad
- V(U)

∼=

? curl
- V(U)

∼=

? div
- S(U)

∼=

?

Fig. 10.1 (right) shows the classification diagram for electromagnetic fields expressed in differen-
tial forms on inner oriented space elements (on the Faraday complex) and outer oriented space elements
on the Maxwell complex. Notice how the exterior differentiald generalizes the differential operators of
classical vector analysis.

10.7 Classification of electromagnetic fields

10.7.1 Electrostatics

For electrostatic problems the time derivative vanishes (∂t = 0) which decouples the electric and mag-
netic phenomena, and only the front facade of Maxwell’s house remains to be considered. Maxwell’s
equations reduce to

curlE = 0 , (10.54)

div D = ρ , (10.55)

with the constitutive equation

D = εE . (10.56)

10.7.2 Magneto(quasi)statics

For magneto(quasi)static problems with vanishing time derivative (∂t = 0), i.e., constant excitation
currents, only the back facade of Maxwell’s house remains standing erect. Maxwell’s equations reduce
to

curlH = J, (10.57)

div B = 0 , (10.58)

with the constitutive equation

B = µH . (10.59)
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10.7.3 Current flow

If the current density is not prescribed but coupled to the electric field through the constitutive equation
J = κE in electrically conducting media, then electric and magnetic phenomena are coupled through
the set of equations

div J = 0, (10.60)

curlE = 0, (10.61)

and with the constitutive equation

J = κE . (10.62)

Eq. (10.60) follows from the law of conservation of charge. The current flow problem is both divergence
and curl free.

10.7.4 Field diffusion in conducting domains

The complete set of Maxwell’s equations contains in addition the displacement current term∂tD and
the induction term∂tB. Field diffusion inside conducting media is described by the so-called quasi-
stationary approximation where the displacement current term is omitted. This approximation is valid
inside conducting media if for the frequencyω it yields [130]

ω � κ
ε
. (10.63)

10.8 Boundary and interface conditions

Subsequently, the closed domain (either 2-D or 3-D) in which the electromagnetic field is to be calculated
will be denoted asΩ. The field quantitiesB andH satisfy boundary conditions on the piecewise smooth
boundaryΓ = ∂Ω of the domainΩ. Two types of boundary conditions, prescribed on the two disjoint
smooth boundaries, denotedΓH andΓB with Γ = ΓH ∪ ΓB, cover all practical cases:

• On the partΓB of the boundary the normal component of the magnetic flux density is prescribed.
On symmetry planes parallel to the field, on far boundaries, or on outer boundaries of iron yokes
surrounded by air (where it can be assumed that no flux leaves the outer boundary) the normal
component of the flux density (denotedBn) is zero. In some special cases the distribution ofBn

can be estimated along a physical surface, e.g., the flux distribution in the air gap of an electrical
machine can be assumed to be sinusoidal. These boundary conditions can be written in the form

Bn = B · n = σmag onΓB, (10.64)

whereσmag is the surface density of a fictitious magnetic charge.

• On the partΓH of the boundary the tangential components of the magnetic field are prescribed.
In many cases, as on symmetry planes perpendicular to the field and on infinitely permeable iron
poles, where the field enters at a right angle, the tangential components of the field (denotedHt)
are zero. The tangential components ofH can also be determined by a real or fictitious surface
current density. All these boundary conditions can be written in the form

H× n = α onΓH, (10.65)

whereα is the density of a real or fictitious electric surface current.

The interface conditions require a formal definition of the fictitious magnetic surface charge density and
the electric surface current density:
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Fig. 10.2: Left: Surface charge. Right: Surface current.

• A surface charge is defined as a charge with infinite density, while the charge per unit surface
remains finite: Consider a thin layer of thicknessd in which a charge of densityρmag is present,
see Fig. 10.2 (left). In some surface∆x∆y of this layer the total charge∆Q = ∆x∆ydρmag is
present which isdρmag per unit surface. If we letρmag → ∞ andd → 0 so thatdρmag remains
finite, we get the surface charge with the densityσmag = dρmag, [σmag] = 1 V·s/m2.

• A surface current is defined as a current with infinite density on a surface, while the current per
unit length remains finite: Consider a thin layer of thicknessd in which a current of densityJ
flows, see Fig. 10.2 (right). In some length∆l of this layer flows the total current∆I = Jd∆l
which isJd per unit length. If we let tendJ → ∞ andd → 0 so thatJd remains finite, we get
the surface current with the densityα = Jd, [α] = 1 A·m−1. The condition that the tangential
components are zero on the boundary implies

Ht = 0 → n× (H× n) = 0 . (10.66)

In order to establish the interface conditions on a smooth surface, between two regions with different
magnetic properties, directed by a given crossing direction, consider two domainsΩ1 with permeability
µ1 andΩ2 with permeabilityµ2 as shown in Fig. 10.3.

Consider a surface element that penetrates the interface and where the vectorda lies in the inter-
face plane, as shown in Fig. 10.3 (left). Applying Ampère’s law

∫
∂aH ·ds =

∫
a J ·da to the rectangular

c

Γ12

µ2µ2

µ2

Ω2Ω2Ω2

µ1

Ω1

Ω1

n2
n1

da
n2 × da

n

n
n

da2

da1

Bt2

B2

α2

Bn2

Bt1 B1

α1

Bn1

δ

δ

Fig. 10.3: Interface conditions for permeable media.
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loop, while the heightδ → 0 yields∫
s2

H2 · ds +
∫
s1

H1 · ds = −
∫
c
(n×α) · ds ,∫

c
(H1 −H2) · ds = −

∫
c
(n×α) · ds , (10.67)

where the surface normal vectorn points fromΩ2 to Ω1 as shown in Fig. 10.3. Eq. (10.67) holds for any
curvec if the integrands are equal, except for a possible normal componentλn [120]

(H1 −H2) + λn = −n×α . (10.68)

With n× (n×α) = (n ·α)n− (n · n)α = −α we get

α = (H1 −H2)× n

= [H× n]12 , (10.69)

Remark: The jump[.] introduced in Eq. (10.69) is a mapping onΩ1 ∪ Ω2 ∪ Γ12 with

[a]12(x) = lim
y→x
y∈Ω1

a(y)− lim
y→x
y∈Ω2

a(y), x ∈ Γ12 . (10.70)

The jump is thus defined as the value of the vector-field just before, minus the value just after the jump
and thus counted downward, rather a drop than a jump. Ifa is continuous on the interface, we get
[a] = [a]12 = [a]21 = 0. �

If no real or fictitious electric surface currents exist, the tangential components of the magnetic
field strength are continuous at the interface

Ht1 = Ht2 ≡ (H1 −H2)× n = 0 ≡ [H× n]12 = 0. (10.71)

Now consider the volume of the pill-box as shown in Fig. 10.3 (middle). With the flux conserva-
tion law

∫
∂V B · da = 0 which holds for any closed simply connected surface we get forδ → 0,∫

a
σmagda =

∫
a
B1 · da1 + B2 · da2 ,

=
∫
a
(B1 −B2) · n1da . (10.72)

Eq. (10.72) holds for any surfacea if the integrands obey

σmag = (B1 −B2) · n
= [B · n]12 . (10.73)

If no fictitious magnetic surface charge density exists, the normal component of the magnetic flux density
is continuous at the interface

Bn1 = Bn2 ≡ (B1 −B2) · n = 0 ≡ [B · n]12 = 0. (10.74)

For a boundary of isotropic materialsfree of surface currents, Fig. 10.3 (right), it follows that

tanα1

tanα2
=

Bt1
Bn1

Bt2
Bn2

=
µ1Ht1

µ2Ht2
=
µ1

µ2
, (10.75)

at all pointsx ∈ Γ12. Forµ2 � µ1 it follows that eitherα1 ≈ 0, i.e., the field exits vertically from a
highly permeable medium into a medium with low permeability orα2 ≈ π/4, i.e., inside the domainΩ2
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the field is tangential to the interface. We will come back to this point when we discuss ideal pole shapes
of normal conducting magnets, see Chapter 12.6.

Remark: Both B andH are discontinuous atx ∈ Γ12 and thereforecurlH and div B cease
to make sense there, although some authors [160] propose saving the concept with the definitions of a
surface divergence and a surface rotation as

Curl H := lim
c→0

∫
cH · ds
c

= (H1 −H2)× n = α (10.76)

and

Div B := lim
a→0

∫
aB · da
a

= (B1 −B2) · n = σmag . (10.77)

Notice the spelling of the operators. For any boundary value problem defined onΩ to bewell posed, the
interface conditions (10.69) and (10.73) have to be implied. Ways of doing so include discrete differential
forms and weak formulations; the latter will be treated in Chapter 18. �

Before we leave this section we will list without proof the corresponding relations for electrostatic
field and current flow problems:

tanα1

tanα2
=

Dt1
Dn1

Dt2
Dn2

=
ε1Et1

ε2Et2
=
ε1
ε2
, (10.78)

tanα1

tanα2
=

Jt1
Jn1

Jt2
Jn2

=
κ1Et1

κ2Et2
=

κ1

κ2
, (10.79)

10.9 Magnetic anisotropy in laminated iron yokes

In case of anisotropic magnetic material the permeability has the form of a diagonal rank-2 tensor, so
thatB = [µ]H with

[µ] =

 µx 0 0
0 µy 0
0 0 µz

 . (10.80)

In many materials, such as in rolled metal sheets, the fabrication process produces some regularity in
the crystal structure and consequently a dependence of the magnetic properties on the direction. The
most well known (and strongest) anisotropy in magnetic materials can be achieved by laminating the
iron yokes. Between each of the ferromagnetic laminations of thicknesslFe (magnetically isotropic to
first order) there is a non-magnetic (µ = µ0) layer of thicknessl0, as shown schematically in Fig. 10.4.

Consider a lamination inz-direction and the field componentsBt in thexy-plane. Because of the
continuity conditionH0

t = HFe
t = Ht we get for the effective macroscopic tangential flux density

Bt =
1

lFe + l0

(
lFeµHt + l0µ0Ht

)
. (10.81)

As the normal component of the magnetic flux density is continuous, i.e.,B0
z = BFe

z = Bz, the average
magnetic field intensity can be calculated from

Hz =
1

lFe + l0

(
lFe
Bz

µ
+ l0

Bz

µ0

)
. (10.82)
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With the packing-factor

λ =
lFe

lFe + l0
(10.83)

which is 0.985 for the LHC yokes, we get for the average permeability in the plane of the lamination

µt = λµ+ (1− λ)µ0 (10.84)

and normal to the plane of the lamination

µz =
(
λ

µ
+

1− λ

µ0

)−1

. (10.85)

We have obtained a simple equation for the packing-factor scaling of the material characteristic. For
laminations in thex andy direction, i.e, with the plane of the laminations normal to the 2-D cross-section,
the laminations have a strong directional effect and the packing-factor scaling is no longer appropriate.
A macroscopic model for this case is developed in [24].

10.10 Magnetic material

Although all materials are either ferro-, dia- or paramagnetic it is customary to talk of magnetic ma-
terial only in case of ferromagnetic behavior with either a wide hysteresis curve (hard ferromagnetic
material and permanent magnets) or soft ferromagnetic material with narrow hysteresis as used for yoke
laminations in magnet technology.

In diamagneticsubstances (e.g. Cu, Zn, Ag, Au, Bi) the orbit and spin magnetic moments cancel
in the absence of external magnetic fields. An applied field causes the spin moments to slightly exceed
the orbital moments, resulting in a small net magnetic moment which opposes the applied field. The
permeability is less thanµ0. In the case of water the magnetic susceptibilityχm is−8.8·10−6. Supercon-
ductors in the Meißner7 phase represent the limiting case ofµ = 0, the ideal diamagnet with a complete
shielding of the external field. Diamagnetic samples brought to either pole of a magnet will be repelled.

The diamagnetic effect in materials is so low that it is easily overwhelmed in materials where the
spin and orbit magnetic moments are unequal. In idealparamagnetsthe individual magnetic moments
do not interact with each other and take random orientation in space due to thermal agitation. When

7Fritz Walter Meißner (1882-1974).
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Fig. 10.4: On the calculation of theµ tensor for laminated materials. The transversal dimensions are large with respect tol0

andlFe .
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Red: Normal magnetization curve.

an external field is applied, the magnetic moments line up in the field direction resulting in positive
susceptibilitiesχm in the order of10−5 to 10−3 basically independent of field strength and without
hysteresis behavior. Paramagnetic substances include the rare earth elements, platinum, sodium and
oxygen.

10.10.1 Ferromagnetism

Ferromagnetic substances (which include iron, nickel and cobalt as well as alloys of these elements)
cannot be characterized by simple, single-valued constitutive laws, because differentB(H) relations
(called magnetization curves) can be measured, depending on the history of the excitation.
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Fig. 10.6: Left:M(B) hysteresis curve for soft (3%Si-Fe) grain oriented laminations used in transformer cores. Right:M(B)

hysteresis curve for a sinteredFe77Nd15B8 permanent magnet. Loop width differ by a factor of10−5. The low-carbon steel

used for the LHC yoke laminations is specified to have a coercive fieldHB
c of less than 80±10A·m−1 at room temperature.
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If the field applied to a specimen is increased to saturation and then decreased, the decrease in
flux density is not as rapid as the increase along the normal or initial8 magnetization curve. When
H reaches zero there remains a residual flux density or remanenceBr. In order to reduceB to zero,
a negative field−HB

c , called thecoercivefield, must be applied. The phenomenon that causesB to
lag behindH, so that the magnetization curves for increasing and decreasing fields are not the same, is
calledhysteresis. Hysteresis curves for soft and hard ferromagnets are shown in Fig. 10.6. A hysteresis
loop can be represented in termsB(H) or M(H). In a soft ferromagnet, the fields involved in the
hysteresis loop are much smaller than the corresponding magnetization, see Fig. 10.6 (left), and plotting
B(H) instead ofM(H) makes only a tiny difference. However, in permanent magnet materialH and
M have the same order of magnitude and theB(H) loop differs considerably from theM(H) curve9,
see Fig. 10.11 (left). It must be emphasized that the description of the magnetic state of the specimen
is based on its average magnetization over volumes larger than the domain sizes where the material can
be regarded as homogeneous. The so-called saturation state is obtained through the application of a
field amplitude large enough to wipe out the domain structure with its magnetization “history” prior to
saturation. After saturation is reached, a further increase inH causes a linearB(H) dependence with a
differential permeabilityµd that approachesµ0, i.e.,

lim
H→∞

µd =
dB
dH

= µ0 . (10.86)

The coercive fieldHB
c is in the order of 50-100A·m−1 in non oriented Si-Fe alloys and low-carbon

steels used in electrical motors. The low-carbon steel used for the LHC yoke laminations is specified to
have a coercivity of less than 60A·m−1 and to haveB > 1.5 T atH = 1200 A·m−1. The chemical
composition of the material is 0.02% Ni, 0.02% S, 0.02% Sn, 0.01% P. The thickness of the laminations
is 5 mm with a tolerance of 0.2 mm. Low-carbon steels are good choices for yoke lamination because
they are easy to handle (draw, bend, and punch) and are fairly inexpensive. Their relative permeability
is still around 1000 at 1.6 T while the 3% Ni-Fe material used in transformer cores has aµr of 1000 at
already 1.4 T. However, the coercive field is decreased to about 20-60A·m−1.

Extremely soft materials with very high permeability below 0.5 T can be obtained from nickel
alloys (with a maximum at around 80% Ni). The most common examples are the so-called Mumetal and
78 Permalloy (78% Ni). These substances are, however, very sensitive to heat treatment and the degree
of cold working. Alloys with about 50% Ni have a smaller relative permeability and higher coercive field
but are good up to 1 T.

A classification of magnetic materials is given in Fig. 10.7.

10.10.2 Measurement of hysteresis curves

The magnetization curves can be measured by means of so-called permeameters consisting of an ho-
mogeneous, weld free annulus of ferromagnetic material with inner radiusr1, outer radiusr2, andN
windings that excite the field of modulus

H =
NI

2πr
(10.87)

with an average of

H =
NI

2π(r2 − r1)
ln
r2
r1
. (10.88)

The induced voltage in the pick-up coil (which is wound directly onto the specimen) is proportional to
the rate of change of the flux

U =
d
dt

Φ =
d
dt
Ba, (10.89)

8Often calledvirgin curve, although some authors reserve the term virgin curve for the case where the initial state is obtained
after thermal demagnetization.

9Thus the need to distinguish between the two coercive fieldsHB
c andHM

c ; in all casesHM
c > HB

c .
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Fig. 10.7: Classification of magnetic materials. Correlation between the initial relative permeability and the coercive field.

wherea is the cross-section of the ring andB is the average magnetic flux density in the specimen. Time
integration (

∫
Udt = Ba) using a fluxmeter yields, after calibration [105], the hysteresis curve forH

andB. As the permeability is strongly nonlinear, the induction throughout the sample cannot easily be
estimated and therefore the normal permeability is calculated from

µ =
B

H
(10.90)

where

B = Bmeas. +Bcorr. . (10.91)

The correction termBcorr. is iteratively derived from repeated measurements of the hysteresis loop for
cycles between positive and negative excitation fields such that the modulus of the excitation currents at
B = 0 are identical for the up- and down-ramp branch. Each cycle is completed in a time between 30 and
60 seconds to avoid eddy currents and drift in the measuring system. The normal magnetization curve
is measured by demagnetizing the magnetic material with cycles of decreasing amplitudes [22]. Under
these conditions the material responds equally when the field is applied in either of the two opposite
directions.

For an easy exchange of specimen the permeameters are made with split coils forB(H) measure-
ments at ambient temperatures, see Fig. 10.8 (left). However, the total resistance of the excitation coil is
inherently high due to the large number of contacts (two per turn), resulting in high power dissipations
at high currents. Thus for low temperature measurements involving superconducting excitation coils,
the coil (consisting of more than 3000 turns) is wound directly onto a toroidal glass-epoxy case with an
automatic winding machine [6], [112]. A specimen prepared for measurements is shown in Fig. 10.8
(right).

Fig. 10.9 shows the measured normal magnetization curveB(H) of the low carbon steel lam-
inations used for the yoke of the LHC main dipoles, the correspondingM(B) curve and the relative
permeability as a function of the magnetic induction [112]. The measurements were performed at 4.2 K
with a ring specimen, a toroidal superconducting excitation coil, and a copper search coil, in magnetic
flux densities of up to 7.4 tesla. Table 10.2 gives the measured temperature and stress dependence on the
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Fig. 10.8: Left: Split coil permeameter used for the warm measurements of LHC yoke iron samples (180 turns for the excitation

coil, 90 turns for the pick-up coil. Right: Superconducting excitation coil (about 3000 turns) and pickup coil wound directly

onto a glass-epoxy box containing the ferromagnetic specimen for cyrogenic measurements.

coercive field, remanence and maximum permeability of yoke laminations used in a LHC model magnet.
The maximum permeability drops by about 10% at 4.2 K but increases slightly in the saturation region.

10.10.3 Phenomenological description of ferromagnetism

The properties of the magnetization curvesM(H) are governed by two mechanisms known as ex-
change coupling and anisotropy. Exchange coupling between electron orbitals in the crystal lattice
favors long-range spin ordering over macroscopic distances and is isotropic in space. At temperatures
above a critical value, called the Curie10 temperature (for iron about 770oC), the exchange coupling dis-
appears. Anisotropy favors spin orientation along certain symmetry axes of the lattice. The study of the
quantum origin of these mechanisms is not needed in our phenomenological treatment of the material

10Pierre Curie (1859-1906).
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Fig. 10.9: Measured normal magnetization curveB(H) of the iron yoke laminations for the LHC main dipole (stressed at 20

MPa and measured at cryogenic temperature of 4.2 K), the correspondingµ0M(B) curve and the relative permeability as a

function of the magnetic induction [6].
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Fig. 10.10: LEP dipoles with regularly spaced magnetic steel laminations and spaces filled with cement mortar placed in the

tunnel.

properties in field computation.

Many of the phenomena of the magnetization curve, e.g., the three sections shown in Fig. 10.5
can be described by means of the domain theory by Weiß11, see for example [40]. Within the domains
with size of about10−5 to 10−3 mm, the magnetic moments are directed in parallel. The boundaries
between the Weiß domains are called Bloch12 walls. In an unmagnetized (and unstrained) piece of
iron the directions in which the domains are magnetized are either distributed at random (in parallel to
one of the six crystal axes) or in such a way that the resultant magnetization of the specimen is zero.
Application of a magnetic field changes only the direction of the magnetization in a given volume and
not the magnitude. This is attained by a reversible, and later irreversible, boundary displacement of the
domains. Saturation at high fields is attained by a reversible process of rotation within the domains.

10.10.4 Magnetostriction

The main dipole magnets for LEP shown in Fig. 10.10 were built with a small packing factor of 0.27,
realized by regularly spaced magnetic steel laminations and spaces filled with cement mortar. This
solution provided for mechanical rigidity at low cost. Mortar shrinkage at hydration had an effect on the
longitudinal magnet geometry, which was well controlled by means of four tie rods. In the transverse
plane, however, the steel laminations opposed the shrinkage of the mortar layers so that tensile stresses
built up in the mortar (about 10 MPa, near the upper limit of mortar yield strength) and compressive
stresses built up in the iron laminations (at about 30 MPa due to a different elastic modulus and thickness
of the layers). This resulted in an unacceptable∆B/B in the bending field at low excitation caused by
the reduction of the maximumµr due to magnetostriction. By means of a hydraulic system, transverse
forces were exerted all along the poles in order to relieve the mortar-induced compressive stresses in the
yoke laminations [23].

The phenomenon in which a ferromagnetic specimen changes its dimensions by some parts per
million when it is magnetized is calledmagnetostriction(positive for materials showing expansion and
negative for contraction). The effect is due to magneto-crystalline anisotropy which gives rise to energy
variations when the relative positions of magnetic ions in the lattice are modified. It is usually distin-
guished between Joule13 magnetostriction (the change of dimension transversely to the field) and volume
magnetostriction. In case of inverse magnetostriction or stress anisotropy, the deformation caused by an

11Pierre Ernest Weiß (1865-1940).
12Felix Bloch (1905-1983).
13James Prescott Joule (1818-1889).
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Temperature T Stress Coercive fieldHB
c RemanenceBr maxµr

K MPa A·m−1 T

300 0 68.4 1.07 5900

77 0 79.6 1.12 5600

4.2 0 85.1 1.06 4800

4.2 20 110. 0.67 2460

Table 10.2: Measured temperature and stress dependence on the coercive fieldHB
c , remanenceBr and maximumµr of the

LHC yoke laminations [112].

externally applied stress favors certain magnetization directions. The saturation magnetostriction defined
by λs = ∆l

l0
where original length of the specimen is denotedl0, in the order of1 ·10−5 - 3 ·10−5 for

alloys of iron and nickel. With some rare-earth materials values of up to2·10−3 can be obtained and thus
the material can be used to construct micro-actuators.

Table 10.2 gives the measured temperature and stress dependence on the coercive field, remanence
and maximumµr of yoke laminations for a LHC model magnet [112]. An aluminum ring around the
ring specimen provided for mechanical stress in the order of 20 MPa.

10.10.5 Permanent magnets

In dealing with permanent magnets, the section of the hysteresis loop in the second quadrant of the
B(H) andM(H) diagrams are of interest. If the loop is the major hysteresis loop, it is called the
demagnetization curve, see Fig. 10.11 (right).

It is desirable that the material has a high remanence (as it determines the maximum possible flux
density in a circuit) and a high coercive fieldHM

c so that the magnet will not easily be demagnetized.
Therefore, the maximum product(BH)max is a good figure of merit. The shape of the demagnetization
curve can be characterized by the fullness factor [40],

γ =
(BH)max

BrHB
c

(10.92)

which lies between 0.25 (for the straight line) and 1 (for the rectangular loop). A discussion of the
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both pointing in the direction of the easy axis of the grains in the sinter material. Right: Demagnetization curves for different

permanent magnet materials at room temperature.
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Fig. 10.12: Principle field distribution, magnetic induction and magnetization in a permanent magnet. Inside the permanent

magnetB andH have different directions. Outside the material we have the easy relation in vacuum withB = µ0H.

operation point of permanent magnets in a magnetic iron circuit is given in Section 12.5.

Rare earth materials likeSmCo5 andNdFeB are sintered from a powder with grain sizes of about
5 µm. These grains are magnetically highly anisotropic along one crystalline direction. The powder
is then exposed to a strong magnetic field (so that the grains rotate until their magnetically preferred
axis is aligned to the magnetic field), subjected to a high pressure and sintered. Finally the sintered and
machined material is exposed to a very strong magnetization field in parallel to the previously established
direction. A typicalB(H) relationship forB andH parallel to the magnetically preferred axis of the
grains is shown in Fig. 10.11 (left). The demagnetization curve for rare earth materials is basically a
straight line with a differential permeability ofdB/dH ≈ 1.04 µ0 − 1.08 µ0, so that the coercive field
µ0H

B
c is about 4-8% less thanBr. In the perpendicular direction, the typical values for the relative

differential permeability are in the range of 1.02 to 1.08. Because the permeabilities are so close toµ0

we will treat the material as vacuum with an impressed (field dependent) magnetization.

10.10.6 Magnetization currents and fictitious magnetic charges

In the presence of ferromagnets the magnetic field can be calculated as in vacuum, if all currents (includ-
ing the magnetization currents) are explicitly considered

curlB = µ0(Jfree + Jmag) = µ0Jfree + µ0 curl M. (10.93)

MBH

Fig. 10.13: Principle field distribution, magnetic induction and magnetization in an infinitely long permanent magnet of cylin-

drical shape. Inside the permanent magnetB andH have exactly opposite directions.
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Thus

curlH = curl
(

B− µ0M
µ0

)
= Jfree. (10.94)

HenceH is curl -free if there are no free currents. However,B is not curl -free. The magnetic induction
B is always source free but this is not necessarily so for the magnetic fieldH as

div H = div
(

B− µ0M
µ0

)
= −div M , (10.95)

which gives rise to the definition of a fictitious magnetic charge of density

ρmag = −µ0 div M . (10.96)

The fictitious magnetic charges allow a formal treatment of magnetostatic problems in the same way
as electrostatic problems using a magnetic scalar potential and the magnetic charges as sources of the
magnetic field. WithH = − gradϕm one can derive a so-called magnetic Poisson equation

div (− gradϕm) = −∇2ϕm =
ρmag

µ0
. (10.97)

For a homogeneously magnetized specimen, the magnetic field can be calculated employing a fictitious
magneticsurfacecharge density, c.f. Fig. 10.12 which is

σmag = µ0M · n = µ0Div M , (10.98)

and where the surface normal vectorn points from the magnetic material to the outside. We can also
employ an electric surface current, c.f. Fig. 10.13:

α = M× n = CurlM . (10.99)

10.11 Questions

1. Which are the laws from Maxwell’s equations which are needed for magnetostatic field problems.
Give at least two versions of these laws (global, integral, local, differential form).

2. Which components ofH andB are continuous across material boundaries (in the magnetostatic
case).



Chapter 11

Harmonic Fields

The string overstreched breaks,
the string overslack is dump.

The teaching of Buddha.

We will first review different magnetic potentials and the resulting boundary value problems later to be
solved by means of numerical methods. It will be shown that in the aperture of an accelerator magnet free
of currents and magnetized material, both the magnetic scalar-potential as well as the vector-potential
can be used to solve the field problem. In two dimensions, both formulations yield a scalar Laplace
equation. Lines of constant vector-potential indicate the direction of the magnetic field, whereas lines of
constant scalar potential define the pole shapes of conventional magnets.

The coefficients in the solution of the scalar Laplace equation can be estimated by incorporating
boundary conditions, i.e., comparing the coefficients with measured or calculated field harmonics on a
reference radius.

11.1 Magnetic potentials

Consider the elementary model problem in magnet design, consisting of two different domains:Ωi the
iron domain with permeabilityµ(H) andΩa the air region with the permeabilityµ0. The regions are
connected to each other at the interfaceΓai. Furthermore, each domain is bounded by a surfaceΓ = ∂Ω
itself consisting of two different partsΓH andΓB with their outward normal vectors denotedn.

11.1.1 Reduced magnetic scalar potential

We will now limit ourselves to the static case with∂t = 0. The magnetic fieldH can be partitioned into
the fieldHs generated by the prescribed source currents and the field arising from the induced magnetism
in ferromagnetic materials, denotedHm.

H = Hs + Hm (11.1)

whereHs can be calculated directly by means of Biot Savart’s law, see Chapter 13. SincecurlHm = 0
it follows that

H = − gradϕred
m + Hs inΩ, (11.2)

whereΩ is a contractible domain. The potentialϕred
m is called thereducedmagnetic scalar potential. The

choice (11.2) automatically satisfies Ampère’s law, so the flux conservation law needs to be imposed:

div B = 0 , (11.3)

divµ(− gradϕred
m + Hs) = 0 , (11.4)

div (µ gradϕred
m ) = div (µHs) in Ω, (11.5)

122
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a scalar Poisson1 equation. In the absence of magnetic surface charges and electric surface currents, the
boundary conditions become:

Ht = 0 → gradϕred
m × n = Hs × n on ΓH (11.6)

and

Bn = 0 → µn · gradϕred
m = µHs · n on ΓB, (11.7)

a nonhomogeneousNeumann2 boundary condition3. At the interfaceΓai between the iron domainΩi

and the air domainΩa the continuity conditions ofBn andHt have to be satisfied:

[B · n]ai = 0 on Γai, (11.8)

[H× n]ai = 0 on Γai, (11.9)

which read in terms of the reduced magnetic scalar potential[
−µn · gradϕred

m + µHs · n
]
ai

= 0 on Γai, (11.10)[
− gradϕred

m × n + Hs × n
]
ai

= 0 on Γai. (11.11)

While a solution of this boundary value problem is possible, the two parts of the magnetic fieldHm and
Hs tend to be of similar magnitude (but opposite direction) in non-saturated magnetic materials, so that
cancellation errors occur in the computation. This is especially severe if the potential is calculated numer-
ically, approximated byC0 functions, andHs is simultaneously computed analytically asC∞ functions
from Biot-Savart’s law. A numerical example is presented in [24]. An alternative is to interpolateHs

with the aid of similar functions as those used for the approximation ofgradϕred
m , [28]. However, this

method has proven insufficiently accurate for field optimization of superconducting magnets.

11.1.2 Total magnetic scalar potential

Another method to avoid cancellation errors is to use atotal scalar potential in ferromagnetic regions or
free space, where the current density is zero. In this casecurlH = 0 and the field can be represented as

H = − gradϕm inΩ, J = 0, (11.12)

whereϕm is called the total magnetic scalar potential. This choice automatically fulfils Ampère’s law,
so the flux conservation law has to be imposed:

div (µ gradϕm) = 0 inΩ, J = 0. (11.13)

The boundary conditions become

Ht = 0 → n× ( gradϕm × n) = 0 on ΓH , (11.14)

Bn = 0 → µn · gradϕm = 0 on ΓB. (11.15)

Eq. (11.14) is called the homogeneousDirichlet4 boundary condition onΓH whereHt is zero and there-
fore B is normal to the boundary. Eq. (11.15), which specifies the derivative of the system variable in
the direction of the normal vector is the homogeneous Neumann boundary condition where the normal

1Simeon Poisson (1781-1840).
2Carl Neumann (1832-1925).
3Usually rewritten with the definition∂ϕred

m
∂n

:= n · grad ϕred
m ,

4Lejeune Dirichlet (1805-1859).
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component ofB is zero. The interface conditions at the boundary between iron and air can be expressed
as

[µn · gradϕm]ai = 0 on Γai, (11.16)

[ gradϕm × n]ai = 0 on Γai. (11.17)

In free space Eq. (11.13 reduces to

µ0 div gradϕm = 0 inΩa, J = 0, (11.18)

∇2ϕm = 0 inΩa, J = 0. (11.19)

which is Laplace’s equation for the scalar potential.

11.1.3 Two scalar potentials

The two scalar potentials approach [24] couples the reduced magnetic scalar potentialϕred
m in the current

carrying regionΩa with the total scalar potentialϕm in the current-free regionsΩi through the interface
conditions

− µn · gradϕm = µ0

(
n ·Hs − n · gradϕred

m

)
on Γai , (11.20)

gradϕm × n = Hs × n− gradϕred
m × n on Γai . (11.21)

11.1.4 Total vector-potential formulations

Different, yet equivalent, total vector-potential formulations have been proposed. One formulation [61],
is based on the solution of the so-calledcurl − curl equation, the second formulation employs a vector
Poisson equation [55]. In [56] it is shown that these formulations are equivalent.

11.1.4.1 Thecurl− curl equation

Since the divergence of the magnetic flux density is zero, it can be written as thecurl of a magnetic
vector-potential with

B = curlA inΩ , (11.22)

whereΩ is a contractible domain. This choice automatically fulfills the flux-conservation law, and so
Ampère’s law remains to be solved:

curl
1
µ

curlA = J inΩ , (11.23)

where the iron magnetization is taken into account in a multiplicative way through the permeabilityµ
which depends nonlinearly on the magnetic field. The boundary conditions read in absence of any real
or fictitious surface currents and no fictitious magnetic surface charges:

Ht = 0 → 1
µ

( curlA)× n = 0 on ΓH , (11.24)

Bn = 0 → B · n = curlA · n = 0 on ΓB. (11.25)

Eq. (11.24) is the homogeneous Neumann boundary condition onΓH whereH is normal to the boundary.
Surface currents do not appear as long as finite conductivity and continuous time dependency is assumed.
Eq. (11.25) is the homogeneous Dirichlet boundary condition (B is parallel to the boundaryΓB). The
far-field boundary is also part ofΓB. If ΓB is a connected surface, no further condition is necessary to
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define the magnetostatic field. If, however,ΓB consists ofN disjoint parts, then theN magnetic fluxes
through the surfaces have to be prescribed as∫

ΓBn

B · nda = Φn, n = 1, 2, · · · , N. (11.26)

For the special case that all magnetic fluxes through the boundary are zero, the condition (11.25) is
equivalent to [71]

At = 0 → n× (A× n) = 0 on ΓB, (11.27)

a homogeneous Dirichlet boundary condition. On each part of the boundaryΓBn it can be shown with
Stokes’ theorem that∫

ΓBn

B · nda =
∫

ΓBn

curlA · nda =
∫
∂ΓBn

A · tds = 0, (11.28)

is fulfilled if At is zero at all pointsP ∈ ∂ΓBn.

The interface conditions written in terms of the vector-potential are[
1
µ

( curlA)× n
]

ai

= 0 on Γai , (11.29)

[A]ai = 0 on Γai. (11.30)

Since thecurl of a gradient field is zero, the vector-potential is not unique. The gradient of any smooth
scalar fieldψ can be added without changing the curl ofA:

A → A′ : A′ = A + gradψ. (11.31)

Eq. (11.31) is called a gauge-transformation betweenA′ andA. B is gauge-invariant as the transforma-
tion from A to A′ does not changeB. The freedom given by the gauge-transformation can be used to
set the divergence ofA′ to zero

div A′ = 0. (11.32)

Proof: We need to show that ifA is a solution of thecurl − curl equation, then there can be found an
A′ which is also a solution of thecurl− curl equation and obeysdiv A′ = q, for which q = 0 is the
special case of the Coulomb gauge. From the gauge transformation (11.31) we obtainq = div A+∇2ψ.
This equation has a valid solution, i.e.,

ψ =
∫

Ω

q − div A
4π|r− r′|

dΩ (11.33)

and consequently the freedom of the gauge transformation can be used to set the divergence ofA′ to
zero. �

Eq. (11.32) is called the Coulomb5 gauge, as it leads to a Poisson-type equation for the magnetic
vector-potential, see Section 11.1.4.2. As explained in Annex 35, it would historically be more correct
to denote Eq. (11.32) the Maxwell gauge. Enforcing the Coulomb gauge onA in addition to (11.23)

1
µ

div A = 0 in Ω, (11.34)

and considering the additional boundary condition

A · n = 0 on ΓH , (11.35)

5Charles de Coulomb (1736-1806).
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it can be proved that resulting boundary value problem has a unique solution.

Proof: Let A1 andA2 be two vector-potentials (with the differenceA1−A2 denotedA0) which
both fulfill the conditionscurlA1,2 = B and div A1,2 = 0 in the domain. ConsequentlycurlA0 = 0
in the domain andA0 can therefore be expressed in terms of a scalar functionu0 with A0 = gradu0. It
follows that div gradu0 = ∇2u0 = 0 in Ω and for the boundary conditions it followsgradu0 · n = 0
on ΓH andn × ( gradu0 × n) = 0 on ΓB. The latter implies thatu0 is constant onΓB. With Green’s
first theorem we get∫

Ω
( gradu0)2dΩ = −

∫
Ω
(u0∇2u0)dΩ +

∫
Γ
u0 gradu0 · ndΓ . (11.36)

As u0 is a harmonic function and because of the boundary conditions, the right hand side of the equation
vanishes. The remaining integral

∫
Ω( gradu0)2dΩ is identical to zero iffgradu0 = 0. HenceA0 =

A1 −A2 = gradu0 = 0; the vector-potential is unique. �

Chari [55] adopts the Coulomb gauge and solves equations (11.23) and (11.34) together. Biro
[163] introduces a penalty term to subtract from Eq. (11.23) which yields

curl
1
µ

curlA− grad
1
µ

div A = J inΩ, (11.37)

and is chosen such that for constant permeability it results in

curl curlA = −∇2A inΩ, (11.38)

see also Eqns. (11.43) and (11.44). It yields a unique solution of the boundary value problem if, in
addition to the boundary conditions (11.24), (11.27) and (11.35), the conditions

1
µ

div A = 0 onΓB (11.39)

and [
1
µ

div A
]

ai

= 0 onΓai (11.40)

are fulfilled.

11.1.4.2 The Vector-Poisson equation

An equivalent formulation for the total vector-potential can be obtained from

curlA = B, (11.41)

curlA = µ0(H + M), (11.42)

1
µ0

curl curlA = J + curlM , (11.43)

1
µ0

(−∇2A + grad div A) = J + curlM inΩ. (11.44)

where the iron magnetization is taken into account in an additive way through the introduction of the
magnetization vectorM. The boundary conditions (in the absence of magnetic surface current densities)
become:

Ht = 0 → n× (
1
µ0

( curlA)× n) = 0 on ΓH , (11.45)

Bn = 0 → curlA · n = 0 on ΓB. (11.46)
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The interface conditions can be expressed as

1
µ0

( curlAi − µ0M)× ni +
1
µ0

( curlAa)× na = 0 on Γai (11.47)

[A]ai = 0 on Γai. (11.48)

From Eq. (11.44) it results after incorporating the Coulomb gauge:

∇2A = −µ0(J + curlM) . (11.49)

Here again the additional boundary conditions

A · n = 0 on ΓH , (11.50)
1
µ0

div A = 0 onΓB (11.51)

[ div A]ai = 0 onΓai (11.52)

have to be imposed in order to guarantee the uniqueness of the vector-potential.

From vector-analysis we know that the Laplace operator acting on a vector in Cartesian coordinates
yields a vector that can also be obtained through the application of the operator to the components

∇2A = (
∂2Ax
∂x2

+
∂2Ax
∂y2

+
∂2Ax
∂z2

)ex + (
∂2Ay
∂x2

+
∂2Ay
∂y2

+
∂2Ay
∂z2

)ey +

(
∂2Az
∂x2

+
∂2Az
∂y2

+
∂2Az
∂z2

)ez = (∇2Ax)ex + (∇2Ay)ey + (∇2Az)ez (11.53)

and the vector Poisson equation disintegrates into the three scalar equations

∇2Ax = −µ0(Jx + ( curlM)x), (11.54)

∇2Ay = −µ0(Jy + ( curlM)y), (11.55)

∇2Az = −µ0(Jz + ( curlM)z). (11.56)

Remark: This does not hold for local coordinates, because the basis vectors are themselves dependent
on the point in space, e.g.,

∇2A = (∇2Ar −
1
r2
Ar −

2
r2
∂Aϕ
∂ϕ

)er + (∇2Aϕ −
1
r2
Aϕ +

2
r2
∂Ar
∂ϕ

)eϕ +∇2Azez (11.57)

for cylindrical coordinates, ref. Section 6.7. Even in Cartesian coordinates the components might be
coupled through curvilinear boundaries [55]. �

11.1.5 Reduced vector-potential

The vector-potentialA is now split into two parts

A = As + Ar (11.58)

whereAr is the reduced vector-potential due to the iron magnetization andAs is the impressed vector
potential due to the source currents in free space. Accordingly

B = µ0Hs + curlAr . (11.59)
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The source vector potential can be calculated with Biot-Savart6 type integrals from the coil current dis-
tribution according to Eq. (13.10). The field equations can then be derived from Eq. (11.37), replacing
A with As + Ar,

curl
1
µ

curl (Ar + As)− grad
1
µ

div (Ar + As) = J, (11.60)

curl
1
µ

curlAr − grad
1
µ

div Ar = J− curl
1
µ

curlAs, (11.61)

curl
1
µ

curlAr − grad
1
µ

div Ar = curlHs − curl
µ0

µ
Hs in Ω. (11.62)

Forµ = µ0, e.g., inside the aperture of a magnet (inΩa) the right hand side of Eq. (11.62) vanishes.

The boundary conditions become:

1
µ0

curlAr × n = −Hs × n on ΓH , (11.63)

curlAr · n = −µ0Hs · n on ΓB. (11.64)

The interface conditions written in terms of the reduced vector-potential read:[
1
µ

( curlAr)× n
]

ai

= 0 on Γai , (11.65)

[Ar]ai = 0 on Γai. (11.66)

11.2 The scalar Laplace equation in 2-D

In the two-dimensional case with∂∂z = 0 andJ = Jz, the vector-potentialA has only az-component
and the Coulomb gauge is automatically fulfilled. Then we obtain the scalar Poisson equation in free
space

∇2Az = −µ0Jz in Ωa (11.67)

for the 2-smooth scalar fieldAz. For current-free regions Eq. (11.67) reduces to the Laplace equation,

∇2Az = 0 in Ωa,J = 0, (11.68)

and the potentialAz is said to beharmonic. Eq. (11.68) reads in Cartesian coordinates

∂2Az
∂x2

+
∂2Az
∂y2

= 0 in Ωa,J = 0 (11.69)

and in cylindrical coordinates

r2
∂2Az
∂r2

+ r
∂Az
∂r

+
∂2Az
∂ϕ2

= 0 in Ωa,J = 0. (11.70)

Remark: In free spacecurlH and div H are zero and the same holds for the vector-fieldB. Because
of the relationcurl curla = grad div a−∇2a (which holds for 2-smooth vector-fields), bothH andB
are harmonic, i.e.,∇2B = 0 and∇2H = 0. Weyl’s7 lemma states that harmonic functions areC∞, so
bothH andB are smooth [35]. The mean-value theorem for harmonic functions (which can be derived
from Kirchhoff’s law) states that the potential in the middle of a sphere is equal to the average of the
potential function on that sphere (this holds also for the average of circles and lines in case of 2-D and
1-D domains, respectively). As an important lemma, the extremum of a harmonic scalar field is always
located at the domain boundary. �

6Jean-Baptiste Biot (1774-1862), Felix Savart (1791-1841).
7Herman Weyl (1885-1955).
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11.3 The method of separation

Eq. (11.70) can be solved with the method of separation. WithAz = R(r)ϕ(ϕ) we get in cylindrical
coordinates

∂Az
∂r

=
∂R(r)
∂r

ϕ(ϕ), (11.71)

∂2Az
∂r2

=
∂2R(r)
∂r2

ϕ(ϕ), (11.72)

∂2Az
∂ϕ2

=
∂2ϕ(ϕ)
∂ϕ2

R(r). (11.73)

Therefore Eq. (11.70) can be rewritten in the form

1
R(r)

(
r2
∂2R(r)
∂r2

+ r
∂R(r)
∂r

)
︸ ︷︷ ︸

n2

= − 1
ϕ(ϕ)

∂2ϕ(ϕ)
∂ϕ2︸ ︷︷ ︸

n2

. (11.74)

Since the left hand side of equation (11.74) depends onr only, and the right hand side is only a function
of ϕ, a separation constantn2 can be introduced and, in casen 6= 0, two ordinary differential equations
are obtained

r2
d2R(r)

dr2
+ r

dR(r)
dr

− n2R(r) = 0, (11.75)

d2ϕ(ϕ)
dϕ2

+ n2ϕ(ϕ) = 0, (11.76)

with the solutions

R(r) = E rn + F r−n, (11.77)

ϕ(ϕ) = G sinnϕ+H cosnϕ. (11.78)

11.4 Multipole coefficients

A solution of the homogeneous differential equation (11.70) which is valid only inside the aperture of
the magnet containing neither iron nor currents is given by

Az(r, ϕ) =
∞∑
n=1

(Enrn + Fnr
−n)(Gn sinnϕ+Hn cosnϕ). (11.79)

Considering that the field is finite atr = 0, the coefficientsFn have to be zero for the vector-potential
inside the aperture of the magnet while for the solution in the area outside the coil allEn vanish. Rear-
ranging Eq. (11.79) yields the vector-potential

Az(r, ϕ) =
∞∑
n=1

rn(Cn sinnϕ−Dn cosnϕ), (11.80)

in the aperture and the field components can be expressed as

Br(r, ϕ) =
1
r

∂Az
∂ϕ

=
∞∑
n=1

nrn−1(Cn cosnϕ+Dn sinnϕ), (11.81)

Bϕ(r, ϕ) = −∂Az
∂r

= −
∞∑
n=1

nrn−1(Cn sinnϕ−Dn cosnϕ). (11.82)

This way we have obtained a complete orthogonal function set as a solution of the separated differential
equations. Each value of the integern in the solution of the Laplace equation corresponds to a different
flux distribution generated by different magnet geometries. The three lowest values,n = 1,2,3 correspond
to a dipole, quadrupole and sextupole flux density distribution.
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Fig. 11.1: Field and force distribution inside the aperture of an ideal dipole. Left: Magnetic induction of the normal dipole

(Bx = 0, By constant). Right:x-component of the electromagnetic force field(vz ×B)x acting on a proton beam parallel to

thez-axis into positivez-direction

11.4.1 Dipole

For the dipole field (n = 1) we get

Br = C1 cosϕ+D1 sinϕ, (11.83)

Bϕ = −C1 sinϕ+D1 cosϕ, (11.84)

Bx = C1, (11.85)

By = D1. (11.86)

This is a constant field according to the values ofC1 andD1, displayed in Fig. 11.1 for the (negative)
normal dipole withC1 = 0 andD1 < 0.

11.4.2 Quadrupole

For the quadrupole,n = 2 (represented in Fig. 11.2) we get from Eqns. (11.81) and (11.82):

Br = 2 r C2 cos 2ϕ+ 2 rD2 sin 2ϕ, (11.87)

Bϕ = −2 r C2 sin 2ϕ+ 2 rD2 cos 2ϕ, (11.88)

Bx = 2(C2x+D2y), (11.89)

By = 2(−C2y +D2x). (11.90)

The amplitudes of the horizontal and vertical components vary linearly with the displacements from the
origin, i.e., the field components can be expressed by means of the gradientg with

By = gx, Bx = gy. (11.91)

With a zero induction in the origin, the distribution provides linear focusing of the particles. It is worth
noting that the components of the magnetic fields are coupled, i.e., the distribution in both planes cannot
be made independent of each other. Consequently a quadrupole focusing in one plane will defocus in the
other. Fig. 11.2 shows the field and force distribution inside the aperture of an ideal normal quadrupole
with C2 = 0,D2 < 0.
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11.4.3 Sextupole

Repeating the exercise for the case of the sextupole (n=3) yields:

Br = 3 r2 C3 cos 3ϕ+ 3 r2D3 sin 3ϕ, (11.92)

Bϕ = −3 r2 C3 sin 3ϕ+ 3 r2D3 cos 3ϕ, (11.93)

Bx = 3C3(x2 − y2) + 6D3xy, (11.94)

By = −6C3xy + 3D3(x2 − y2), (11.95)

which is represented in Fig. 11.3 for the normal sextupole, i.e.,C3 = 0,D3 < 0.

Remark: The treatment of each harmonic separately is a mathematical abstraction. In practical
situations many harmonics will be present and many of the coefficientsCn andDn will be non-vanishing.
A successful magnet design will, however, minimize the unwanted terms to small values. �

11.4.4 Feed-down

For a normal quadrupole withC2 = 0 we can calculate the field in a displaced coordinate system with
x′ = x− xd resulting in

By(x′) = 2D2x
′ + 2D2xd. (11.96)

For a displaced quadrupole, the field contains a constant (the second term in Eq. (11.96)) as for a dipole
field. This effect is called feed-down.

A displacement of a normal sextupole magnet creates both a quadrupole and a dipole field com-
ponent

By(x′) = 3D3((x′)2 − y2) + 6D3x
′xd + 3D3x

2
d. (11.97)

11.4.5 The field on the horizontal plane

Along thex-axis (y = 0) we get the expression for they-component of the field:

By = D1 + 2D2x+ 3D3x
2 + 4D4x

3 + ... (11.98)
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Fig. 11.2: Field and force distribution inside the aperture of an ideal normal quadrupole. Left: Magnetic induction of the normal

quadrupole (By = gx, gradientg negative,Bx = gy). Middle: x−component of the electromagnetic force field(vz ×B)x on

a proton beam parallel to the z-axis into positive z-direction. While this quadrupole is defocusing in the horizontal plane, it is

focusing in the vertical plane (with a restoring force that rises linearly with the displacement y, see the figure on the right where

(vz × B)y is displayed. A quadrupole that focuses horizontally is called a focusing or F-type quadrupole. Consequently the

field displayed on the left acts as a defocusing or D-type quadrupole.
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Fig. 11.3: Field and force distribution inside the aperture of an ideal sextupole. Left: Magnetic induction of the normal

sextupole (By = gs(x
2 − y2), gradientgs negative,Bx = 2gsxy). Middle: x−component of the electromagnetic force field

(vz ×B)x acting on a beam parallel to the z-axis into positive z-direction. Right:y−component of the electromagnetic force

field (vz ×B)y.

If only the two lowest order elements are used for steering the beam, forces on the particles are either
constant or vary linear with the distance from the origin. This is called a linear beam optic.

11.4.6 Complex representation of the multipole coefficients

Instead of Eq. (11.81) and (11.82) we can also write in complex notation, using de Moivre’s8 theorem9:

Bϕ + iBr =
∞∑
n=1

nrn−1 (−Cn sinnϕ+Dn cosnϕ) + i(Cn cosnϕ+Dn sinnϕ))

=
∞∑
n=1

nrn−1 (Dn(cosnϕ+ i sinnϕ) + iCn(cosnϕ+ i sinnϕ))

=
∞∑
n=1

nrn−1(Dn + i Cn)einϕ =
∞∑
n=1

n

r
(Dn + i Cn)zn. (11.99)

The solution in Cartesian coordinates (needed for the calculation of particle motions in the horizontal
and vertical plane) can be obtained from the transformation

Bx = Br cosϕ−Bϕ sinϕ, (11.100)

By = Br sinϕ+Bϕ cosϕ, (11.101)

which reads in complex notation

By + iBx = (Bϕ + iBr)e−iϕ . (11.102)

With z = x+ iy it yields10

By + iBx =
∞∑
n=1

n(Dn + i Cn)rn−1ei(n−1)ϕ =
∞∑
n=1

n(Dn + i Cn)zn−1. (11.103)

8Abraham de Moivre (1667-1754).
9einϕ = cos nϕ + i sin nϕ.

10Note that for the complex variablez = x + iy, the complex field is defined asBy + iBx (not Bx + iBy) in order to be
holomorphic. This is explained in detail in Chapter 16.
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11.4.7 Estimation of the multipole coefficients

The multipole coefficients are not known at this stage. They are defined through the boundary conditions
at some reference radiusr0 or can be calculated from the Fourier series expansion of the (numerically)
calculated magnetic flux density at the reference radius using the relations

An = nrn−1
0 Cn and Bn = nrn−1

0 Dn . (11.104)

Finally we obtain

Br(r0, ϕ) =
∞∑
n=1

(Bn sinnϕ+An cosnϕ) = BN

∞∑
n=1

(bn sinnϕ+ an cosnϕ), (11.105)

Bϕ(r0, ϕ) =
∞∑
n=1

(Bn cosnϕ−An sinnϕ) = BN

∞∑
n=1

(bn cosnϕ− an sinnϕ). (11.106)

The normal and skew multipole coefficientsBn(r0), An(r0) are given in units of tesla usually at a ref-
erence radiusr0 of 17 mm. The smallbn(r0), an(r0) denote the normal and skew relative multipole
coefficients, related to the main fieldBN (r0) which isB1 for the dipole,B2 for the quadrupole, etc. The
bn(r0), an(r0) are dimensionless and are usually given in units of10−4.

From Eq. (11.103) follows

By + iBx =
∞∑
n=1

(Bn + i An)
(
z

r0

)n−1

= BN

∞∑
n=1

(bn + i an)
(
z

r0

)n−1

. (11.107)

Remark 1: In some documents, e.g., [227], the field harmonics in accelerator magnets are defined
independently of a reference radius as

Bn =
Bn

rn−1
0

(11.108)

and [B1] = 1 T, [B2] = 1 T·m−1, [B3] = 1 T·m−2, etc. It is also common practice [90] to have
the summation index run from0 to ∞ which relates to the field as fundamental quantity (rather than
the potential), resulting inB0 as the dipole field component and removing the powers ofn − 1 in Eq.
(11.104). �

For the scaling of the multipole coefficients to a different reference radiusr1 we get

An(r1) = (
r1
r0

)n−1An(r0), Bn(r1) = (
r1
r0

)n−1Bn(r0), (11.109)

and

an(r1) = (
r1
r0

)n−Nan(r0), bn(r1) = (
r1
r0

)n−Nbn(r0), (11.110)

so that the field components atany radiusr inside the magnet aperture can be expressed as a function of
the multipole coefficients at the reference radiusr0.

Br(r, ϕ) =
∞∑
n=1

(
r

r0
)n−1(Bn sinnϕ+An cosnϕ)

= BN

∞∑
n=1

(
r

r0
)n−1(bn sinnϕ+ an cosnϕ), (11.111)

Bϕ(r, ϕ) =
∞∑
n=1

(
r

r0
)n−1(Bn cosnϕ−An sinnϕ)

= BN

∞∑
n=1

(
r

r0
)n−1(bn cosnϕ− an sinnϕ), (11.112)
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whereBn, BN , Bn etc. are shorthand forBn(r0), BN (r0), Bn(r0).
Remark 2: Numerical errors in the field calculation or, in case of magnetic measurements, man-

ufacturing tolerances and alignment errors of the search coils have to be taken into account. Therefore a
scaling to bigger radii than the reference radius results in loss of accuracy for the higher order multipole
components. The radius of the search coils for the LHC magnets has therefore chosen to be 23 mm and
the multipole errors are scaled down to the reference radius of 17 mm. In numerical field computation it
can be useful to perform a Fourier analysis of the vector-potential on the reference radius, avoiding the
calculation of the flux density by means of differential quotients. How the multipole errors transform in
this case is left as an exercise. �

11.5 Voltage induced in radial measurement coils

Using the result in Eq. (11.112) we can now calculate the flux linkage and the induced voltage in a radial
measurement coil as show in Fig. 3.7 (right).

Φ(t) = NL

∫ r2

r1

Bϕdr

=
∞∑
n=1

2NLr0
n

[(
r2
r0

)n
−
(
r1
r0

)n]
[Bn(r0) cos(nωt+ nΘ)−An(r0) sin(nωt+ nΘ)], (11.113)

wherer1 and r2 are the coil inner and outer radii,L is the length of the rotating coil andΘ is the
positioning angle att = 0. The voltage signal at timet is then

U(t) = −dΦ
dt

=
∞∑
n=1

2NLr0ω
[(

r2
r0

)n
−
(
r1
r0

)n]
[Bn(r0) sin(nωt+ nΘ) +An(r0) cos(nωt+ nΘ)] ,(11.114)

note the phase difference with respect to the tangential coil, ref. Eq. (3.9).

11.6 Nested magnets

For nested corrector magnets as shown in Fig. 1.11, which are designed to produce any combination of
horizontal and vertical fields it is useful to rewrite Eq. (11.105) in the form

Br(r0, ϕ) =
∞∑
n=1

Cn sin(nϕ+ ψn) (11.115)

with the amplitude

Cn =
√
A2
n +B2

n (11.116)

and the phase angle of the 2n-pole term

ψn = arctan
An
Bn

. (11.117)

11.7 Multipole errors in three-dimensional fields

For the calculation of the integrated multipole content in the coil-end region, no analytical equation
exists. The coefficientsBn(r0, z0), An(r0, z0) at some fixed positionz0 (subsequently called 3-D field
harmonics) can still be derived by means of the Fourier series expansion of the radial field component
Br(r0, ϕ, z0) which is calculated with Biot-Savart integrals for the coil contribution, and with numerical
methods (BEM-FEM coupling method) for the field from the iron magnetization.
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The system of trigonometric functionssinnΘ andcosnΘ (n = 1, 2, 3, · · · ) is, however, not a
complete orthogonal function set for the solution of the 3-D Laplace problem. Therefore the scaling
laws Eqns. (11.109) and (11.110) derived for field harmonics of the 2-D fieldcannot be applied to 3-D
field harmonics as can also be seen from Fig. 11.4. The black curve shows the sextupole field component
as a function of the longitudinal position in the coil end region, calculated at a 17 mm reference radius.
The wrong red curve shows the result obtained from a calculation of the sextupole component at a 10
mm reference radius and scaling to 17 mm by means of the scaling laws (11.110). As it is sufficient to
calculate the integrated transverse multipole coefficients (the effect of thez-component of the magnetic
field on the beam can be neglected since the magnets are short with respect to the betatron wavelength)
the local errors presented in Fig. 11.4 cancel out. This observation triggers the following statement.

Statement: The scaling laws, Eq. (11.110), apply to the integrated multipole coefficients if the
integration path (or the length of the measuring coil) extends to the region where thez-component of the
field vanishes: The scalar potential in the magnetic aperture satisfies the Laplace equation

∇2ϕm(x, y, z) =
∂2ϕm(x, y, z)

∂x2
+
∂2ϕm(x, y, z)

∂y2
+
∂2ϕm(x, y, z)

∂z2
= 0 (11.118)

andϕm(x,y) is defined as

ϕm(x, y) =
∫ z0

−z0
ϕm(x, y, z)dz, (11.119)

then

∇2ϕm(x,y) =
∂2ϕm(x, y)

∂x2
+
∂2ϕm(x, y)

∂y2
= 0, (11.120)

if the magnet is symmetric with respect to the center, or the integration path is extended far enough away
from the magnet so that the field has dropped to zero. Consequently, the scaling laws for two dimensions
can be applied to the integrated multipoles derived fromϕm.
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Fig. 11.4: Multipole componentB3(r0, z) as a function of the longitudinal positionz. Black: Calculated atr0 = 17 mm

reference radius, Red: Scaled from 10 mm using the 2-D scaling laws (wrong). For the geometry of the coil ends and its

cut-planes see Fig. 30.2.
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Proof: We must show that

∂2ϕm(x, y)
∂x2

+
∂2ϕm(x, y)

∂y2
=
∫ z0

−z0

(
∂2ϕm

∂x2
+
∂2ϕm

∂y2

)
dz

=
∫ z0

−z0

(
−∂

2ϕm

∂z2

)
dz

= − ∂ϕm

∂z

∣∣∣∣z0
−z0

= Hz(−z0)−Hz(z0)
!= 0 . (11.121)

This requirement is fulfilled for symmetric magnets whereHz(z0) = −Hz(−z0) or in case that the field
has dropped to zero, i.e.,Hz(z0) = Hz(−z0) = 0. �

The magnetic length is defined by

lmag :=
1

BN,xsec

∫ ze

zs

BN (z)dz (11.122)

whereBN,xsec denotes the main field component in the magnet cross-section. The starting point iszs,
while ze is the end point of the integration path. Then the integrated relative field harmonics can be
calculated by integrating theBn andAn components along thez-axis and dividing bylmag ·BN,xsec.

11.8 Exercises

11.8.0.1 Shielding of multipole fields by permeable steel cylinders

A cylindrical stainless steel cylinder is brought into the aperture of a perfectcos Θ magnet, see Fig. 11.5.

r
r

1

2

Fig. 11.5: Shielding of the dipole field in the aperture of a magnet through a highly permeable steel cylinder.

With some ferromagnetic behavior of the cylinder, this results in a shielding of the multipole
coefficients. Assume that at some reference radiusRref the field componentBN is given. Calculate the
field in the three domains (aperture, cylinder, outer region) and the shielding factorBinner

N /Bouter
N as a

function of the cylinder thickness, the orderN of the multipole and the permeabilityµr in the cylinder.
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11.9 Questions

1. What is a harmonic field. Where can such fields be found in superconducting magnets.

2. Sketch the magnetic field vectors in a dipole field. Why are all other multipoles butb3, b5, b7, b9, ...
identical zero for up-down and left-right symmetry in the magnet.

3. What is the role of the reference radius in the multipole analysis. Explain why the scaling laws de-
rived for the 2d solution of the field problem cannot be used for the scaling of local field harmonics
in the magnet end region.

4. Why are the superconducting LHC magnets called “cos Θ” magnets?

5. Explain the feed-down effect.

6. What are the ideal pole shapes of conventional dipole and quadrupole magnets. How is this shape
approximated in real world magnets.



Chapter 12

Normal Conducting Magnets

We will start with one-dimensional (back of the envelope) calculations of the magnetic flux density in
normal conducting accelerator magnets applying Ampère’s law. We will also treat the optimal dimension
of a permanent magnet in its circuit and the ideal pole shape of conventional magnets.

The limitations of the method is discussed as far as fringe fields and iron magnetization are con-
cerned. We will finally present a rudimentary treatment of cooling issues.

12.1 C-core dipole

Consider the magnetic circuit shown in Fig. 12.1 (left), a c-shaped iron yoke (long with respect to the
dimensions of the cross-section and thus treated as a 2-D problem) with two coils of all togetherN turns
around it. If the gap thickness is small compared to all other dimensions, the fringe field around the gap
will be small and we assume that the magnetic flux through any cross-section of the yoke (and across the
air-gap) will be constant. Employing Ampère’s law we can write∫

∂a
H · ds =

∫
a
J · da ,∫

∂a
H ·Tds =

∫
a
J · nda ,

Hi si +H0 s0 = N I ,

1
µ0µr

Bi si +
1
µ0
B0 s0 = N I , (12.1)

whereT is the field of tangent vectors to∂a andn is the normal vector to the surfacea. The integration
path in the iron yoke is denotedsi the integration path in the air gap iss0. With µr � 1 we get the easy
relation

B0 =
µ0N I

s0
. (12.2)

12.2 Quadrupole

In case of the quadrupole magnet we can split up the integration path as shown in Fig. 12.1 (right), i.e.,
from the origin to the pole (s1) along an arbitrary path through the iron yoke (s2) and back along the
x-axis (s3). ∫

∂a
H ·Tds =

∫
s1

H1 ·T1 ds+
∫
s2

H2 ·T2 ds+
∫
s3

H3 ·T3 ds = N I . (12.3)

138
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Fig. 12.1: Magnetic circuit (2-D) of a normal conducting dipole magnet (left) a quadrupole magnet (right). Disregarding the

magnetic resistance of the iron yoke and all fringe fields, an easy relation between the air gap field and the required excitational

current can be derived. Notice that the sense of integration along∂a yields a right handed screw with the normal vector to the

surface.

The field in a quadrupole is defined by its gradientg with Bx = gy andBy = gx, see Eq. 11.91.
Therefore the modulus of the field along the integration paths1 is

H =
g

µ0

√
x2 + y2 =

g

µ0
r. (12.4)

Along thex-axis (s3) the field integral is zero becauseH ·T = 0. Disregarding the magnetic resistance
of the yoke we get ∫ ra

0
Hdr =

g

µ0

∫ ra

0
rdr =

g

µ0

r2a
2

= N I, (12.5)

or

g =
2µ0NI

r2a
. (12.6)

Notice that for a givenNI the field decreases linearly with the air-gap size of the dipole, whereas the
gradient in a quadrupole magnet is inverse proportional to the square of the aperture radiusra.

12.3 Ohm’s losses in dipole and quadrupole coils

It is instructive to calculate Ohm’s losses in dipole and quadrupole coils as a function of air-gap flux
density or the gradient, respectively, and the size of the aperture.

Wcoil = RI2 =
l

κacoil
NI2 =

l

κNacoil
(NI)2 . (12.7)

With

NI =
B0s0
µ0

(12.8)

for the dipole and

NI =
gr2a
2µ0

(12.9)

for the quadrupole, the losses scale withs20 for the dipole and withr4a for the quadrupole.



CHAPTER 12. NORMAL CONDUCTING MAGNETS 140

12.4 Magnetic circuit with varying yoke section

With Ampère’s law we have again

n∑
i=0

Hisi = N I (12.10)

with the fieldH0 in the air-gap. Because of the continuity ofBn, the flux conservation law and the
assumption that fringe fields can be neglected, it yields

Hi =
Bi
µi

=
Φ
ai µi

. (12.11)

whereai (careful!) are now the transverse yoke sections and not the cross-section of the laminations, see
Fig. 12.2 (left). Therefore

Φ
n∑
i=0

si
ai µi

= N I = Vm (12.12)

which is formally identical with Ohm’s law

I

n∑
i=0

si
ai κi

= U . (12.13)

Consequently

Rm =
Vm

Φ
=

n∑
i=0

si
ai µi

(12.14)

is called the magnetic resistance, or reluctance, with the physical unit[Rm] = H−1 = 1A·V−1 ·s−1.
The magnetic resistance is non-linear in most technical cases and thus the result in Eq. (12.14) is an
approximation with a constantµi along the entire pathsi. Now

N I = Φ
n∑
i=0

si
ai µi

= Φ

(
s0
a0 µ0

+
n∑
i=1

si
ai µi

)
= Φ

s0
a0 µ0

(
1 +

n∑
i=1

µ0

µi

si
s0

a0

ai

)
. (12.15)

Obviously forµi � µ0 we get the same result as in Eq. (12.2). It can also be seen from Eq. (12.15) that
with a large air-gaps0, the magnetic resistance of the circuit is stabilized against (temperature) variations
in µi. The steps in this (rather conceptual) design process are:

• For a given air-gap flux densityB0 calculate the fluxΦ = B0a0 and the air-gap fieldH0 = B0/µ0.
A correction for the leakage flux can be made by adding2s0(l + w) to the pole surfacea0.

• CalculateBi = Φ/ai.
• EstimateHi from theB(H) curve of the yoke laminations.
• Calculate the necessary excitation currentNI fromNI =

∑
iHisi.

12.5 Permanent magnet excitation

12.5.1 Static operation and the load-line

For a magnet circuit with permanent magnet excitation as shown in Fig. 12.2 (left), we derive from
Ampère’s law

H0 s0 +Hm sm = 0 (12.16)
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a m
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Fig. 12.2: Left: C-core dipole with excitation coil and varying yoke surface. Notice the orientation of the surface for the

integration of the magnetic field strength and the surface of the integration of the magnetic flux density. Right: C-core dipole

with permanent magnet excitation. Disregarding the magnetic resistance of the iron yoke and all fringe fields, an easy relation

between the air-gap field and the size of the permanent magnet can be derived.

if again the iron yoke is assumed to be infinitely permeable and all fringe fields are neglected. The
integration path within the permanent magnet is denoted assm. We get with the pole surfacea0 and the
magnet surfaceam:

Bmam = B0a0 = µ0H0a0 . (12.17)

From Eq. (12.16) it follows that

H0s0 = −Hmsm, (12.18)
1
µ0
Bm

am

a0
s0 = −Hmsm, (12.19)

Bm = −µ0
sm
s0

a0

am
Hm, (12.20)

Bm

µ0Hm
= −sm

s0

a0

am
= P, (12.21)

whereP is called thepermeance coefficientwhich becomes zero fors0 � sm (open circuit) and becomes
−∞ for sm � s0 (short circuit). The case ofam > a0 is usually referred to as the flux concentration
mode. The permeance coefficient defines the point on the demagnetization curve which is the branch of
the permanent magnet hysteresis curve in the second quadrant. ThusHm is called the demagnetization
field. The line with the negative slope

s =
Bm

Hm
= µ0P = −µ0

sm
s0

a0

am
= µ0

M (1−Nd)
Hm −NdM

(12.22)

in theB(H) diagram is known as the load-line of the circuit.Nd is called the demagnetization factor.

The calculation of the working point of the permanent magnet requires a second relationship be-
tweenB andH which is provided by the magnet’s demagnetization characteristic. The intercept of the
load-line with the demagnetization curve then defines the magnet’s working point. The vector relation-
ship betweenB, H andM will actually vary within the material. It should therefore be noted, that in
this simplified treatment we assume a scalar constitutive equation in the form

Bm = µ0(Hm +M) . (12.23)

Fig. 12.3 shows the results of 2-D numerical simulations of a magnetically short-circuited samarium
cobalt magnet with a remanent flux density of 0.9 tesla, a circuit withs0 = 2sm, and an open circuit.
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Fig. 12.3: Magnetic circuit with zero air-gap (left), a circuit withsgap = 2sm (middle) and an open circuit (right) with a

samarium cobalt magnet (remanent field 0.9T). Notice the values forµ0Hm andBm on the demagnetization curve. For the

case withsgap = 2sm the numerical calculation yieldsµ0Hgap = 0.197 T, µ0Hm = −0.4 T.

The load-lines for the three cases are shown in Fig. 12.4. In practice, the upper limit of the slope of
the load-lines is determined by the magnetic resistance of the iron yoke while the open circuit condition
is determined by the shape of the permanent magnet. Only for cylinders (2-D) and ellipsoids (3-D) the
demagnetization factorNd, and thus the open circuit conditions can be calculated analytically.

12.5.2 The BH maximum

From Eqns. (12.17) and (12.18) we derive

Bmamsm = −µ0H0a0
H0s0
Hm

, (12.24)

and thus

H0 =

√
(amsm)(−BmHm)

µ0(a0s0)
=

√
Vm(−BmHm)

µ0V0
. (12.25)

For a given magnet volume, the maximum air gap field can be obtained by dimensioning the magnetic
circuit in such a way thatBmHm is maximum.

12.5.3 Leakage flux

Disregarding the leakage flux may be a rough treatment of the field problem, in particular for magnetic
flux densities exceeding 1 T in the yoke, or for large air-gaps. Flux leakage is proportional to the mag-
netic potential difference, i.e., the magneto-motive forceVm =

∫
H · ds between the poles. The design

shown in Fig. 12.2 (right) is therefore a poor one, as there are large areas at high potential differences. A
configuration with the permanent magnets brought to the air-gap shows considerably less leakage flux,
see Fig. 12.5 for the result of a numerical simulation. For the use of permanent magnet material in accel-
erator magnets, demagnetization due to irradiation and thermal fluctuations has to be considered [152].
As no permanent damage to the crystalline structure of the magnet occurs, it is possible to magnetize the
magnet after irradiation to the nominal level.
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Fig. 12.4: Left: Load-lines for the three cases shown in Fig. 12.3. Right: Recoil loop for dynamic operation of a magnetic

circuit with a permanent magnet with nonlinear demagnetization curve.

12.5.4 Dynamic operation

Consider again the simple magnetic circuit as above but with an additional excitation coil powered such
that magnetic flux in the circuit is enhanced for a positive current. Then we derive from Ampère’s law

H0 s0 +Hm sm = N I . (12.26)

The modified load-line can then be calculated from

Bm = −µ0
sm
s0

a0

am

(
Hm −

NI

sm

)
, (12.27)

c.f. Eq. (12.20). The slope of the load-line is still only dependent on the circuit dimensions, but the
load-line is shifted to the right, as can be seen in Fig. 12.4 (left) for the magenta line. While the flux is
enhanced in the circuit, the magnitude of the demagnetization fieldHm is reduced. While the magnetiza-
tion of rare-earth material is basically constant (equal to the so-called saturation magnetization), AlNiCo
material shows a knee below which irreversible demagnetization takes place. Working points below the
knee might result from temperature excursions, from externally applied demagnetization fields or from
changing air gap sizes in actuator magnet circuits.

S m C o 5

S m C o 5

Fig. 12.5: C-core magnet with permanent magnet excitation. With the permanent magnet brought to the air-gap (right) the

fringe field is considerably reduced. Display of magnetic vector-potential. The icons representing the magnetic flux density are

to scale.
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Fig. 12.6: Ideal and real pole shape of a normal conducting dipole (right) and quadrupole magnet (left) with shims.

Consider the magnet operating at pointa shown in Fig. 12.4 (left). A change in load-line slope
or position then may shift the working point to pointb. Even if the amplitude of the demagnetization
field is reduced, the working point will move along minor loops known asrecoil loops toward pointc.
Subsequent dynamic operation with the same load will cause the magnet to operate between pointb and
c on the minor loop.

12.6 Ideal pole shapes of normal conducting magnets

From Section 5.5 we recall that the gradient of a scalar potential is perpendicular to the surface of
equipotential. With the field entering highly permeable materials in normal direction to the surface (ref.
Section 10.8), the iso-surfaces of the total magnetic scalar potential define the pole shapes of normal
conducting magnets. As in 2-D (with the absence of magnetization and free currents) thez-component
of the vector-potential and the magnetic scalar potential both satisfy the Laplace equation, we already
have the solution:

ϕm = C1x+D1y. (12.28)

SoC1 = 0 , D1 6= 0 gives a vertical (normal) dipole field,C1 6= 0 , D1 = 0 yields a horizontal (skew)
dipole field. The equipotential surfaces are parallel to thex-axis ory-axis depending on the values ofC
andD and results in a simple flux density distribution used for bending magnets in accelerators.

For the quadrupole we get:

ϕm = C2(x2 − y2) + 2D2xy (12.29)

with C2 = 0 giving a normal quadrupole field and withD2 = 0 giving a skew quadrupole field (which is
the above rotated clockwise byπ/4). The quadrupole field is generated by lines of equipotential having
hyperbolic form. For theC2 = 0 case, the asymptotes are the two major axes. In practice, however,
the magnets have a finite pole width due to the need of a magnetic flux return yoke and space for the
coil. To ensure a good field quality with these finite approximations of the ideal shape, small shims are
added at the outer ends of each pole. Fig. 12.6 shows the pole shape of a normal conducting dipole and
quadrupole magnet, with magnetic shims.

The shim geometry has to be optimized (using numerical field computation) while considering,
that with an increasing height of the shim saturation occurs at high excitation and leads to the field
distribution being dependent on the magnet excitation level. On the other hand, with a very thin and
wide shim the nature of the field generated will change and different harmonics are being generated.
The pole shape optimization of normal conducting magnets thus results in an objective conflict as can
be seen in Fig. 12.7, where theb2 and theb3 field components are plotted as a function of the shim
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Fig. 12.7: Objective conflict in the optimal design of a pole shim for a normal conducting dipole magnet.

size. A minimumb3 component can be achieved both with wide and short as well as with narrow and
higher shims. A minimumb2 is obtained, however, for relatively wide and high shims whereb3 takes
higher values. The objective conflict is obvious. The treatment of such problems requires numerical field
computation methods combined with vector optimization methods which are described in Chapter 31.

Fig. 12.8 shows the cross-section of the LEP dipole and quadrupole magnets with iso-surfaces of
constant vector-potential (for the dipole) and magnetic field modulus in the iron yoke for the quadrupole.
The field quality in the dipole was improved by adding shims on the pole surface. In case of the
quadrupole, however, the pole shape is defined as a combination of a hyperbola, a straight section and an
arc. The points at which the segments are connected were found in an optimization process that consid-
ered not only the multipole components in the cross-section but also provided for partial compensation
of end-effects.
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Fig. 12.8: Cross-section of the LEP dipole magnet with iso-surfaces of constant vector-potential (left) and the LEP quadrupole

with magnetic field modulus (right).
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x d

Fig. 12.9: Cross-section of the combined function (dipole + quadrupole) magnet for the CERN PS ring. Notice the color

scaling of the icons for the magnetic flux density.

12.7 Combined function magnets

Fig. 12.9 shows the field distribution in the cross-section of the combined dipole/quadrupole magnets
for the CERN PS ring. The pole shape is given by the hyperbolic form for a quadrupole with a shift of
the aperture by a distancexd. This displacement can be calculated from the feed-down equation (11.96).
The PS magnets have a field gradient of about 5 T/m and a dipole field of 1.5 T at a nominal current of
6000 A. The pole shape is thus determined by a displacement of about 0.33 m with respect to the center
of the ideal quadrupole.

12.8 Cooling of normal conducting magnets

As this book focuses on the electromagnetic design of accelerator magnets, we cannot present the ther-
modynamical foundations of magnet cooling with the rigor reserved for our other subjects. Using a
number of assumptions, i.e.,

• neglecting heat radiation,
• considering developed flow, i.e, no inlet and outlets,
• smooth pipes with constant diameter and no effects from bends,
• turbulent flow,
• constant heat flow along the pipe,

a feasibility study can easily be performed using Fig. 12.10, [215], and following the procedure:

1. For a given cross-section and length of the conductor, calculate the total ohmic loss in the coil with
Eq. (12.7).

2. With the heat balance equation calculate the required flow-ratevavac of water, Eq. (12.38), to evac-
uate the total ohmic loss: As a rule of thumb, one liter/second evacuates4.18kJ/s for a∆T |water

of 1 oC. For an inlet temperature of 27oC and an outlet temperature of about 51oC (∆T |water =
23.9oC), 100kW requires a flow rate of1 l/s, (1 kW requires0.01 l/s).

3. Check by means of the chart, Fig. 12.10, based on the Blasius1 law, the amount of pressure loss
per meter tube for a given flow rate and cooling hole diameter is and determine the corresponding

1Heinrich Blasius (1883-1970).
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Fig. 12.10: Pressure drop per meter tube length as a function of flow rate and diameterD of the cooling channel, based on the

Blasius law.

Reynolds2 number.
4. Check that the Reynolds number is higher than 3000 (to guarantee turbulent flow) but does not

exceed 100 000 as otherwise the Blasius law would not hold.
5. Check that the total pressure loss in the normal conducting accelerator magnets is limited to 4-5

bar, in in the experimental magnets to about 20 bar.
6. If the limit is not obeyed increase the cooling hole and return to (1). If the size of the conductor

cannot be increased, consider multiple cooling circuits. Return to (5).

12.8.1 Governing equations

Power laws are used as empirical relationships in turbulent flow situations and hold for the simplifications
mentioned in Section 12.8, in particular for Reynolds numbers4 · 103 ≤ Re ≤ 105, which are given by

Re =
vavD

ν
, (12.30)

[Re] = 1U , with the average velocityvav of the fluid and the kinematic viscosityν defined as

ν =
µ

%
, (12.31)

whereµ is the dynamic viscosity and where% is the mass density of the fluid;[ν] = 1 m2s−1, [µ] =
1 kg·m−1s−1, [%] = 1 kg·m−3. For water at 310 K the mass density%water = 993 kg·m−3 andνwater =
6.982 · 10−7m2s−1. Reynolds numbers higher than3000 indicate the turbulent regime. Below2000 the
flow is usually laminar and the heat dissipation is reduced. However, an upper technical limit is given by
a Reynolds number of 100 000, since very turbulent flow leads to pipe erosion-corrosion.

2Osborne Reynolds (1842-1912).



CHAPTER 12. NORMAL CONDUCTING MAGNETS 148

Cooling depends on the speed of the cooling medium and on the heat transfer at the tube boundary.
The pressure loss in the pipe is proportional to%

2v
2
av and can be calculated with

∆p = λf
L

D

%v2
av

2
, (12.32)

where the dimensionless friction factorλf is itself a function of the surface roughness.L is the total
length of the cooling tube. For the calculation of the friction factor we use the Blasius law

λf =
0.3164

4
√

Re
(12.33)

which is sufficiently correct for round, smooth pipes and for Reynolds numbers in the range of4 · 103

and105. For non-circular shaped tubes the notion of a hydraulic diameter can be introduced:

Dh =
4ac
p
, (12.34)

whereac is the area of the tube cross-section andp denotes the passage’s wetted perimeter.

As we are aiming at a relation between the water velocity and the pressure loss, we combine Eqns.
(12.33), (12.30) and (12.32) and the material parameters for water at310 K. We finally obtain

v2
av =

2∆p
%

D

L

1
0.3164

(vavD
ν

)1/4
,

v7/4
av =

2
0.3164 % ν1/4

∆p
L
D5/4 ,

vav = 0.421
(∆p
L

)4/7
D5/7 . (12.35)

The evacuated heat, denotedQ, is

Q = Uac ∆T (12.36)

whereU is the heat transfer coefficient,[U ] = 1Wm−2K−1, determined by

U = cpvav%water , (12.37)

and∆T is the temperature difference between the inlet and outlet. For water, the heat capacity iscp =
4179 J·kg−1K−1. From Eqns. (12.36) and (12.37) we finally get

Q = cpvav%waterac ∆T . (12.38)

12.8.2 Worked example

As an example we take the normal conducting separation dipole MBW for the LHC cleaning insertion.
It is a H-type magnet with an aperture of 52 mm and a nominal current of 720 A in two coils, each one
made of 3 pancakes of 14 windings each. The total number of turns per magnet is thus2 · 42 = 84.

• The air-gap flux density to be calculated for a nominal current of 720 A with

B0 =
µ0NI

s0
=

4π · 10−7 · 84 · 720
0.052

= 1.4 T . (12.39)

• The magnetic length of the magnet shall be given as 3.4 m. Including the coil ends, the total length
of the conductor per coil is 395 m.
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Fig. 12.11: Cross-section of the normal conducting separation dipole MBW for the LHC cleaning insertion.

• For a conductor cross-section of 15× 18 mm and a cooling hole of 8 mm in diameter, the ohmic
resistance of one coil can be calculated as

R =
l

κacond
=

395
5.9 · 107 · 219.7 · 10−6

= 30.5 mΩ . (12.40)

• The voltage drop over one coil is 22V.
• The dissipated power per coil at nominal current is 15.8kW. This power can be evacuated by a

water flow of 3.78liter/s and a∆T of 1o C. For a∆T of 25o C we need thus 0.15liter/s. Three
cooling circuits are installed, one for each pancake winding. Thus the flow rate per cooling circuit
is at 0.05liter/s.

• From the Blasius law we obtain for the cooling hole with a diameter of 8 mm a pressure drop of
0.022 bar per meter of tube. Thus 2.8 bar for each circuit, which is within the technical limits.
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12.9 Exercises

12.9.0.1 C-core magnet

Figure 12.12 shows a C-core magnet. The dimensions are given in mm.

1. For an aperture field of 0.248 T and infinite permeability of the iron yoke calculate the ampere-
turns in the coils.

2. For 10000 ampere-turns in each coil and no iron yoke, calculate (using a single line current at the
coil’s barycenter) the source fieldHs at the origin.

3. For an air-gap flux density of 1.5 tesla calculate the necessary excitation current. Use the reluctance
model as explained in Section 12.4 and theB(H) or µr(B) relations from Fig. 10.9.

4. Dimension two samarium cobalt magnets at the pole faces of a magnet with similar dimensions,
for an air gap flux density of 0.5 tesla.
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Fig. 12.12: C-core magnet. All dimensions given in mm.

12.10 Questions

1. Describe the method for the one-dimensional computation of the main field in the aperture of
conventional dipole and quadrupole magnets. Why are quadrupoles with bigger apertures more
difficult to realize then dipole magnets.

2. What are the ideal pole shapes of conventional dipole and quadrupole magnets. How is this shape
approximated in real world magnets.



Chapter 13

Fields and Potentials of Line Currents

Magnetic Discussion, B. Touschek (1921-1978).

From the assumptions we have made deriving Laplace’s equations it is clear that harmonic fields
cannot account for line currents. After deriving Biot-Savart’s law we will calculate the field of line
currents in various circumstances; in particular for solenoidal magnets. Finally we will, using the concept
of the magnetic double layer, derive the scaling factor for imaging currents which can be used for the
calculation of coil fields located in cylindrical iron yokes.

13.1 Fundamental solution of the Laplace operator

If the source is a unit point source, line source or surface source, then the resulting fields are the 3-D, 2-D
or one-dimensional Green functions. The Green functionG(r, r ′) (or more precisely, the Green function
of free space) is a fundamental solution of the Laplace operator and reads in 3-D:

G(r, r ′) =
1

4π|r− r ′|
, (13.1)

wherer ′ is the spatial vector of the source point andr is the spatial vector of the field point1. It fulfils
the equation

∇2G(r, r ′) = −δ(r− r ′), (13.2)

whereδ(r−r ′) is the Dirac delta distribution centered atr = r ′. The Green function can thus be viewed
as the proportionality factor of Coulomb’s law of purely geometric nature. The inverse of the differential
operator is an integral operators with Green’s function as the kernel.

In two dimensions, the fundamental solution of the Laplace operator reads

G(r, r ′) =
1
2π

ln |r− r ′|. (13.3)

1Frequently, instead ofr− r ′, the distance between source and field point is denoted asx− ξ.

151
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Fromδ(r− r ′) = 0 for r 6= r′ and
∫∞
−∞ δ(r− r ′) = 1 for r = r′ it follows that

f(r ′) =
∫

Ω
f(r)δ(r− r ′)dΩ . (13.4)

Obviously the Green functionG ′(r, r ′) = G(r, r ′) + g(r, r ′) is also a fundamental solution of the
Laplace operator in caseg(r, r ′) fulfils the Laplace equation, i.e., ifg(r, r ′) is harmonic. Hence specific
boundary conditions are necessary for the unique determination of the Green function.

Once the Green function for the homogenious boundary value problem is known, the potential
ϕ(r) of any source in a homogeneous medium (no boundary surfaces) can be given as the product of the
Green function and the source functionf(r ′) :

ϕ(r) =
∫

Ω
G(r, r ′)f(r ′)dΩ , (13.5)

which is the solution of the corresponding operator equation

∇2ϕ = −f(r) ϕ, f ∈ Ω. (13.6)

In the 3-dimensional Cartesian coordinates the vector Poisson equation

∇2A = −µ0J (13.7)

can be separated into three scalar Poisson equations with the free-space solutions

Ax,y,z(r) =
µ0

4π

∫
V

Jx,y,z(r ′)
|r− r ′|

dV ′ . (13.8)

Proof: Taking

Az(r) =
µ0

4π

∫
V

Jz(r ′)
|r− r ′|

dV ′ (13.9)

and applying the Laplace operator yields

∇2Az(r) =
µ0

4π

∫
V
∇2

r

Jz(r ′)
|r− r ′|

dV ′

=
µ0

4π

∫
V
Jz(r ′)∇2

r

1
|r− r ′|

dV ′

=
µ0

4π

∫
V
Jz(r ′)(−4π)δ(r− r ′)dV ′

= −µ0Jz(r) .

�

Assembling the components of Eq. (13.8) yields

A(r) = Axex +Ayey +Azez =
µ0

4π

∫
V

J(r ′)
|r− r ′|

dV ′. (13.10)

13.2 The potentials in bounded domains

Recall Green’s second identity∫
Ω
(ϕ∇2ψ − ψ∇2ϕ)dΩ =

∫
∂Ω

(
ϕ
∂ψ

∂n
− ψ

∂ϕ

∂n

)
dΓ, (13.11)
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wheren is the normal direction to the domain boundaryΓ = ∂Ω. Forψ = G(r, r ′), the identity can be
rewritten as∫

Ω
[−ϕ(r)δ(r− r ′) +G(r, r ′)f(r)]dΩ =

∫
∂Ω

[
ϕ(r)

∂G(r, r ′)
∂n

−G(r, r ′)
∂ϕ(r)
∂n

]
dΓ . (13.12)

With Eq. (13.4)

ϕ(r′) =
∫

Ω
G(r, r ′)f(r)dΩ +

∫
∂Ω

[
−ϕ(r)

∂G(r, r ′)
∂n

+G(r, r ′)
∂ϕ(r)
∂n

]
dΓ . (13.13)

Due to the symmetry of the Green function, i.e.,G(r, r ′) = G(r ′, r) we can exchanger andr ′ and
obtain

ϕ(r) =
∫

Ω
G(r, r ′)f(r′)dΩ ′ +

∫
∂Ω

[
−ϕ(r′)

∂G(r, r ′)
∂n′

+G(r, r ′)
∂ϕ(r′)
∂n′

]
dΓ′ . (13.14)

This is the Kirchhoff theorem, or Green’s third identity, where in addition to the volume sources, the
boundary values ofϕ and ∂ϕ

∂n are involved that represent sources outside the domainΩ. Note that Eq.
(13.14) holds for observation points inside the domain. For exterior problems (r ∈ Ω2), we consider that
the domainΩ2 is bounded byΓ1 (the boundary toΩ1) and the far field boundaryΓ2 that tends to infinity.
Thus the surface integral term overΓ2 vanishes and the surface integral overΓ1 changes its sign in Eq.
(13.14).

We will see later that the additional terms in the square brackets are the potentials due to single
and double layer sources on the domain boundary. For magnetostatic problems, the special versions for
the magnetic scalar potential and an Cartesian component of the magnetic vector potential read:

ϕm(r) =
1

4πµ0

∫
Ω

ρm

|r− r ′|
dΩ ′ − 1

4π

∫
∂Ω

[
ϕm

|r− r ′|2
+
∂ϕm(r′)
∂n′

1
|r− r ′|

]
dΓ′ (13.15)

and

A(r) =
µ0

4π

∫
Ω

J

|r− r ′|
dΩ ′ − 1

4π

∫
∂Ω

[
A

|r− r ′|2
+
∂A(r′)
∂n′

1
|r− r ′|

]
dΓ′ . (13.16)

We will need these results in Chapters 21 and 23.

For Dirichlet problems withG(r, r ′) = 0 , Eq. 13.14 reduces to

ϕ(r) =
∫

Ω
G(r, r ′)f(r′)dΩ ′ −

∫
∂Ω
ϕ(r′)

∂G(r, r ′)
∂n′

dΓ′ , (13.17)

and for Neumann problems, with∂G(r,r ′)
∂n′ = 0, to

ϕ(r) =
∫

Ω
G(r, r ′)f(r′)dΩ ′ +

∫
∂Ω
G(r, r ′)

∂ϕ(r′)
∂n′

dΓ′ . (13.18)

If Green’s function is known for an operator equation with homogeneous boundary conditions (with
vanishing potential on the domain boundary), then by means of Eq. (13.17) one can also calculate the
solution of the Laplace equation with an arbitrary source distribution inside the domain and prescribed
potential on the domain boundary. In a similar way the solution of the Neumann boundary problem
is given by Eq. (13.18). Consequently, we may not prescribeϕ and ∂ϕ

∂n in Kirchhoff’s theorem, Eq.
(13.14), because the problem would be overdetermined. However, Eq. (13.14) consitutes the basis for
the so-called boundary element method treated in Chapter 21.
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13.3 Biot-Savart’s law

From Eq. (13.10) can be derived using identity (5.67)2

B(r) = curlA(r)

=
µ0

4π

∫
V

curl r

(
J(r ′)
|r− r ′|

)
dV ′

=
µ0

4π

∫
V

(
1

|r− r ′|
curl rJ(r ′)− J(r ′)× grad r

(
1

|r− r ′|

))
dV ′

=
µ0

4π

∫
V

J(r ′)× (r− r ′)
|r− r ′|3

dV ′ (13.19)

which is known as Biot-Savart’s law.

Remark: Notice a trap that only few authors warn about, Lehner [130] and Ehrich [64] being
among the exceptions. Only in Cartesian coordinates the equations for the three components yield three
scalar Poisson equations (see also Section 11.2) and consequently Eq. (13.19) may only be used in
Cartesian coordinates. Following [64] we write in general curvilinear coordinates:

A(r) =
3∑
i=1

Ai,rei,r , (13.20)

J(r′) =
3∑

k=1

Jk,r′ek,r′ . (13.21)

Subsituting into Eq. (13.10) yields

A(r) =
3∑
i=1

Ai,rei,r =
µ0

4π

∫
V

1
|r− r ′|

3∑
k=1

Jk,r′ek,r′dV ′ . (13.22)

With

Ai,r = ei,r ·A(r) (13.23)

we finally obtain the general formula

Ai,r =
µ0

4π

∫
V

1
|r− r ′|

3∑
k=1

Jk,r′(ei,r · ek,r′)dV ′ . (13.24)

�

Poisson’s equation (13.7) was derived for free space and incorporating Coulomb’s gauge (div A = 0). It
must therefore be proved that the vector potential above is indeed source free: With the identity (5.65)3

we have

div A(r) =
µ0

4π

∫
V

div
(

J(r ′)
|r− r ′|

)
dV ′

=
µ0

4π

∫
V

(
J(r ′) · gradr

(
1

|r− r ′|

)
+

1
|r− r ′|

divrJ(r ′)
)

dV ′

=
µ0

4π

∫
V

J(r ′) · gradr

(
1

|r− r ′|

)
dV ′ = −µ0

4π

∫
V

J(r ′) · gradr ′

(
1

|r− r ′|

)
dV ′

= −µ0

4π

∫
V

(
divr ′

(
J(r ′)
|r− r ′|

)
− 1
|r− r ′|

divr ′J(r ′)
)

dV ′

= −µ0

4π

∫
V

divr ′

(
J(r ′)
|r− r ′|

)
dV ′ = −µ0

4π

∫
∂V

J(r ′)
|r− r ′|

· da ′ = 0 . (13.25)

2 curl aa = a curla− a× grad a.
3 div aa = a div a + a · grad a.
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We have made use of the facts thatdiv J = 0, thatJ(r ′) does not depend on the field pointr, and that
no current is leaving the closed boundary surface ofV .

If the currents are confined to thin strands, one can set approximately

J(r ′)dV ′ = J(r ′)da ′ds ′ = Ids ′, (13.26)

so that Eqns. (13.10) and (13.19) take the following form:

A(r) =
µ0I

4π

∮
ds ′

|r− r ′|
(13.27)

and

B(r) =
µ0I

4π

∮
ds ′ × (r− r ′)
|r− r ′|3

. (13.28)

Remark 2: It is important to note that when the integral (13.27) is approximated by integration over seg-
ments of line-currents which are used to describe the current distribution in (superconducting) magnets,
all these line-currents have to formclosedloops. Lehner [131] shows thatdB(r) for a line elementds
represents the field of a line element with a point source and a point sink at its extremities. �

13.4 The field of a straight line current

Consider a current on thez-axis fromz = a to z = b pointing in positivez direction so thatAx = Ay = 0
as shown in Fig. 13.1 (left). From Eq. (13.27) we get

Az =
µ0I

4π

∫ b

a

dz ′

|r− r ′|
=
µ0I

4π

∫ b

a

dz ′√
x2 + y2 + (z − z ′)2

=
−µ0I

4π

[
ln
(
(z − z ′) +

√
x2 + y2 + (z − z ′)2

)]b
a

=
−µ0I

4π
ln
z − a+

√
x2 + y2 + (z − a)2

z − b+
√
x2 + y2 + (z − b)2

. (13.29)

Fora→ −∞, b→ +∞ one obtains the limiting value4

lim
a→−∞
b→∞

ln
z − a+

√
x2 + y2 + (z − a)2

z − b+
√
x2 + y2 + (z − b)2

= lim
a→−∞
b→∞

ln
−a+ |a|

√
1 + x2+y2

a2

−b+ |b|
√

1 + x2+y2

b2

= lim
a→−∞
b→∞

ln
−a− a(1 + x2+y2

2a2 + · · · )
−b+ b(1 + x2+y2

2b2
+ · · · )

= lim
a→−∞
b→∞

ln
−2a

−b+ b+ x2+y2

2b

= lim
a→−∞
b→∞

ln
−4ab
x2 + y2

, (13.30)

i.e., an infinitely long line current cannot have a finite vector potential in a finite pointP . Introducing an
arbitrarily large reference radiusRref with R2

ref = x2
0 + y2

0, we can extract a constant and write

Az = lim
a→−∞
b→∞

µ0I

4π
ln
(
−4ab
x2

0 + y2
0

)
− µ0I

4π
ln
(
x2 + y2

x2
0 + y2

0

)
. (13.31)

4 Using the binomial series
√

1 + x = 1 + 1
2
x− 1

8
x2 + · · · for |x| ≤ 1.
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As long as the sum currents vanish, e.g., for two line currents with opposite current directions, the
constant terms in Eq. (13.31) cancel out and the vector potential for each line current can be rewritten as

Az = −µ0I

2π
ln(

r

Rref
) (13.32)

with the arbitrarily large reference radiusRref and the distancer between the field point(x, y) and the
line current at the origin.

Remark: The reference radius can be viewed as a concentric conducting cylinder where the current of a
single conductor (or the non-vanishing sum current of a system of conductors) returns. If the reference
radius is made sufficiently large, so that it includes the entire problem domain, the effect of the return
currents cancels out because for a surface current density

α =
I

2πR
δ(r −R)ez . (13.33)

The vector potential inside the cylinder with radiusR can be shown to be the constant

Az = −µ0I

2π
ln(

R

Rref
). (13.34)

The current at the reference radius

I =
δ(r −Rref)

2πRref

∫
a
J · ezda (13.35)

is implicitly considered and vanishes if the appropriate symmetry conditions are fulfilled [119]. This
result has to be kept in mind if Eq. (24.4) is used for the calculation of the stored energy in superconduting
magnets. �
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Fig. 13.1: Geometrical relations for a straight line current (left) and a ring current (right).
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Fig. 13.2: On the geometrical relations for the calculation of the field in the plane spanned by the line current segment and the

field point.

From the vector potential the magnetic field components can be calculated according to

Bx =
∂Az
∂y

− ∂Ay
∂z

= −µ0I

2π
y

x2 + y2
, (13.36)

By =
∂Ax
∂z

− ∂Az
∂x

= −µ0I

2π
x

x2 + y2
, (13.37)

Bz =
∂Az
∂y

− ∂Ay
∂z

= 0 . (13.38)

Using the transformation

Br = Bx cosϕ+By sinϕ , (13.39)

Bϕ = −Bx sinϕ+By cosϕ , (13.40)

and the relations

cosϕ =
x

r
=

x√
x2 + y2

, sinϕ =
y

r
=

y√
x2 + y2

, (13.41)

the field can be expressed in cylindrical coordinates as

Br = 0, Bϕ =
µ0I

2πr
, Bz = 0. (13.42)

Following Prechtl [161] we can calculate the magnetic flux density perpendicular to the surface spanned
by the line current segment and the field point according to the geometrical relations shown in Fig. 13.2,
whererPQ = R

cosα , ds = R
cos2 α

dα, eI × eQP = cosαeB:

A =
µ0I

4π
ln
√

1− sinα1

1 + sinα1

1 + sinα2

1− sinα2
eI (13.43)

and

B =
µ0I

4πR
[sinα2 − sinα1]eB . (13.44)

13.5 The field of a ring current

Consider a circular loop current of radiusrc in thexy-plane, according to Fig. 13.1 (right) with

ds ′ = − sinϕ ′rcdϕ ′ex + cosϕ ′rcdϕ ′ey . (13.45)



CHAPTER 13. FIELDS AND POTENTIALS OF LINE CURRENTS 158

Because of the symmetry we can put the field point at any angular position, e.g.,ϕ = 0. Forz ′ = 0

|r− r ′| =
√

(r cosϕ− rc cosϕ ′)2 + (r sinϕ− rc sinϕ ′)2 + (z − z ′)2

=
√
r2 + r2c + z2 + 2rrc cosϕ ′ (13.46)

and it results from Eq. (13.27) in Cartesian coordinates

Ay(ϕ = 0) =
µ0Irc
2π

∫ π

0

cosϕ ′dϕ ′√
r2 + r2c + z2 + 2rrc cosϕ ′

(13.47)

and

Ax(ϕ = 0) =
µ0Irc
2π

∫ π

0

− sinϕ ′dϕ ′√
r2 + r2c + z2 + 2rrc cosϕ ′

= 0 . (13.48)

Now we can return to the components in cylindrical coordinates and following [130] we substituteψ =
(π + ϕ ′)/2 so that

cosϕ ′ = 2 sin2 ψ − 1 . (13.49)

With the definition

k2 =
4rrc

(r + rc)2 + z2
(13.50)

we get from Eq. (13.47)

Aϕ =
µ0Irc

2π
√

(r + rc)2 + z2

∫ π

π/2

2 sin2 ψ − 1√
1− k2 sin2 ψ

2dψ

=
µ0Irc

π
√

(r + rc)2 + z2

∫ π/2

0

2 sin2 ψ − 1 +
(

2
k2 − 2

k2

)√
1− k2 sin2 ψ

dψ

=
µ0Irc

π
√

(r + rc)2 + z2

{
− 2
k2

∫ π/2

0

1− k2 sin2 ψ√
1− k2 sin2 ψ

dψ +
(

2
k2
− 1
)∫ π/2

0

dψ√
1− k2 sin2 ψ

}

=
µ0Irc

π
√

(r + rc)2 + z2

{(
2
k2
− 1
)∫ π/2

0

dψ√
1− k2 sin2 ψ

− 2
k2

∫ π/2

0

√
1− k2 sin2 ψdψ

}

=
µ0I

2πr

√
(r + rc)2 + z2

{(
1− k2

2

)
K
(π

2
, k
)
− E

(π
2
, k
)}

(13.51)

where

E
(π

2
, k
)

=
∫ π/2

0

√
1− k2 sin2 ψdψ , (13.52)

K
(π

2
, k
)

=
∫ π/2

0

dψ√
1− k2 sin2 ψ

. (13.53)

These are the elliptic integrals5 of first and second kind [45]. The expressionk with 0 < k < 1 in
Eq. (13.50) is called the modulus. With variable limits from 0 toπ/2 the elliptic integrals are said to be
complete. No closed form solution of these integrals exist. We will therefore continue with a case study.

5They appear, for example, when integrating the arc-length on an ellipse. From the parametric form of the space curve
tracing an ellipse,r(t) = a cos tex + b sin tey and calculating the modulus of the velocity vector to this space curve|v| =√

a2 sin2 t + b2 cos2 t one obtains the integral for the arc-length:s(t) =
∫ t

0
b
√

1 + a2−b2

b2
sin2 t′dt′.
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Fig. 13.3: The solenoidal coil and the magnetic field modulus in the flux return yoke of the CMS detector to be installed at

Point 5 of the LHC. The overall dimensions of the yoke are a length of 21.6 m and an outer diameter of 14.6 m, giving a total

iron mass of around 11500 tonnes.

13.5.1 The general case

By series expansion of the integrand (fork < 1) and integration of the elements one obtains approxima-
tions for the elliptic integrals

E
(π

2
, k
)

=
π

2

[
1− 2

k2

8
− 3

(
k2

8

)2

− ...

]
, (13.54)

K
(π

2
, k
)

=
π

2

[
1 + 2

k2

8
+ 9

(
k2

8

)2

+ ...

]
, (13.55)

which can be used for the calculation of the excitational field of solenoidal magnets such as the CMS
detector to be installed at Point 5 of the LHC, and shown in Figs. 13.3 and 13.4.

Remark: Although the maximum magnetic induction in both superconducting accelerator and
detector magnets is limited by the current density in the coil, the resulting field optimization problems
are quite different. In accelerator magnets the objective is a maximum field in a small aperture. In
detectors, the particle trajectory, of radiusR = p/(QB) according to Eq. (1.8), is determined by the
measurement of the sagittaS and the opening angleα of the arc segment. The sagitta of the trajectory is
approximatelyQBL

2

8p according to Eq. (1.15). For detector magnet design the objective is consequently
a reasonably high field over a large volume, because the volume is more effective than the field strength
for precision measurements of the sagitta. In case of the CMS detector, the superconducting solenoid has
a length of 13 m, and an inner diameter of 5.9 m. The magnetic induction is 4 T. �

13.5.2 On axis field

For r � rc it follows thatk � 1. Considering that the vector potential does not depend onϕ or ψ it
follows

Aϕ =
µ0Ir

2
c

4
r√

r2c + z23 (13.56)
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Fig. 13.4: The dimensions of the CMS magnet system can be imagined from the photo of the trial insertion of the inner vacuum

tank into the outer tank which will later house the superconducting coils. The solenoid has an inner diameter of 6.3 m and a

length of 12.5 m. The solenoid is built from five sections, each 2.5 m long, weighing 45 tonnes. The iron yoke parts are painted

in red.

and

Bz =
1
r

∂

∂r
rAϕ =

µ0Ir
2
c

4r
2r√

r2c + z23 =
µ0I

2
r2c√

r2c + z23 . (13.57)

In particular, in the center of the circle plane atz = 0:

Bz =
µ0I

2rc
. (13.58)

Following [34], Eq. (13.57) can be used to calculate the center field of thick solenoid with current density
J , inner radiusr1, outer radiusr2, and length2z0:

Bz =
∫ r2

r1

∫ z0

−z0

µ0J

2
r2

√
r2 + z23 dzdr

= µ0 J z0 ln

(
r2 +

√
r22 + z2

0

r1 +
√
r21 + z2

0

)
. (13.59)

With the parametersα = r2/r1 andβ = z0/r1 it yields

Bz = µ0 J r1 F (α, β) (13.60)

with the shape function

F (α, β) = β ln

(
α+

√
α2 + β2

1 +
√

1 + β2

)
. (13.61)

If the aperture radiusr1 and the central field are specified and the overal current density is determined by
the superconductor properties, the shape functionF (α, β) will be determined and the design problem is
reduced to choosing the best values ofα andβ for a minimum coil winding volume

Vcoil = π(r22 − r21)z0 = πr31(α
2 − 1)β . (13.62)

The lines of constantF as a function of the parametersα andβ are displayed in Fig. 13.5, together with
the line of minimum coil volume. In practical solenoid design, however, also the field quality and the
peak field to main field ratio has to considered. The calculation of these quantities as a function of the
parametersα andβ are best done using numerical methods.
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Fig. 13.5: The lines of constantF as a function of the parametersα andβ together with the line of minimum coil volume.

13.5.3 Far field approximation

For
√
r2 + z2 � rc it follows that k � 1. Using therefore only the first elements of the series and

considering that the vector potential does not depend onϕ yields

Aϕ ≈
µ0I

2πr

√
(r + rc)2 + z2

π

2

{(
1− k2

2

)[
1 +

1
4
k2 +

9
64
k4

]
−
[
1− 1

4
k2 − 3

64
k4

]}
≈ µ0I

4r

√
(r + rc)2 + z2

k4

16

≈ µ0I

4r
r2r2c

(r2 + z2)3/2
. (13.63)

Expressing the far field approximation of the vector potential of a ring current in spherical coordinates
R,ϑ, ϕ with

R =
√
r2 + z2 and sinϑ =

r√
r2 + z2

, (13.64)

yields

Aϕ ≈
µ0Ir

2
cπ

4π
sinϑ
R2

=
µ0m

4π
sinϑ
R2

(13.65)

where the magnetic dipole moment

m = Ir2cπ = Ia. (13.66)

has been introduced. wherea is the surface vector of the current loop. The surface is directed through the
sense of rotation of the current in the loop according to the right handed screw rule. The field components
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can be calculated withB = curlA, i.e.,

BR =
1

R sinϑ
∂

∂ϑ
(sinϑAϕ) =

µ0m

2π
cosϑ
R3

, (13.67)

Bϑ = − 1
R

∂

∂R
(RAϕ) =

µ0m

4π
sinϑ
R3

, (13.68)

Bϕ = 0 . (13.69)

Remark: The components ofm can be arranged in a vector to give

m = Ia (13.70)

which holds for anyplane loop, regardless of its shape. It should be understood in the limiting sense that
I takes arbitrarily large values while the surface tends to zero and the product remains finite. The more
general definition of the magnetic moment is

m =
1
2

∫
V

r ′ × J(r ′)dV (13.71)

which yields for line currents

m =
I

2

∮
r ′ × ds . (13.72)

The magnetization can likewise be introduced as the volume density of the magnetic moment, i.e.,

M =
dm
dV

=
1
2
r ′ × J. (13.73)

At a sufficiently large distance, the field of any source (currents or magnetic material) can be reduced
to that of magnetic dipoles. This is in line with Ampéres interpretation of magnetism as infinitesimal
circulating currents. �

13.6 The magnetic double layer

Consider the current loop as shown in Fig. 13.6. In the domain outside the current carrying conductor
we may consider to use the scalar potential ansatz

H = − gradϕm . (13.74)

The scalar potentialϕm is, however, a multi-valued function, as one may addNI by performingN
complete loops around the current carrying conductor.∫ 2

1
H · ds = −

∫ 2

1
gradϕm · ds = ϕm1 − ϕm2 = NI . (13.75)

Therefore the ansatz (13.74) is only valid for simply connected domains. We can make the domain
simply connected by introducing a cut-planeas which prevents a path from being closed around the
current. At points laying on either side of the cut-plane, e.g., points1 and2 with potentialϕm1 andϕm2

we get

ϕm2 − ϕm1 = I , (13.76)

a result we will need in Section 24.1.5. The magnetic scalar potential on the upper and lower surface
of the layer is constant and features a jump discontinuity across the surface which is equivalent to the
current in the surrounding current loop.

An arbitrary current loop can be regarded as a composite of magnetic dipoles in such a way that
all the currents on the inner surfaces cancel and only the loop currentI remains on the outer boundary.
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∫ 2
1 H · ds = I = ϕm2 − ϕm1

ϕm2
ϕm1

da

n1

n2

I

Fig. 13.6: Magnetic double layer

This current loop is then equivalent to a magnetic double layer with a constant surface density of the
magnetic moment of

dm
da

=
d(Ia)
da

= I . (13.77)

Outside the separating surface the magnetic fieldH can indeed be represented by a single-valued scalar
magnetic potentialϕm and we can equate

B(r) =
µ0I

4π

∫
∂a

ds ′ × (r− r ′)
|r− r ′|3

= −µ0 gradϕm. (13.78)

This result is closely related to the solid angle under which the current loop is seen from the field point.

13.6.1 The solid angle

While a plane angle is defined as the quotient of the lengthl of an arc segment and its radiusr

α =
l

r
(13.79)

the solid angle, denotedΘ, is defined as the quotient of the surfaceas of the sphere segment and the
square of the radius

Θ =
as

R2
=
∫

sinϑ dϑ dϕ . (13.80)

It is the angle at the field pointP under which a surfacea is seen, and is equal to the surfaceas (the
portion of the surface of a sphere of unit radius with center atP ) which is cut by a conical surface with
vertex atP and the perimeter∂a of a as a generatrix. This is

Θ =
∫

cos γ
R2

da =
∫
a

(r− r ′) · n
|r− r ′|3

da . (13.81)

Following Henke [96] we calculatedΘ when the field point is displaced bydl which is equivalent to
consider the current loop shown in Fig. 13.7, displaced by some−dl. ThendΘ is the sum of all
changes of the surfaces of the parallelepipeds−dl × ds ′ projected onto the directionR = r − r ′ and
divided by the square of the distanceR = |r− r ′|, i.e.,

dΘ = −
∫
∂a

1
|r− r ′|2

(dl× ds ′) · eR

= −
∫
∂a

(r− r ′)
|r− r ′|3

· (dl× ds ′)

= −dl
∫
∂a

ds ′ × (r− r ′)
|r− r ′|3

. (13.82)
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Fig. 13.7: Geometrical relations to calculate the change of solid angle under which a current loop is seen from the field point

displaced bydl.

ExpressingdΘ by means of the gradient

dΘ = gradΘ · dl (13.83)

yields

gradΘ = −
∫
∂a

ds ′ × (r− r ′)
|r− r ′|3

. (13.84)

Comparing with Biot-Savart’s law we notice that

B =
µ0I

4π

∫
∂a

ds ′ × (r− r ′)
|r− r ′|3

= −µ0I

4π
gradΘ = −µ0 gradϕm (13.85)

or

ϕm(r) =
I

4π
Θ . (13.86)

The magnetic scalar potential at some point P with spatial vectorr due to a current loop (a magnetic
double layer) is proportional to the solid angle under which the current loop is seen from the pointP .

13.7 Imaging of line currents at permeable media

Consider a loop current at positionz0 above a permeable domainz < 0 as shown in Fig. 13.8. InΩ1,
z > 0, we assume a scalar potential as a weighted sum of a primary potential and a secondary potential
from the imaging current inΩ2 such that

ϕm1 = ϕm(z ′ = z0) + αϕm(z ′ = −z0) ∈ Ω1. (13.87)

In Ω2, z < 0, one assumes a potential

ϕm2 = βϕm(z ′ = z0) ∈ Ω2. (13.88)
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Fig. 13.8: Imaging of a current loop at a permeable half space.

At the boundaryΓ12 with z = 0, the continuity conditions

Bn1 = Bn2, Ht1 = Ht2, (13.89)

have to be fulfilled. Consequently,

∂ϕm(z ′ = z0)
∂x

+ α
∂ϕm(z ′ = −z0)

∂x
= β

∂ϕm(z ′ = z0)
∂x

, onΓ12, (13.90)

∂ϕm(z ′ = z0)
∂y

+ α
∂ϕm(z ′ = −z0)

∂y
= β

∂ϕm(z ′ = z0)
∂y

, onΓ12, (13.91)

µ1

(
∂ϕm(z ′ = z0)

∂z
+ α

∂ϕm(z ′ = −z0)
∂z

)
= µ2β

∂ϕm(z ′ = z0)
∂z

, onΓ12. (13.92)

As ϕm(r) = I
4πΘ and the changes of the solid angles are identical when the field point is displaced on

the boundary, we have

∂ϕm(z ′ = z0)
∂x

=
∂ϕm(z ′ = −z0)

∂x
, (13.93)

∂ϕm(z ′ = z0)
∂y

=
∂ϕm(z ′ = −z0)

∂y
, (13.94)

∂ϕm(z ′ = z0)
∂z

= −∂ϕm(z ′ = −z0)
∂z

, (13.95)

from which follows

1 + α = β, µ1(1− α) = µ2β, (13.96)

or

α =
µ1 − µ2

µ1 + µ2
. (13.97)

If the domainΩ1 is free space andµ2 = µrµ0, thenα is negative and thus the imaging current has the
same direction. Its strength is scaled with

f =
µr − 1
µr + 1

. (13.98)
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13.8 Questions

1. Why is it appropriate to calculate the field in superconducting magnets by means of line currents
at the position of the superconducting strands in the cable.

2. Which kind of functions appear in the calculation of the off-axis field in solenoids with a current
density approximated with filamentary ring currents.



Chapter 14

Coil Fields of SC Accelerator Magnets

In superconducting (SC) accelerator magnets with fields well above one tesla the current distribution in
the coils dominate the field quality. It is reasonable to focus on the fields generated by line-currents, since
any current distribution over an arbitrary cross-section can be approximated by a number of line-currents
distributed within the cross-section in particular as the conductors in superconducting magnets are made
of a large number of strands with a size of about 1 mm, see Fig. 14.1.

Harmonic fields (11.105) cannot account for line currents, see Chapter 8. We will now use the
results from the previous chapter to calculate the coil field in superconducting accelerator magnets and
to derive ideal current distributions as starting points for coil field optimization.

Let us consider a single coil centered in an iron yoke with circular inner aperture of radiusRyoke

and a uniform, high relative permeabilityµr. As superconducting cables are composed of single strands
with a diameter of about 1 mm, a good computational accuracy can be obtained by representing each
cable by two layers of equally spaced line-currents at the strand position, see Fig. 14.1. Thus the grading
of the current density in the cable due to the different compaction on its narrow and wide side is automat-
ically considered. It will be shown in detail that forK of these line-currents at positions(ri,Θi) carrying
currentsIi, the multipole coefficients are given by

Bn(r0) = −
K∑
i=1

µ0Ii
2π

rn−1
0

rni

(
1 +

µr − 1
µr + 1

(
ri

Ryoke
)2n
)

cosnΘi, (14.1)

Fig. 14.1: Cut through a block of conductors in the inner layer of a dipole model magnet showing the cables composed of

superconducting strands. Note the increasing size of gaps between the strands towards the outer diameter of the coil (left hand

side of the picture).

167
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An(r0) =
K∑
i=1

µ0Ii
2π

rn−1
0

rni

(
1 +

µr − 1
µr + 1

(
ri

Ryoke
)2n
)

sinnΘi . (14.2)

With equations (14.1) and (14.2) a semi-analytical method for calculating the fields in superconducting
magnets is given. The iron yoke is represented by image currents (the second term in the parenthesis).
At low field level, when the saturation of the iron yoke is low, this is sufficient for optimizing the coil
cross-section. Under this assumption some important conclusions can be drawn:

• For a coil without iron yoke the field errors scale with1/rn wheren is the order of the multipole
andr is the mid radius of the coil. It is clear, however, that an increase of coil aperture causes
a linear drop in dipole field. Other limitations of the coil size are the beam distance, the elec-
tromagnetic forces, yoke size, and the stored energy which results in an increase of the hot-spot
temperature during a quench.

• For certain symmetry conditions in the magnet, some of the multipole components vanish, i.e. for
an up-down symmetry in a dipole magnet noAn terms occur. If there is an additional left-right
symmetry, only the oddB1, B3, B5, B7, .. components remain.

• The relative contribution of the iron yoke to the total field (coil field plus iron magnetization) is for
a non-saturated yoke (µr � 1) approximately(1+(Ryoke

r )2n)−1. For the main dipoles with a mean
coil radius ofr = 43.5 mm and a yoke radius ofRyoke = 89 mm we get for theB1 component a
19% contribution from the yoke, whereas for theB5 component the influence of the yoke is only
0.07%.

14.1 The field inside the aperture of accelerator magnets

With the source pointr ′ = (ri,Θ), the field pointr = (r0, ϕ) as shown in Fig. 14.2, an arbitrary
reference radiusRref , and the abbreviationR = |r− r ′|, the cosine law

R2 = r2i + r20 − 2rir0 cos(ϕ−Θ) (14.3)

can be rewritten as [139]

R2 = r2i (1− r0
ri
ej(ϕ−Θ)) (1− r0

ri
e−j(ϕ−Θ)). (14.4)

R = |r− r ′|

r ′ = (ri,Θ)

r = (r0, ϕ)

ϕ

Θ

Iz

Az

y

z x

Fig. 14.2: Coordinate system for the calculation of the potential of a line current.
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Therefore

ln (
R

Rref
) = ln (

ri
Rref

) +
1
2

ln (1− r0
ri
ej(ϕ−Θ)) +

1
2

ln (1− r0
ri
e−j(ϕ−Θ)). (14.5)

With the Taylor1 series expansion ofln(1 − x) which gives for|x| < 1, i.e.,r0 < ri inside the aperture
of the magnet,

ln(1− x) = −
∞∑
n=1

1
n
xn, |x| < 1, (14.6)

Eq. (13.32) can be rewritten as

Az = −µ0I

2π
ln (

ri
Rref

) +
µ0I

2π

∞∑
n=1

1
n

(
r0
ri

)n cos (n(ϕ−Θ)) , r0 < ri. (14.7)

The radial component of the magnetic field in the point(r0, ϕ) is then

Br =
1
r0

∂Az
∂ϕ

= −µ0I

2π

∞∑
n=1

(
rn−1
0

rni
) sin (n(ϕ−Θ))

= −µ0I

2π

∞∑
n=1

(
rn−1
0

rni
)(sinnϕ cosnΘ− cosnϕ sinnΘ), r0 < ri. (14.8)

Comparison of the coefficients with Eq. (11.105) yields

Bn(r0) = −µ0I

2π
rn−1
0

rni
cosnΘ, An(r0) =

µ0I

2π
rn−1
0

rni
sinnΘ, r0 < ri. (14.9)

This is an important result as it allows to calculate the harmonic content of a field generated by a number
of arbitrarily placed current carrying conductors by adding the terms in Eq. (14.9). Fig. 14.3 shows the
contribution of the strand currents in a superconducting dipole coil to theB3 and theB5 field component
as a visualization of Eq. (14.9). The field errors scale with1/rn wheren is the order of the multipole
andr is the mid radius of the coil. In Section 14.4.1 we will show that also for distributed currents the
above equations can be integrated in order to calculate the field harmonics.

14.2 The field outside the coil

For the field outside the coil we rewrite the cosine law (14.3) as:

R2 = r20 (1− ri
r0
ej(ϕ−Θ)) (1− ri

r0
e−j(ϕ−Θ)). (14.10)

Therefore

ln (
R

Rref
) = ln (

r0
Rref

) +
1
2

ln (1− ri
r0
ej(ϕ−Θ)) +

1
2

ln (1− ri
r0
e−j(ϕ−Θ)). (14.11)

Taylor series expansion ofln(1− x) for |x| < 1 (i.e.,ri < r0, outside the coil) yields

Az = −µ0I

2π
ln (

r0
Rref

) +
µ0I

2π

∞∑
n=1

1
n

(
ri
r0

)n cos(n(ϕ−Θ)), ri < r0. (14.12)

1Brook Taylor (1685-1731).
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Fig. 14.3: Contribution of the strand current to theB3 (top, left),B5 (top,right)B7 (bottom, left) andB9 (bottom,right) field

component (Visualization of Eq. (14.9)) atr0 = 17 mm.

The radial component of the magnetic field in the point(r0, ϕ) is then

Br = −µ0I

2π

∞∑
n=1

(
rni
rn+1
0

) sin(n(ϕ−Θ))

= −µ0I

2π

∞∑
n=1

(
rni
rn+1
0

)(sinnϕ cosnΘ− cosnϕ sinnΘ), ri < r0. (14.13)

Comparison of the coefficients with Eq. (11.105) yields

Bn(r0) = −µ0I

2π
rni
rn+1
0

cosnΘ, An(r0) =
µ0I

2π
rni
rn+1
0

sinnΘ, ri < r0. (14.14)

Comparing Eq. (14.14) with Eq. (14.9) results in the interesting relation for the main field component
in a dipole

Bout
1 =

r2i
r20
Bin

1 , (14.15)

i.e., the dipole field decreases with1/r2 outside the coil.

Remark: Formally we can perform the Fourier series expansion of the radial component of the
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magnetic flux density with Eq. (11.105) also outside the coil. But wereas in the aperture we get

Br(r0, ϕ) =
∞∑
n=1

(Bin
n sinnϕ+Ain

n cosnϕ), r0 < ri, (14.16)

Bϕ(r0, ϕ) =
∞∑
n=1

(Bin
n cosnϕ−Ain

n sinnϕ), r0 < ri, (14.17)

this is not the case for the domain outside the coil where

Br(r0, ϕ) =
∞∑
n=1

(Bout
n sinnϕ+Aout

n cosnϕ), ri < r0, (14.18)

Bϕ(r0, ϕ) =
∞∑
n=1

(−Bout
n cosnϕ+Aout

n sinnϕ), ri < r0, (14.19)

which can be verified by repeating the steps in Section 11.4, but withEn = 0. Consequently, for an ideal
dipole(n = 1), instead of the easy relation inside the aperture of the magnet

Bx = 0 , (14.20)

By = Bin
1 , (14.21)

we get using the transformations (11.100) and (11.101) in the domain outside the coil

Bx = 2Bout
1 sinϕ cosϕ , (14.22)

By = Bout
1 (sin2 ϕ− cos2 ϕ). (14.23)

�

14.3 The imaging method

The effect of an iron yoke with constant permeability and perfect circular inner shape with radiusRyoke

can be taken into account by means of the imaging method: The image current of the strength

I ′ =
µr − 1
µr + 1

I (14.24)

is located at the same angular position. The radius of the imaging current is given by

ri
′ =

R2
yoke

ri
. (14.25)

We shall prove the above for an infinitely permeable cylinder by considering positive line currentsI at
x = ri andR2

yoke/ri and negative currents−I atx = 0 by showing that the tangentialϕ-component of
the magnetic flux density on the inner surface of the cylinder equals zero, see Appendix C.

Fig. 14.4 shows the field distribution for a superconducting coil when the iron yoke is represented
by the imaging currents. Notice that only the field in the aperture of the magnet can be calculated with
the imaging method.

Including the effect of the imaging currents, the normal and skew multipole coefficients inside the
aperture of the magnet are given for a set ofK line-currents at the position(ri,Θi) carrying currentIi
by

Bn(r0) = −
K∑
i=1

µ0Ii
2π

rn−1
0

rni

(
1 +

µr − 1
µr + 1

(
ri

Ryoke
)2n
)

cosnΘi, (14.26)
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Fig. 14.4: Field distribution for a superconducting dipole coil in a iron yoke of cylindrical inner shape with constant perme-

ability (µr=2000) calculated by means of the imaging current method.

An(r0) =
K∑
i=1

µ0Ii
2π

rn−1
0

rni

(
1 +

µr − 1
µr + 1

(
ri

Ryoke
)2n
)

sinnΘi, (14.27)

The relative contribution of the iron yoke (BN ′) to the main field component (coil field plus iron magne-
tization,BN +BN ′) is for a non-saturated yoke (µr � 1) approximately

B′
N

BN +BN ′
≈
(

1 + (
Ryoke

r
)2N
)−1

. (14.28)

For the main dipoles with a mean coil radius ofr = 43.5 mm and a yoke radius ofRyoke = 89 mm we get
for theB1 component a 19% contribution from the yoke, whereas for theB5 component the influence of
the yoke is only 0.07%. It is therefore appropriate to optimize for higher harmonics first using analytical
field calculation, and include the effect of iron saturation on the lower-order multipoles only at a later
stage.

14.4 The generation of pure multipole fields

14.4.1 Shell with cosmΘ current density

Consider a current shellri < r < re with a current density varying with the azimuthal angleΘ, J(Θ) =
J0 cosmΘ, then we get for theBn components

Bn(r0) =
∫ re

ri

∫ 2π

0
−µ0J0r

n−1
0

2πrn

(
1 +

µr − 1
µr + 1

(
r

Ryoke
)2n
)

cosmΘcosnΘ rdΘdr . (14.29)

With
∫ 2π
0 cosmΘcosnΘdΘ = πδm,n(m,n 6= 0) it follows that the current shell produces a pure

2m-polar field and in the case of the dipole (m = n = 1) one gets

B1(r0) = −µ0J0

2

(
(re − ri) +

µr − 1
µr + 1

1
R2

yoke

1
3
(r3e − r3i )

)
. (14.30)
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Obviously, since ∫ 2π

0
cosmΘsinnΘdΘ = 0, ∀m 6= n, (14.31)

all An components vanish. A shell withcos Θ andcos 2Θ dependent current density is displayed in
Figure 14.5. The modulus of the field inside the aperture of the shell dipole without iron yoke is given as

|B| = µ0J0

2
(re − ri) (14.32)

and outside the coil

|B| = µ0J0

6r20
(r3e − r3i ). (14.33)

The field outside an ideal dipole coil decreases with inverse-square dependence on the radius.

14.4.2 Cylindrical current shell with constant current density

Shells withcos mΘ dependence of the current density are technically impossible to realize with super-
conducting cable. However, a number of concentric shells with constant current density can approximate
the ideal current distribution. A shell geometry containing three nested sectors is shown in Figure 14.6.

Consider an arc-segment withri < r < re and−Θ0 < Θ < Θ0 with a constant current densityJ0

and another with a current density−J0 at the intervalπ−Θ0 < Θ < π+Θ0. SincecosnΘ = cos(−nΘ)
andsinnΘ = − sin(−nΘ), and

cosnΘ− cosn(π + Θ) =

{
2 cosnΘ (n = 1, 3, 5, ..)
0 (n = 2, 4, 6, ..)

(14.34)

it follows that only odd-numbered normal multipoles are present with

Bn(r0) =
∫ re

ri

2
∫ Θ0

−Θ0

−µ0J0r
n−1
0

2πrn

(
1 +

µr − 1
µr + 1

(
r

Ryoke
)2n
)

cosnΘ rdΘdr

=
−2µ0J0r

n−1
0

πn

(
r−n+2
e − r−n+2

i

−n+ 2
+
µr − 1
µr + 1

1
R2n

yoke

rn+2
e − rn+2

i

n+ 2

)
sinnΘ0 (14.35)

with n = 1,3,5,... Therefore, for a sector withΘ0 = 60o, the first higher order multipole isn = 5. Withn
layers the field quality up to the order of2n+ 1 can be optimized, see Exercise 14.6.0.1.

        

                                                    

        

                                                    

Fig. 14.5: Shells withcos Θ (left) andcos 2Θ (right) dependent current density.
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Fig. 14.6: Three nested cylindrical current shells with constant current density which allow the minimization of 3 higher-order

multipole components, hereb3 = b5 = b7 = 0.

14.4.3 Intersecting ellipses or circles

The components of the magnetic field within an elliptic conductor with constant current density is given
by:

Hx(x0, y0) = −J a

a+ b
y0 , Hy(x0, y0) = J

b

a+ b
x0 . (14.36)

For the round conductora = b we get the well known relations

Hx(x0, y0) = −1
2
Jy0 , Hy(x0, y0) =

1
2
Jx0 . (14.37)

The proof of these results is best done using complex potentials. It can be found in Section 16.13.2. In
the center of two intersecting ellipses or circles with opposite current density a homogeneous field is thus
generated. With the two intersecting circles shifted by some distancec and with the two local coordinate
systems(x1 = x+ c/2, y1 = y), (x2 = x− c/2, y2 = y) and positive current in ellipse 1 it follows:

Bx = B(1)
x +B(2)

x = −µ0
1
2
J(y1 − y2) = 0, (14.38)

x

y

c

xa

yy 1 2 y yy 1 2

a

b

c

c c x

y

a

b

Fig. 14.7: Intersecting circles and ellipses with opposite current density that create an ideal dipole field inside the aperture (left

and middle). Intersecting ellipses can also create an ideal quadrupole field (right).
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By = B(1)
y +B(2)

y = µ0
1
2
J
(
(x+

c

2
)− (x− c

2
)
)

= µ0
1
2
Jc . (14.39)

The dipole field only depends on the thickness of the coil and the critical current density in the supercon-
ductor but not on the size of the aperture.

For the intersecting ellipses theBx component is zero due to the same reasoning, and they-
component of the magnetic field gives:

By = µ0Jc
b

a+ b
, (14.40)

i.e, the perfect dipole field in the aperture scales linearly with the mid thickness of the coil.

By the same means of superposition, a pure quadrupole field can be generated from intersecting
ellipses, rotated by an angle ofπ/2, see Fig. 14.4.3 (right). The field components can then be calculated
from Eq. (16.110):

Bx = µ0J
a− b

a+ b
y, By = µ0J

a− b

a+ b
x. (14.41)

14.4.4 Dipole magnets made from nested helices

Goodzeit et. al. [79] propose a dipole magnet configurations made from nested helices. Based on the
winding technology of solenoids, the devices may pave the road to high field magnets using briddle
Nb3Sn conductors. The turns of the helices are tilted at an angleα, see Fig. 14.8, with respect to the coil
axis.

Each of the coils has a solenoidal field component with a superimposed dipole field. With two coils
of opposite tilt angle and polarity, the solenoidal fields cancel out, while the dipole field components are
superimposed, see Fig. 14.8.

The (tilted, elliptical) helix can be described by a space-curver : I → R3 : Θ 7→ r(Θ):

r = R1 cos Θex +R2 sinΘey + (R2 sinΘ tanα+ p
Θ
2π

)ez, (14.42)

with I = (0, 2Nπ), the pitch lengthp, the tilt angleα and the two ellipse half-axesR1, R2.

The velocity vector to this space curve is then (see Section 30.1 and Fig. 30.4)

v = −R1 sinΘex +R2 cos Θey + (R2 tanα cos Θ +
p

2π
)ez (14.43)

so that the current density inz-direction is proportional tocos Θ, as desired.

The performance of a superconducting magnet is limited by the field enhancement, defined as the
ratio between the peak field (to which the conductor is exposed) and the main field in the aperture of
the magnet. The disadvantage of the nested helices is, that the inner coil is exposed to a peak field that
is the superposition of the dipole field component and the solenoidal field component of the outer coil.
The field enhancement for the short magnet displayed in Fig. 14.8 (bottom) is about 24%. The field
enhancement can be reduced, however, by nesting 2 or more double-helices [79].

14.5 Coil-block geometries forcos Θ dipoles and quadrupoles

Usually the coils do not consist of perfect cylindrical shells because the conductors themselves are either
rectangular or keystoned with an insufficient angle to allow for perfect sector geometries. Due to the use
of cables, series connected and with constant current density, the shells are subdivided into coil-blocks,
separated by copper wedges in order to approximate the ideal current distribution. The field generated
by this coil layout can be calculated with the line-current approximation of the superconducting cable.
Coil-block geometries for dipoles and quadrupoles with two layers of coil-blocks are shown in Fig. 14.9.
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q a
z x

y

I 2

I 1

Fig. 14.8: Top: Two helices with opposite tilt angle and different polarity resulting in opposite solenoidal fields and the

sameBy field components. The z-component of current density is represented by the color scheme on the conductor surfaces.

Bottom: Nested helices creating a pure dipole field due to thecosΘ dependence of the current densityJz. The peak field in the

coil (represented by the color scheme) is relatively high, as the outer layer coil is exposed to the solenoidal field of the outer

layer coil plus the dipole field. The field enhancement can be reduced, however, by nesting 2 or more double-helices [79].

14.5.1 Allowed multipole components

For certain symmetry conditions in the magnet, some of the multipole components vanish, i.e. for an up-
down symmetry in a dipole magnet noAn terms occur. If there is an additional left-right symmetry, only
the oddB1, B3, B5, B7, .. components remain. Theseallowedmultipoles are minimized in the design
process. Other multipoles are avoided by designing appropriate tooling for coil winding and curring so
that symmetries in the assembled magnet are respected.

14.5.2 Sensitivity to coil block positioning errors

By differentiating Eq. (14.26) with respect tor andΘ the sensitivity of the multipoles to coil block
displacements (manufacturing tolerances) can be calculated. Forone line current andµr � 1 we get:

∂Bn(r0)
∂Θi

= −µ0Ii
2π

nrn−1
0

rni

(
1 + (

ri
Ryoke

)2n
)

sinnΘi, (14.44)

∂Bn(r0)
∂ri

=
µ0Ii
2π

nrn−1
0

rn+1
i

(
1− (

ri
Ryoke

)2n
)

cosnΘi. (14.45)

For radial displacements the contribution of the iron yoke has the opposite sign and diminishes the effect.
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Fig. 14.9: Coil-block arrangements made of Rutherford type cable with grading of current density due to the keystoning of the

cable. LHC dipole model coil (left) and main quadrupole coil (right).

14.5.3 Field enhancement in the coil ends

As already mentioned in Section 14.4.4, the performance of a superconducting magnet is limited by the
field enhancement and the main field in the aperture of the magnet. The field enhancement defined as the
ration between the peak field to which the conductors are exposed and the main field in the aperture has
to be kept as low as possible to optimize the operational margin to quench, see also Section 2.4 and Figs.
2.5 - 2.6 for the LHC main dipole cross-section.

In the LHC dipole magnets the field enhancementB2−D
peak/B1 is 3.7% andB3−D

peak/B1 = 7.7%.

Fig. 14.10 (top) shows a standard coil configuration for a decapole corrector magnet wound from
20 coils in two layers. The additional field enhancement in the coil end, i.e.,E = B3−D

peak/B
2−D
peak , is 1.3%.

A more ecomomical solution for the construction of multipole corrector magnets is the winding of an
N -pole from onlyN/2 coils. The example of the decapole built from only 5 coils per layer is shown
in Fig. 14.10 (middle). However, the field enhancementE is then in the order of 50%. Fig. 14.10
(bottom) shows a configuration where the second coil layer is rotated by one pole pitch while its polarity
is inverted. In this case the field enhancementE can be reduced to 23%.
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Fig. 14.10: Top: Standard coil configuration for a decapole corrector magnet wound from 20 coils in two layers. Middle:

Winding scheme with 5 coils per layer. Notice the enhancement of the peak field in the coil end. Bottom: For two layer coils

with the reduced number of coils, the peak field in the coil end can be reduced by a rotation of the second layer by one pole

pitch while inversing the current direction in the coils.
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14.6 Exercises

14.6.0.1 Superconducting dipole magnet with one-layer coil

For a single layer dipole coil with a mid-radius of 51.7 mm placed in an iron yoke of inner radius 100
mm, calculate (by means of the imaging method) the quotient of the excitationalBbare

1 and the total
Btotal

1 dipole field component.
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Fig. 14.11: Single layer dipole coil in an iron yoke of inner radius 100 mm

14.6.0.2 Symmetry conditions in dipoles

Consider the one-layer dipole with 3 blocks of 11,11, and 6 turns and inner radius of 43.9 mm warm.
Contraction factor 0.003. Cable name = SEPARATI, 10000 A, 36 strands (discretization 2x18). Inner
radius of the iron yoke 90 mm,µr = 2000. ϕ1 = 0.13,α1 = 0., ϕ2 = 24.25,α2 = 28.39,ϕ3 = 56.22,
α3 = 61.48. Create the asymmetric ROXIE model using the LAYER option (grouping together blocks
1-3 into a dipole layer) and calculate the multipole content (relative errors at reference radius 17 mm) for
the deformation patterns as shown below. Azimuthal shift 1 deg, radial shift 0.77 mm.

        

                

        

                

        

                

        

                

        

                

        

                

        

                

        

                

Fig. 14.12: Multipoles and symmetry conditions in a dipole coil

14.6.0.3 Optimization of a shell dipole structure

For the dipole structure with the three shells of constant current density (no iron yoke) as described in
Section 14.4.2 and shown in Figure 14.6 derive the equation system for the optimization of the three
lower order field harmonicsb3, b5, andb7.
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14.7 Questions

1. Why is it appropriate to calculate the field in superconducting magnets by means of line currents
at the position of the superconducting strands in the cable.

2. Why are the superconducting LHC magnets called “cos Θ” magnets?

3. Sketch a load-line for superconducting magnets. Why is important to keep the field enhancement
in the coils limited?

4. Explain the feed-down effect.



Chapter 15

Fields and Potentials of Localized Current
Distributions

In this chapter we will study fields and potentials of general current distributions localized in regions
small with respect to the distance of the observer point, i.e., magnetization currents in ferromagnetic
materials. After the treatment of forces on localized current distributions we will give an example of
magnetic levitation devices for slightly diamagnetic substances.

15.1 Scalar potential

Consider a magnetostatic problem with the magnetizationM given and withJ = 0.

div B = µ0 div (H + M) = 0 . (15.1)

With H = − gradϕm follows

div ( gradϕm) = ∇2ϕm = −ρmag

µ0
(15.2)

where

ρmag = −divµ0M . (15.3)

Formally the solution is known from electrostatics with

ϕm(r) =
1

4πµ0

∫
V

ρmag

|r− r ′|
dV ′ , (15.4)

if there are no boundary surfaces. UsuallyM is not explicitly given, but in hard ferromagnets we may
specify the magnetization inside a volume and assume that it jumps to zero at the volumes boundary. In
this case we have to consider an effective magnetic surface charge density

σmag = µ0 n ·M , (15.5)

see Section 10.10.6. The solution (15.4) has then to be augmented and reads

ϕm(r) =
1

4πµ0

∫
V

ρmag

|r− r ′|
dV ′ +

1
4πµ0

∫
∂V

σmag

|r− r ′|
da ′ . (15.6)

In the special case of uniform magnetization within the volume, the first term vanishes and only the sur-
face integral overσmag contributes. In the absence of boundary surfaces and thus for smooth distributions
of M the second term vanishes. Using the relation

div M
|r− r ′|

= div
(

M
|r− r ′|

)
−M · grad

(
1

|r− r ′|

)
, (15.7)
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which can be derived from Eq. (5.65), and substituting Eqns. (15.3) and (15.5) into the solution (15.6)
yields, applying Gauss’ theorem

ϕm(r) =
−1
4π

∫
V

M · grad r′

(
1

|r− r ′|

)
dV ′ (15.8)

=
1
4π

∫
V

M · grad r

(
1

|r− r ′|

)
dV ′ (15.9)

=
1
4π

∫
V

M · (r− r ′)
|r− r ′|

3

dV ′ . (15.10)

For an observation point that is far from the non-vanishing magnetization we get

ϕm(r) =
m
4π

· r− r ′

|r− r ′|3
=
m cos Θ
|r− r ′|2

. (15.11)

For arbitrary localized current distributions, Eq. (15.11) has only approximate validity, resulting from
the first term of a series expansion of the term1/|r− r ′| andm is the elementary magnetic moment (or
the magnetic dipole) as a point-like source of the potential in (15.11), [104].

15.2 Vector potential

Consider again a magnetostatic problem with a given magnetizationM andJ = 0.

curlH = curl
(

B
µ0
−M

)
= 0 . (15.12)

With B = curlA it follows

∇2A = −µ0 curlM = −µ0Jm . (15.13)

Formally the solution is known from Chapter 13, Eq. (13.10), i.e.,

A(r) =
µ0

4π

∫
V

Jm(r ′)
|r− r ′|

dV ′, (15.14)

if there are no boundary surfaces. Otherwise we have to consider additional surface current densities

α = M× n , (15.15)

see Section 10.10.6. In this case, the solution (15.14) has to be augmented and yields

A(r) =
µ0

4π

∫
V

Jm(r ′)
|r− r ′|

dV ′ +
µ0

4π

∫
∂V

α

|r− r ′|
da ′ . (15.16)

In the special case of uniform magnetization within the volume, the first term vanishes and only the sur-
face integral overα contributes. In the absence of boundary surfaces and for thus for smooth distributions
of M the second term vanishes. Using the relation

curlM
|r− r ′|

= curl
(

M
|r− r ′|

)
+ M× grad

(
1

|r− r ′|

)
, (15.17)

derived from Eq.(5.67), and expressing the solution (15.16) in terms ofM yields, applying the variant of
Gauss’ theorem, Eq. (5.93),

A(r) = −µ0

4π

∫
V

M× gradr

(
1

|r− r ′|

)
dV ′ (15.18)

=
µ0

4π

∫
V

M× (r− r ′)
|r− r ′|3

dV ′ . (15.19)
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For an observation point that is far from the non-vanishing magnetization we get approximately

A(r) =
µ0m× (r− r ′)

4π|r− r ′|3
(15.20)

or

A(r) = −µ0m
4π

× gradr

(
1

|r− r ′|

)
=
µ0

4π
curl r

(
m

|r− r ′|

)
. (15.21)

At any point that is far from the non-vanishing magnetization the magnetic induction can be calculated
as the curl of Eq. (15.20) which results in the dipolar field

B =
µ0

4π

(
3r(r ·m)
|r− r ′|5

− m
|r− r ′|3

)
. (15.22)

15.3 Forces on magnetized substances

We state without proof that an elementary magnetic dipole exposed to a homogeneous external field is
subject to a torque

T = m×B. (15.23)

In an inhomogeneous field there is a resulting net force in the direction of decreasing field ifm is anti-
parallel toB, i.e., diamagnetic objects are repelled by magnetic fields.

F = grad (m ·B) . (15.24)

15.4 Levitation

This is visualized in Fig. 15.1 (right) and gives rise to magnetic levitation of superconducting sam-
ples or even live frogs and grasshoppers [20], floating in a large (16T) end-field of a solenoid, see also
http://www.hfml.kun.nl/froglev.html. The Nijmegen group claims that these are the first images of dia-
magnetics levitated in a room-temperature environment.

To levitate an object, the gravitymg = ρV g (whereρ is the material density,V the volume andg
the earth gravitational constant) has to be balanced by the force

F = | grad (m ·B)| . (15.25)

With the induced magnetic moment

|m| = χ

µ0
V B, (15.26)

m

m

B BB

F
F

F
F

B

II

Fig. 15.1: Left: Torque on an elementary dipole in a homogeneous field. Right: Force on an elementary dipole in a gradient

field.
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Fig. 15.2: Left: Field distribution in a combined function magnet for micrographity experiments. Right: Domain in which 10

T2/m is achieved, [167].

in this equation the distortion of the ambient field by the object is neglected, the magnetic force results
in

F =
χ

µ0
V | grad (B2)| . (15.27)

Consequently the vertical field gradientgrad (B2) required for levitation has to be larger than2µ0ρg/χ.
In the case of water (and frog) the magnetic susceptibilityχ is−8.8·10−6 and therefore field gradients
of about 10T2/m are required. A combined function magnet based on accelerator magnet technology
which would create such field gradients is shown in Fig. 15.2.



Chapter 16

Complex Analysis Methods for Magnet
Design

The imaginary number is a fine and wonderful resource of the human spirit,
almost an amphibian between being and not being.

Gottfried Wilhelm Leibniz (1646-1716).

An elegant way to calculatetwo-dimensionalfields in the aperture of superconducting magnets is the use
of complex potentials. This was a standard method in the design process for the early superconducting
magnet projects. The papers by Beth [17],[18],[19] on the derivation of the current sheet theorem and the
calculation of flux densities and magnetic forces by intersecting ellipses with oppositely directed current
densities have been for a long time the main references for magnet designers.

Although numerical methods have replaced the complex analysis methods in magnet design, the
definition of field quality in accelerator magnets is often based on the complex field components. The
effect of feed down, which requires precise alignment of magnets in the accelerator tunnel, can much
easier be understood in the framework of complex analysis methods.

The field of intersection ellipses which can be calculated by means Cauchy’s1 integral formula
provides for another ideal current distribution of multipolar magnets and can serve as basis for a phe-
nomenological model of so-called persistent currents induced during the ramping of superconducting
magnets.

16.1 The field of complex numbers

The complex fieldC is the set of ordered pairs of real numbers(x, y) with addition and multiplication
defined by

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) , (16.1)

(x1, y1)(x2, y2) = (x1x2 − y1y2, x1y2 + y1x2) . (16.2)

The zero element is given by(0, 0) and hence the additive inverse of(x, y) is (−x,−y). The multi-
plicative identity is(1, 0). The multiplicative inverse is derived from(x1, y1)(x2, y2) = (1, 0) with the
solution

x2 =
x1

x2
1 + y2

1

, y2 =
−x2

x2
1 + y2

1

. (16.3)

Because of(x1, 0) + (x2, 0) = (x1 + x2, 0) and(x1, 0)(x2, 0) = (x1x2, 0) we can say that complex
numbers of the form(x, 0) are isomorphic with the set of real numbers. On the same footing(0, 1) is the
square root of−1 because

(0, 1)(0, 1) = (−1, 0) = −1 , (16.4)

1Augustin Cauchy (1789-1857).
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and(0, 1) is denotedi. Accordingly, any complex number can be written in the form

(x, y) = (x, 0) + (0, y) = x+ iy = z . (16.5)

It is easily proven that the set of complex numbersz = x + iy in C forms a vector-space with rules of
addition and scalar multiplication

z1 + z2 = x1 + x2 + i(y1 + y2), λz = λx+ iλy . (16.6)

The set of alln−tuples of complex numbers(z1, z2, ..., zn), is called the complexn−space, denotedCn.

16.2 Analytic functions and the Cauchy-Riemann equations

We can now study functionsf : U → C on a open subsetU ⊂ C

f(z) = f(x, y) = u(x, y) + iv(x, y) (16.7)

whereu andv are real-valued functions. A functionf of a complex variablez is called analytic atz0 if
f is differentiable in a neighborhood ofz0, i.e., a unique limiting value

f ′(z0) =
df
dz

= lim
∆z→0

f(z0 + ∆z)− f(z0)
∆z

(16.8)

exists which is independent of the direction of∆z. Therefore, for∆z → 0 along the real axis∆z = ∆x,
we get

f ′(z0) =
df
dz

= lim
∆z→0

f(z0 + ∆z)− f(z0)
∆z

= lim
∆x→0

f(x0 + ∆x, y0)− f(x0, y0)
∆x

=
∂f

∂x
(16.9)

and for∆z → 0 along the imaginary axis∆z = i∆y,

f ′(z0) =
df
dz

= lim
∆z→0

f(z0 + ∆z)− f(z0)
∆z

= lim
∆y→0

f(x0, y0 + ∆y)− f(x0, y0)
i∆y

=
∂f

∂y

1
i
. (16.10)

For the derivatives to be independent of the direction of∆z it is thus required that

i
∂f

∂x
=
∂f

∂y
, (16.11)

or settingf = u+ iv:

i f ′(z0) = i
∂u

∂x
− ∂v

∂x
=
∂u

∂y
+ i

∂v

∂y
(16.12)

and hence

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
(16.13)

which are the Cauchy-Riemann2 equations atz0.

Thus the function is analytic atz0 if the Cauchy-Riemann equations are satisfied. How can this be
illustrated? Let us identify the complex plane withR2 by means of

R2 ∼=−→ C, r = (x, y) 7→ x+ iy (16.14)

and consequently a complex functionf as a mappingf : U → R2 with U ⊂ R2. The functionf is
differentiable atr ∈ U when there exists one (and only one) linear mappingT : R2 → R2 with

f(r + v) = f(r) + T (v) + ϕ(v) (16.15)

2Georg Friedrich Riemann (1826-1866).
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andlimv→0
ϕ(v)
‖v‖ = 0 where the linear mappingT (v) is called the differential off at r, denoteddf |r.

The differential is represented by the Jacobi matrix as the best linear approximation off atr,

df = [J ] =

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
. (16.16)

The Cauchy-Riemann equations then state that the Jacobi matrix has the form(
a −b
b a

)
= r

(
a/r −b/r
b/r a/r

)
= r

(
cosϕ − sinϕ
sinϕ cosϕ

)
(16.17)

with r =
√
a2 + b2 which defines locally a stretch and rotation, and which corresponds to the multipli-

cationC → C with the complex numberf ′(z0) = a+ ib.

If a function is analytic everywhere inU , then it is called holomorphic. A holomorphic function
onU = {z| |z| < ρ} can be expanded into a power series

∞∑
n=0

cnz
n (16.18)

and the derivative can be given element wise

f ′(z) =
∞∑
n=1

ncnz
n−1 . (16.19)

16.3 Complex potentials

Real and imaginary part of a holomorphic function are harmonic functions because

∇2u =
∂

∂x

(
∂u

∂x

)
+

∂

∂y

(
∂u

∂y

)
=

∂

∂x

(
∂v

∂y

)
+

∂

∂y

(
−∂v
∂x

)
= 0, (16.20)

∇2v =
∂

∂x

(
∂v

∂x

)
+

∂

∂y

(
∂v

∂y

)
=

∂

∂x

(
−∂u
∂y

)
+

∂

∂y

(
∂u

∂x

)
= 0. (16.21)

Using the above result and considering that in current-free simply connected two-dimensional regions
both the harmonic magnetic scalar-potential as well as the harmonicz-component3 of the magnetic
vector-potential can be used to solve Maxwell’s equations:

H = − gradϕ = −∂ϕ
∂x

ex −
∂ϕ

∂y
ey, (16.22)

B = curl (ezAz) =
∂Az
∂y

ex −
∂Az
∂x

ey (16.23)

which implies

∂Az
∂y

= −µ0
∂ϕ

∂x
and

∂Az
∂x

= µ0
∂ϕ

∂y
, (16.24)

i.e., the Cauchy-Riemann differential equations of the holomorphic function

W (z) = u(x, y) + iv(x, y) = Az(x, y) + iµ0ϕ(x, y), (16.25)

which is called thecomplex potential. Derivatives ofW are also holomorphic functions ofz.

− dW
dz

= −∂Az
∂x

− iµ0
∂ϕ

∂x
= By(x, y) + iBx(x, y) = B̃. (16.26)

3This is the spatial z and has nothing to do with the complex number.
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From Eq. (16.24) follows directly that the Laplace equation holds for bothAz andϕ, i.e., the potentials
are harmonic functions. The complex potential at a pointz0 = r0e

iϕ due to a line current at the position
z = reiΘ yields

W (z0) = −µ0I

2π
ln
(
z0 − z

za

)
, (16.27)

whereza is an arbitrary complex reference point and therefore

− dW
dz

= B̃ = −µ0I

2π
1

z − z0
= −µ0I

2π
1

(x− x0) + i(y − y0)
(16.28)

which yields the well known equations for the magnetic field components

By = −µ0I

2π
x− x0

(x− x0)2 + (y − y0)2
, (16.29)

Bx =
µ0I

2π
y − y0

(x− x0)2 + (y − y0)2
. (16.30)

16.4 Complex representation of the field quality

With the power series expansion for|z0| < |z| , i.e., inside the circular aperture of the magnet,

1
z − z0

=
1

z(1− z0
z )

=
1
z

∞∑
n=1

(z0
z

)n−1
=

∞∑
n=1

zn−1
0

zn
(16.31)

we get

By + iBx = −µ0I

2π

∞∑
n=1

zn−1
0

zn
. (16.32)

Bringing together the multipole coefficients, Eqns. (11.105) and (11.106) yield
∞∑
n=1

(Bn + iAn)
zn0
rn0

= (Bϕ + iBr) = (By + iBx)
z0
r0

= −µ0I

2π

∞∑
n=1

zn−1
0

zn
z0
r0
, (16.33)

and consequently

Bn + iAn = −µ0I

2π
rn−1
0

zn
(16.34)

which is identical to Eq. (14.9). From Eq. (16.33) it follows:

By + iBx =
∞∑
n=1

(Bn + iAn)(
z0
r0

)n−1 = BN

∞∑
n=1

(bn + ian)(
z0
r0

)n−1 , (16.35)

which is sometimes given as a definition of the multipole coefficients and allows a re-constitution of the
Cartesian field components from the multipole coefficients. Eq. (16.35) can be rewritten as

By =
∞∑
n=1

BnRe
{

(
x0 + iy0

r0
)n−1

}
−

∞∑
n=1

AnIm
{

(
x0 + iy0

r0
)n−1

}
, (16.36)

Bx =
∞∑
n=1

BnIm
{

(
x0 + iy0

r0
)n−1

}
+

∞∑
n=1

AnRe
{

(
x0 + iy0

r0
)n−1

}
. (16.37)

For they-component of the field along thex−axis it follows:

By(x, y = 0) =
∞∑
n=1

Bn
r0n−1

xn−1 x < r0. (16.38)
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16.5 Taylor expansion of the field

As the transversal beam size is small compared to the radius of curvature of the beam orbit, the theory of
particle motion in a synchrotron makes use of a Taylor expansion of the field in the medium plane about
the central axis [43]

f(x) =
∞∑
n=0

1
n!

(x− x0)nf (n)(x0), (16.39)

wheref (n) is then-th derivative of the function at pointx0

f (n)(x0) =
dnf(x)

dxn

∣∣∣∣
x=x0

. (16.40)

For the special case ofx0 = 0, Eq. (16.40) is called a Maclaurin4 series. They component of the
magnetic flux density on the mid-plane can therefore be expanded about the axis with

By(x) = B0 +
dBy
dx

∣∣∣∣
x=y=0

x+ ...+
1
n!

dnBy
dxn

∣∣∣∣
x=y=0

xn + ... (16.41)

The relation between the multipole coefficients and those in the Maclaurin series reads

bn =
r0
n−1

BN

1
(n− 1)!

dn−1By
dxn−1

∣∣∣∣
x=y=0

. (16.42)

The expansion (16.41) can also be written in the form

By(x) = B0R

[
1
R

+
1

B0R

dBy
dx

∣∣∣∣
x=y=0

x+ ...+
1

B0R

1
n!

dnBy
dxn

∣∣∣∣
x=y=0

xn + ...

]
(16.43)

where it is customary to name the term

k = − 1
B0R

dBy
dx

∣∣∣∣
x=y=0

(16.44)

the gradient normalized to the magnetic rigidity, see Eq. (1.11). The minus sign stems from conven-
tions as used for the early particle accelerators with weak focusing by combined function (dipole and
quadrupole) magnets.

16.6 Orthogonal curves

AsBy(x, y)+ iBx(x, y) is proportional tozn−1 the complex potentialW (z) = Az(x, y)+ iµ0ϕ(x, y) is
proportional tozn. We shall therefore study curves of the holomorphic functionf(z) = z2, i.e., curves
of constantu(x, y) = x2 − y2 andv(x, y) = 2xy. We get the parabolasu(x, y) = α (describing the
possible pole shapes of an ideal quadrupole) and hyperbolasv(x, y) = β (describing the field lines in
the quadrupole) as shown in Fig. 16.1 (left). On the right hand side the field lines and equipotentials of
an ideal sextupole are given, i.e. the curves of constantu andv for the complex functionf(z) = z3.

16.7 Feed-down

An interesting example for the use of the complex field representation is the calculation of thefeed-down
effect due to an off-centering of the measurement coil with respect to the magnet axis (or a misalignment
of the magnet with respect to the beam axis).

4Colin Maclaurin (1698-1746).
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Fig. 16.1: Left: Curves of constantu andv for the functionf(z) = z2 (quadrupole field and potential). Right: Curves of

constantu andv for the functionf(z) = z3 (sextupole field and potential).

The transformation law for the field harmonicsCn → C ′n with Cn = Bn + i An can be derived
for a translation of the reference frame (center of the measurement coil)z → z′: z′ = z − zd with
z = x+ iy, zd = xd + iyd as follows, see Fig. 16.2 (left).

The field components in both coordinate systems have to be identical, and thus

By + iBx = By′ + iBx′ , (16.45)
∞∑
n=1

Cn

(
z

r0

)n−1

=
∞∑
n=1

C ′n

(
z′

r0

)n−1

. (16.46)

The transformation law for the field harmonics then reads:

C ′n =
∞∑
k=n

Ck
(k − 1)!

(k − n)! (n− 1)!
(
zd
r0

)
k−n

. (16.47)

Proof: Using the binomial series

(
zd + z′

)n−1 =
n∑
k=1

(n− 1)!
(n− k)! (k − 1)!

(z′)k−1
zd
n−k , (16.48)

the left hand side of Eq. (16.46) becomes

∞∑
n=1

Cn

(
z

r0

)n−1

=
∞∑
n=1

Cn
r0n−1

(
z′ + zd

)n−1

=
∞∑
n=1

Cn
r0n−1

n∑
k=1

(n− 1)!
(n− k)! (k − 1)!

(z′)k−1
zd
n−k . (16.49)

For the coefficientsCk0 of one particular power ofz′, e.g.,(z′)k0−1 we get

Ck0 =
∞∑

n=k0

Cn
r0n−1

(n− 1)!
(n− k0)! (k0 − 1)!

zd
n−k0

=
1

r0k0−1

∞∑
n=k0

Cn
(n− 1)!

(n− k0)! (k0 − 1)!

(
zd
r0

)n−k0
. (16.50)
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x

y

x '

y '

x d

y d

x + j y  =  ( x ' + x d ) + j ( y ' + y d )

x

y

x '

y '

jqq '

x ' + j y '  =  r  e j ( q - j )r

x

y

x '

y '

B x = B x '

B y = B y '

B x = - B x '

B y = B y '

- z ' = - x ' - i y '
       = x - i y = z *

B x
B x '

B y
B y '

Fig. 16.2: Left: Displacement of the reference frame. Middle: Rotation of the reference frame. Right: Reflection of thex-axis.

Merging Eqns. (16.50) and (16.49) yields, using an exchange of indicesn→ k andk0 → n:

∞∑
n=1

Cn

(
z

r0

)n−1

=
∞∑
n=1

(z′)n−1
Cn

=
∞∑
n=1

(z′)n−1 1
r0n−1

∞∑
k=n

Ck
(k − 1)!

(k − n)! (n− 1)!

(
zd
r0

)k−n

=
∞∑
n=1

C ′n

(
z′

r0

)n−1

. (16.51)

Comparing the coefficients of
(
z′

r0

)n−1
leads to the transformation law for the complex field harmonics,

Eq. (16.47). �

Eq. (16.52) shows the first coefficients for the lower order multipole coefficients. Off-centering of
the measurement coil creates a (measured) quadrupole field component which results from the natural
sextupole component and is thus called the feed-down effect. Notice that with increasing order of the
multipoles the series converges slower.

C ′1 = C1 + C2

(
zd
r0

)
+ C3

(
zd
r0

)2

+ . . .

C ′2 = C2 + 2C3

(
zd
r0

)
+ 3C4

(
zd
r0

)2

+ . . .

C ′3 = C3 + 3C4

(
zd
r0

)
+ 6C5

(
zd
r0

)2

+ . . .

...

C ′10 = C10 + 10C11

(
zd
r0

)
+ 55C12

(
zd
r0

)2

+ . . . (16.52)

Eq. (16.47) can also be used to determine the center of the measurement coil, e.g., through the elimination
of the measured dipole component in quadrupole magnets. In bending magnets theB11 component is
very insensitive to manufacturing errors whileB10 is near zero. IfC11,C12 andC13 at a reference radius
r0 are known with sufficient accuracy, the displacementzd can be calculated from the truncated series
(16.52). Take good note that this holds only for small displacementszd � r0. For example, in case of
zd
r0

= 0.1, the series converges only slowly and more than two higher order multipole components have
to be taken into account.

C ′10 = C10 + 1.0C11 + 0.55C12 + 0.220C13 + . . . (16.53)
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An easy relation is obtained if only the first order feed-down effect is considered:

B′
n ≈

n

r0
(Bn+1 xd −An+1 yd), (16.54)

A′n ≈
n

r0
(Bn+1 xd +An+1 yd), (16.55)

in particular, for a dipole with a sextupole component and displacement only in thex-axis, as shown in
Fig. 16.3 (left):

B′
2 ≈

2
r0
B3xd . (16.56)

Compare how the field in the displaced aperture in Fig. 16.3 resembles a negative quadrupole field with
theBy component on thex-axis increasing with the distance from the magnet center.

As a consequence of the feed-down effect the transverse displacement of the magnetic dipole axis
with respect to the actual closed orbit of the beam has to be limited to±0.1 mm for bothxd andyd

systematic, and0.5 mm for bothσx andσy random (r.m.s.). Fig. 16.3 (right) shows how the feed-down
effect can be used to determine the magnetic axis of the dipole by powering the coil in a quadrupole
configuration and by considering the feed-down of the quadrupole on measured dipole field component
which should be zero.

16.8 Reference frame rotation

Consider the reference frame rotated by the angleϕ as shown in Fig. 16.2 (middle), i.e.,

z′ = r eiΘ
′
= r ei(Θ−ϕ) = ze−iϕ . (16.57)

For the field componets we get

By′ + iBx′ = (By + iBx) eiϕ (16.58)

        

                     

Fig. 16.3: Left: Field of an ideal dipole and sextupole superimposed. Notice how the field in the displaced aperture resembles

a negative quadrupole field with theBy component on thex−axis increasing with the distance from the magnet center. Right:

LHC dipole coil powered as a quadrupole to measure the magnetic axis of the magnet by means of feed-down on the dipole

component.
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and thus
∞∑
n=1

C ′n

(
z′

r0

)n−1

=
∞∑
n=1

Cn

(
z

r0

)n−1

eiϕ

∞∑
n=1

C ′n

(
z e−iϕ

r0

)n−1

=
∞∑
n=1

Cn

(
z

r0

)n−1

eiϕ (16.59)

from which follows

C ′n = Cn e
inϕ . (16.60)

In particular for a magnet being turned “upside-down”, i.e., rotated byπ we obtain

C ′n = (−1)nCn (16.61)

giving

B′
n = (−1)nBn , A′n = (−1)nAn . (16.62)

WithBn = BNbn andAn = BNan, using the relations in Eq. (16.62) and the relationB′
N = (−1)NBN

we obtain for the relative multipole components:

b′n = (−1)n−Nbn , a′n = (−1)n−Nan . (16.63)

16.9 Reflection of the horizontal axis

Consider the reference frame imaged about they-axis as shown in Fig. 16.2 (right), i.e.,

z′ = x′ + iy′ = −(x− iy) = −z∗ . (16.64)

For the field componets we get

By′ + iBx′ = By − iBx = (By + iBx)∗ (16.65)

and thus
∞∑
n=1

C ′n

(
z′

r0

)n−1

=
∞∑
n=1

C∗n

(
z∗

r0

)n−1

(16.66)

∞∑
n=1

C ′n (−1)n−1

(
z∗

r0

)n−1

=
∞∑
n=1

C∗n

(
z∗

r0

)n−1

(16.67)

with C∗n = Bn − iAn From Eq. (16.67) it follows:

C ′n = (−1)n−1C∗n (16.68)

or

B′
n = (−1)n−1Bn , A′n = (−1)nAn . (16.69)

This is an important result for the scaling of multipole components when the position of the magnet in
the LHC tunnel is turned with respect to the “normal” installation direction. How do the relative normal
and skew multipole components transform? WithBn = BNbn andAn = BNan, using the relations in
Eq. (16.69), and the relationB′

N = (−1)N−1BN we obtain for the relative multipole components of a
normal magnet:

b′n = (−1)n−Nbn a′n = (−1)n−N+1an , (16.70)

and for a skew magnet (Bn = ANbn,An = ANan):

b′n = (−1)n−1−Nbn a′n = (−1)n−Nan . (16.71)

We will make extensive use of these formulae in the next chapter.
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16.10 Cauchy’s integral formula

We shall first study the integration of complex functions along a pathC given in parametric form:z(t) =
x(t) + iy(t), a ≤ t ≤ b. With f(z) = u(x, y) + iv(x, y) anddz = (dx

dt + idydt )dt we get:∫
C
f(z)dz =

∫ b

a
(u+ iv)

(
dx
dt

+ i
dy
dt

)
dt

=
∫ b

a

(
u

dx
dt
− v

dy
dt

)
dt+ i

∫ b

a

(
u

dy
dt

+ v
dx
dt

)
dt

=
∫
C
(udx− vdy) + i

∫
C
(udy + vdx). (16.72)

As an important example we shall calculate the integral∮
C

b

(z − a)n
dz (16.73)

along a circle of radiusr = 1 around the centerz = a, i.e.,

z(t) = a+ eit dz = ieitdt (z − a)n = eint , (16.74)

which results in ∮
C

b

(z − a)n
dz = ib

∫ 2π

0
e−i(n−1)tdt = 2bπiδn1 (16.75)

with δn1 = 1 for n = 1 andδn1 = 0 otherwise. The Cauchy integral theorem states that∮
C
f(z)dz = 0 (16.76)

for all closed loops in a simply connected domainΩ on whichf(z) is holomorphic and consequently
contains no poles. The proof involves Green’s theorem in the plane applied to the first integral of Eq.
(16.72) ∮

C=∂Ω
(udx− vdy) =

∫
Ω

(
−∂v
∂x

− ∂u

∂y

)
dxdy (16.77)

which is zero, as the Cauchy-Riemann equations hold in the domainΩ. In the same manner the second
integral of Eq. (16.72) can be shown to vanish in the domainΩ.

Any holomorphic function can be expressed in the neighbourhood pointz0 ∈ Ω through

f(z) = f(z0) + g(z)(z − z0) (16.78)

whereg(z) is again holomorphic. Therefore in the equation

f(z)
z − z0

=
f(z0)
z − z0

+ g(z) (16.79)

only the first term is singular with a pole atz = z0. The path integral on a circle aroundz0 has already
been calculated, Eq. (16.75). The contribution ofg(z) vanishes because it is holomorphic. Therefore we
get for any pointz0 inside the domainΩ the Cauchy integral formula

f(z0) =
1

2πi

∮
C

f(z)
z − z0

dz , (16.80)

which states that from the knowledge of the function values on the closed boundary of the domainΩ
in which the function is holomorphic, the function value at any pointz0 inside that domain can be
calculated.
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16.11 The ideal multipole field

For a functionf(z) being holomorphic in|z| < 1 (a circle around zero) and a given functionf(eiϕ) =
einϕ on the boundary of that circle, we shall calculatef(z0) inside:

f(z0) =
1

2πi

∮
f(z)
z − z0

dz =
1

2πi

∫ 2π

0

f(eiϕ)
eiϕ − z0

ieiϕdϕ =
1
2π

∫ 2π

0

einϕ

1− z0e−iϕ
dϕ . (16.81)

Inside the circle|z0e−iϕ| = |z0| < 1 and we get from a Taylor series expansion aroundz0.

f(z0) =
1
2π

∫ 2π

0
(1 + z0e

−iϕ + z2
0e
−2iϕ + z3

0e
−3iϕ + · · · )einϕdϕ = zn . (16.82)

This is an important result for magnet design which we know already: Acosnϕ current distribution
creates an idealn-polar field inside the aperture.

16.12 The Residual theorem

Theresidual theoremstates that if a complex function is meromorph inΩ (i.e., holomorphic inΩ except
at a finite number of isolated singularities) and holomorphic on the boundary∂Ω of Ω then it holds:∫

∂Ω
f(z)dz = 2πi

∑
n

R(zn) (16.83)

where theR(zn) are the residuals of the poles of the function at the pointszn, i.e., the constant in the
numerator of the single pole, if the complex function is given in the form

f(z) =
R(zn)
z − zn

+ g(zn) . (16.84)

The residuals can be calculated through

R(zn) = lim
z→zn

(z − zn)f(z) . (16.85)

16.13 Field of intersecting ellipses

16.13.1 Complex potential

For the calculation of the two-dimensional magnetic field generated by intersecting ellipses or circles,
Beth [17], uses the complex potential

F (z) = H̃ − 1
2
J(x, y)z∗ (16.86)

with H̃ = Hy + iHx which is a holomorphic function inC. Eq. (16.86) can be rewritten as

F (z) = H̃ − 1
2
Jz∗ = Hy + iHx −

1
2
J(x− iy) = Hy −

1
2
Jx︸ ︷︷ ︸

u(x,y)

+i(Hx +
1
2
Jy︸ ︷︷ ︸

v(x,y)

) . (16.87)

Calculating the partial derivatives of the real valued functionsu(x, v) andv(x, y) yields

∂u(x, y)
∂x

=
∂

∂x

(
Hy(x, y)−

1
2
J(x, y)x

)
=
∂Hy

∂x
− 1

2
J − 1

2
x
∂J

∂x
, (16.88)

∂v(x, y)
∂y

=
∂

∂y

(
Hx(x, y) +

1
2
J(x, y)y

)
=
∂Hx

∂y
+

1
2
J +

1
2
y
∂J

∂y
, (16.89)

∂u(x, y)
∂y

=
∂

∂y

(
Hy(x, y)−

1
2
J(x, y)x

)
=
∂Hy

∂y
− 1

2
x
∂J

∂y
, (16.90)

−∂v(x, y)
∂x

= − ∂

∂x

(
Hx(x, y) +

1
2
J(x, y)y

)
= −∂Hx

∂x
− 1

2
y
∂J

∂x
. (16.91)
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As the current densityJ is assumed to be constant, the derivatives∂J(x,y)
∂x and ∂J(x,y)

∂y are zero and we
get from the Cauchy Riemann equations the two relations

∂Hy

∂x
− ∂Hx

∂y
= J ,

∂Hy

∂y
+
∂Hx

∂x
= 0 . (16.92)

which are nothing but the Poisson and Laplace equations in two dimensions. It is thus shown that the
complex potentialF (z) = H̃ − 1

2J(x, y)z∗ is holomorphic inside the current carrying domain and that
it can be used to solve the field distribution inside current carrying conductors.

16.13.2 Magnetic field inside an elliptic conductor

Let a be the minor andb the major half-axis of an infinitely long, elliptic conductor carrying uniform
current densityJ . Let the points on the boundary∂Ω of the conductor be denoted by the smallz = x+iy
and the field point byz0. The domain inside∂Ω is denoted the by capitalZin and the domain outside the
ellipse byZout. According to Cauchy’s integral formula, the value of a holomorphic function within a
closed simply connected domain is determined by the values of the function on the boundary:

F (z0) =
1

2πi

∫
∂Ω

F (z)
z − z0

dz . (16.93)

Following Beth [17], the complex potentialF (z0) can be divided into two holomorphic parts,Fin(z0)
andFout(z0) with

Fin(z0) =

{
H̃in(z0)− 1

2Jz
∗
0 if z0 ∈ Zin

0 if z0 ∈ Zout

. (16.94)

Fout(z0) =

{
H̃out(z0) if z0 ∈ Zout

0 if z0 ∈ Zin

. (16.95)

BothFout(z0) andFin(z0) have to generate the same magnetic fieldH̃(z) on the boundary, i.e,Hin(z) =
Hout(z). It follows that

Fin(z)− Fout(z) = −1
2
Jz∗, on ∂Ω. (16.96)

For the sum of (16.94) and (16.95) we get:

F (z0) = Fin(z0) + Fout(z0) =
1

2πi

∫
∂Ω

Fin(z)
z − z0

dz − 1
2πi

∫
∂Ω

Fout(z)
z − z0

dz (16.97)

and it follows

F (z0) =
Ji

4π

∫
∂Ω

z∗

z − z0
dz =

{
H̃in(z0)− 1

2Jz
∗
0 if z0 ∈ Zin

H̃out(z0), if z0 ∈ Zout

. (16.98)

The parametric form of the elliptic boundary reads:z = x + iy = a cosϑ + ib sinϑ , for 0 ≤ ϑ < 2π.
With

cosϑ =
eiϑ + e−iϑ

2
, sinϑ =

eiϑ − e−iϑ

2i
, (16.99)

it can be rewritten as

z =
a+ b

2
eiϑ +

a− b

2
e−iϑ. (16.100)
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Substituting

t = eiϑ , r =
a+ b

2
, δ =

a− b

2
, (16.101)

yieldsz = rt+ δt−1, z∗ = rt−1 + δt anddz
dt = r− δt−2. The half axes of the ellipse are thena = r+ δ

andb = r − δ. The Cauchy integral, Eq. (16.98), can be expressed as

F (z0) =
Ji

4π

∫
∂Ω

z∗

z − z0
dz

=
Ji

4π

∮
C

(rt−1 + δt)(r − δt−2)
rt+ δt−1 − z0

dt

=
Ji

4π

∮
C

(r + δt2)(rt2 − δ)
t2(rt2 − z0t+ δ)︸ ︷︷ ︸

S(t)

dt (16.102)

where the pathC is the unit circlet = eiϑ, 0 ≤ ϑ < 2π. S(t) is meromorph inside that circle with poles

at t1 = 0 andt2,3 = 1
2r

(
z0 ±

√
z2
0 − 4rδ

)
. S(t) can be expanded into partial fractions, with

S(t) = D0 +
D1

t− t1
+

E1

(t− t1)2
+

D2

t− t2
+

D3

t− t3
, (16.103)

with the constants

D0 = δ ,

D1 = −rz0
δ

,

E1 = −r,

D2 =
1

2rδ

(
(r2 + δ2)z0 − (r2 − δ2)

√
z2
0 − 4rδ

)
,

D3 =
1

2rδ

(
(r2 + δ2)z0 + (r2 − δ2)

√
z2
0 − 4rδ

)
. (16.104)

According to the residual theorem, the Cauchy integral is equal to the sum of all enclosed residuals
according to ∫

C
S(t)dt = 2πi

∑
n

R(tn). (16.105)

The residualsR(tn) are the coefficients of each pole of first order enclosed by the line integral, i.e,
R(t1) = D1, R(t2) = D2, R(t3) = D3. The Cauchy integral can now be calculated forz0 ∈ Zin:

F (z0) = H̃in(z0)−
1
2
Jz∗0 =

Jj

4π

∮
C

(r + δt2)(rt2 − δ)
t2(rt2 − z0t+ δ)

dt

= −J
2

(D1 +D3 +D4)

=
J

2
(
rz0
δ
− r2 + δ2

2rδ
z0) (16.106)

Using the relations in (16.101) and

4rδ = a2 − b2,
r

δ
=
a+ b

a− b
, (16.107)
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r2 + δ2 =
1
2
(a2 + b2), r2 − δ2 = ab, (16.108)

gives the following expression for̃Hin(z0) for z0 = x0 + jy0 ∈ Zin:

H̃in(x0, y0) = J

(
1
2
a+ b

a− b
z0 −

a2 + b2

a2 − b2
z0 +

1
2
z∗0

)

= −J
2

(
a− b

2(a+ b)
z0 + z∗0

)

=
J

a+ b
(bx0 − jay0) . (16.109)

Thus the components of the magnetic field within an elliptic conductor with constant current density is
given by:

Hx(x0, y0) = −J a

a+ b
y0 , Hy(x0, y0) = J

b

a+ b
x0 . (16.110)

For the round conductora = b we get the well known relations

Hx(x0, y0) = −1
2
Jy0 , Hy(x0, y0) =

1
2
Jx0 . (16.111)

16.13.3 Two intersecting ellipses or circles

As an application of the above result we will now show that in the center of two intersecting ellipses
or circles with opposite current density a homogeneous field is generated, see Section 16.13.3 for the
geometry. This has been described already in 1934 [168]. With the two intersecting circles shifted byc
and with the two local coordinate systems(x1 = x+ c/2, y1 = y), (x2 = x− c/2, y2 = y) and positive
current in conductor 1 it follows:

Bx = B(1)
x +B(2)

x = −µ0
1
2
J(y1 − y2) = 0, (16.112)

By = B(1)
y +B(2)

y = µ0
1
2
J
(
(x+

c

2
)− (x− c

2
)
)

= µ0
1
2
Jc , (16.113)

an interesting result indeed: The dipole field only depends on the thickness of the coil and the critical
current density in the superconductor but not on the size of the aperture.

For the intersecting ellipses theBx component is zero due to the same reasoning, and they-
component of the magnetic field gives:

By = µ0Jc
b

a+ b
, (16.114)

i.e, the perfect dipole field in the aperture scales linearly with the mid thickness of the coil.

By the same means of superposition, a pure quadrupole field can be generated from intersecting
ellipses, rotated by an angle ofπ/2, see Fig. 16.13.3 (right). The field components can then be calculated
from Eq. (16.110):

Bx = µ0J
a− b

a+ b
y, By = µ0J

a− b

a+ b
x. (16.115)

Remark: These important results have two implications: First they pave the way for designing
block-coil magnets with constant current density, and secondly the intersection circles can reproduce
shielding current densities in hard superconductors subjected to changing excitation field. This provides
a macroscopic model for persistent currents . �



Chapter 17

LHC Magnet Polarities

09:00 or 15:00 ?

The magnet powering system for the LHC is complex. About 10000 magnets will be connected in 1612
electrical circuit. Several 10000 superconducting connections have to be produced during the installation
of the magnets in the LHC tunnel. The power converters have to be connected to the current leads in
the DFBs, the local current leads for orbit corrector magnets or directly to the magnet terminals of
the normal conducting magnets. Any wrong connection of a magnet can seriously compromise LHC
operation. Examples for wrong connections are the inversion of polarity, the connection of a magnet in
a wrong circuit, the inversion of the polarity at the level of the power converter or the current lead, etc.
Detecting a wrong connection will be very difficult, once the machine is in operation.

The coherence between magnet construction and measurement on one side, and the magnet inter-
connection according to the layout database and the hard and software for the electrical quality assurance
(ELQA) on the other side must be established. The same understanding and application of the engineer-
ing specification for LHC magnet polarities by all teams involved has to be ensured.

The same multipole field error definition in two different reference frames (magnet measurement
frame and moving frame of Beam 1 for beam physics calculations) may result in confusion about the
polarity of the vertical orbit correctors and the treatment of measured skew multipole errors in the beam
physics program MAD. This chapter aims at establishing the coherence between the field error definitions
in the different reference frames on one side and the LHC magnet polarity conventions on the other side.

17.1 Magnet polarity conventions

The rules which follow the conventions in the CERN-EDMS document 90042, [162], are conceived
to yield a simple identification of the polarities of the magnets installed in the LHC tunnel, without
reference to the different coordinate systems used for beam tracking and field measurements. The set of
rules allows magnets of a given type to be manufactured and assembled without prior knowledge of their
position or function in the accelerator.

The polarity of the excitation current, and thus the optical function of the magnet, will be deter-
mined by the connection of the magnet terminals.

Contrary to a statement in an older version of the EDMS document 90042, the set of rules does
not follow the conventions of the beam optics program MAD or the conventions for magnetic field
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computations and measurements. Appropriate transformations into the moving frame of the circulating
beam or the magnet reference frame have to be applied.

The conventions for the LHC arc magnets are summarized below.

• The reference beam is called Beam 1 rotating clockwise in the LHC main ring seen from above.
Beam 2 is rotating counter-clockwise seen from above.

• The observer is looking in direction of Beam 1 so that the center of the machine is to his right.
• In the two-in-one magnets (or magnet assemblies) the left aperture seen from the connection ter-

minals is called Aperture 1 the right aperture is named Aperture 2.
• The LHC main dipole and quadrupole magnets are installed in the LHC tunnel with their connec-

tion terminals upstream of Beam 1. Then Aperture 2 becomes the internal aperture and Aperture
1 the external aperture.

• The magnet connection terminals are marked withA andB (not+ and−).
• The fields and gradients are said to be positive if the current enters theA terminal. A positive field

is defined to point upwards (deflecting Beam 1 to the inside of the ring) while a positive gradient
is defined such that the vertical field increases along the outward pointing machine radius (thus it
is focusing Beam 1 in the horizontal plane), see Figs. 17.1, 17.2.

• The skew multipole magnets of orderN are tilted clockwise by an angle ofπ/2N degrees where
N=1 for the dipole,N=2 for the quadrupole etc. Thus a positive skew dipole is deflecting Beam 1
downwards, see Fig. 17.3.

• In case of magnets where both beams pass through a single aperture, e.g., in the MQXA and
MQXB magnets, Beam 1 is used to define the polarity.

Notice that heretilt means a rotation around the longitudinal axis of the magnet which is better referred
to asroll . Often the term tilt is used synonymously for the termpitch, see also Section 30.8 on the Euler
angles. For the polarity of corrector magnets powered from a bi-polar power supply the conventions
follow those of the main magnets. Thus a positive sextupole will compensate for the persistent current
effect in the main dipole.

• Current entering theA terminal of the sextupole and decapole corrector magnets integrated in
the main dipole cold masses have an upward pointing field direction in the horizontal plane, see
Fig. 17.2 (left) for the sextupole.

• Current entering theA terminal of the octupole correctors results in a vertical field increasing along
the outward pointing machine radius, Fig. 17.2 (right).

R j

N

S

R
j

N

S N

S

Fig. 17.1: Current and field distribution in a single aperture dipole (left) and single aperture quadrupole with current entering

the A terminal (positive dipole field and gradient in the quadrupole). The observer is looking in direction of Beam 1. The

clockwise rotating Beam 1 is deflected in the dipole toward the center of the machine and it is horizontally focused in the

quadrupole. Notice the field distribution on the mid plane (icons in red color).
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Fig. 17.2: Current and field distribution in a single aperture sextupole (left) and single aperture octupole with current entering

theA terminal (positive sextupole and octupole fields). Notice the field distribution on the mid plane (icons in red color).

• In sectors 1-2, 5-6, 6-7 and 7-8, where Beam 1 is in the external aperture and where the current of
the main dipole enters theA terminal, all the corrector magnets in the external aperture have their
current entering theA terminal. The corrector magnets in the internal aperture have their current
entering theB terminal.

17.2 Twin aperture magnets

Subsequently we shall call two-in-one magnets the superconducting magnets with two coils covering
two apertures and assembled in one common iron yoke. They may have 1 connection terminal (MB) or
two connection terminals (MQ) for the powering of the circuits. We shall call twin aperture magnets the
normal conducting magnets covering two apertures and superconducting magnet sub-assemblies from
magnetically and mechanically disjunct magnet modules assembled in a common support structure.

For two-in-one magnets and twin aperture magnet sub-assemblies the following rules have been
defined:

• In two-in-one magnets (MB) as well as in twin aperture normal conducting magnets, e.g., MQWA,
MQWB, MBW, among others, with only one pair of terminals serving the two apertures, the

R N S

9 0 0

R N

S

N

S

4 5 0

Fig. 17.3: Current and field distribution in a single aperture skew dipole (left) and single aperture skew quadrupole with current

entering theA terminal (positive skew dipole and skew quadrupole fields). The magnets are rotated clockwise (looking in

direction of Beam 1) byπ/2N whereN is the multipole order of the magnet (N=1 dipole, N=2 quadrupole, etc.). A positive

skew dipole field is deflecting Beam 1 downwards.
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E x t e r n a l I n t e r n a lA p e r t u r e  ( 1 ) A p e r t u r e  ( 2 )

B e a m  1 B e a m  2
Fig. 17.4: Current and field distribution in the twin aperture main dipole (MB) with current entering theA terminal.

external aperture (Aperture 1) takes priority for the application of the rules. Consequently, if the
current enters theA terminal of the MB, the main field direction is downward in the internal
aperture (Aperture 2) and upward in the external aperture, see Fig. 17.4.

• In the two-in-one magnets with two connection terminals, e.g., the main quadrupoles (MQ) and
the twin aperture magnet assemblies the rules apply to both apertures independently. Thus the field
gradient is identical in both apertures of the main quadrupoles (MQ). Thus, if the current enters the
A terminals in the two-in-one quadrupoles, the fields in both apertures increase along the outward
pointing machine radius. In case Beam 1 is in the external aperture (in sectors 1-2, 5-6, 6-7, 7-8)
it will be focused in the horizontal plane. Beam 2 (circulating counter clockwise in these sectors)
will be defocused, see Fig. 17.5.

• For twin aperture quadrupoles with the same optical function in both apertures, the polarity con-
vention is as follows: In case Beam 1 is in the external aperture (in sectors 1-2, 5-6, 6-7, 7-8) both

E x t e r n a l I n t e r n a lA p e r t u r e  ( 1 )  A p e r t u r e  ( 2 )

B e a m  1 B e a m  2
Fig. 17.5: Current and field distribution in a twin aperture main quadrupole (MQ) with current entering theA terminals,

focusing Beam 1 and defocusing Beam 2 in the horizontal plane.
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C o n n e c t i o n  e n d

R e t u r n  e n d x 1

y 1
R s B e a m 1

V ∈ R2 ⊂ R3 V ∈ R2 ⊂ R3

Fig. 17.6: Left: Reference frame used in magnet design and measurement. Thex-axis is pointing towards the center of the

machine. Right: Reference frame used for particle tracking with thex1-axis is pointing in the direction of the machine radius.

Notice the orientation of the planeR2 which we identify with the complex plane.

beams will be focused in the horizontal plane if the current enters theA terminal.
• When the current enters theA terminal in the twin aperture separator dipoles, the field is pointing

upwards both in the external and the internal aperture.

17.3 Frames

In accordance with the document [162] we have avoided frames up to now. They cannot be ignored,
however, if only to acquaint oneself with the time-honored concept in superconducting magnet design,
the so-calledcosnϕ current distribution. In Section 14.4.1 we saw that acosϕ current distribution
generates an ideal dipole field within the aperture. Obviously, the direction of the current atϕ = 0
has to be the same for both the dipole as well as the quadrupole (and higher order multipole) magnets
with cosnϕ current distribution. The conventions in Section 17.1, i.e, a positive dipole field is bending
Beam 1 inwards, and a positive quadrupole is focusing Beam 1 on the horizontal plane can only be met if
the angleϕ is counted positively as indicated in Figs. 17.1 and 17.2, which corresponds to the reference
frame used for particle tracking; see Fig. 17.6.

17.4 Multipole expansions

17.4.1 Magnet frame

The Cartesian components of the magnetic fieldB in the aperture of the LHC magnets are combined in
the complex functioñB = By + iBx, holomorphic inU = {z| |x + iy| < ρ}, whereρ is the radius of
the magnet aperture.̃B can then be expanded as

By + iBx =
∞∑
n=1

(Bn + i An)
(
z

r0

)n−1

= BN

∞∑
n=1

(bn + i an)
(
z

r0

)n−1

. (17.1)

The normal and skew multipole coefficientsBn(r0), An(r0) are given in units of tesla at a reference
radiusr0 of 17 mm. The smallbn(r0), an(r0) denote the normal and skew relative multipole coefficients
at the reference radius, related to the main field componentBN (r0) which isB1(r0) for the dipole,
B2(r0) for the quadrupole, etc. Thebn(r0), an(r0) are dimensionless and are given in units of10−4. The
scaling of the multipoles with respect to the reference radius and the transformation under frame changes
is discussed in [238].

Remark 1: We can identify a complex number with the point(a, b) ∈ R2 by means of

R2 ∼=−→ C, (x, y) 7→ x+ iy (17.2)
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and consequently regard a complex functionf as a mappingf : U → R2 with U ⊂ R2. Usually the
x-axis then drawn to the right. For the observer looking downstream of Beam 1 this implies that the
x-axis is pointing towards the machine center, an orientation that corresponds to the frame used by the
magnet builders, hereafter referred to as the magnet frame. This makes perfect sense for numerical field
computation as the problem domain can then be (in most cases) conferred to the first quadrant. However,
if we draw thex-axis pointing into outward direction (see Fig. 17.6), then the orientation of the plane is
consistent with the crossing direction of Beam 1 through it, as ambient space is oriented in the sense of
the right-handed screw. This seems to be the natural choice for beam optics. In order to emphasize our
choiceof orientation we shall write the magnetic field in the magnet frame (here with thex-axis pointing
inwards) as

By + iBx =
∞∑
n=1

(Bmag
n + i Amag

n )
(
z

r0

)n−1

= Bmag
N

∞∑
n=1

(bmag
n + i amag

n )
(
z

r0

)n−1

, (17.3)

with a bit of additional typesetting worth the effort. Recall that we have done our ink-saving by writing
in shorthandBn, An for the radius dependentBn(r0), An(r0). �

With Bϕ + iBr = (By + iBx)eiϕ we obtain in the magnet frame

Bϕ + iBr =
r0
r

∞∑
n=1

(Bmag
n + i Amag

n )
(
z

r0

)n
= Bmag

N

r0
r

∞∑
n=1

(bmag
n + i amag

n )
(
z

r0

)n
, (17.4)

and for the field components at any radiusr < ρ:

Br(r, ϕ) =
∞∑
n=1

(
r

r0
)n−1(Bmag

n sinnϕ+Amag
n cosnϕ), (17.5)

Bϕ(r, ϕ) =
∞∑
n=1

(
r

r0
)n−1(Bmag

n cosnϕ−Amag
n sinnϕ). (17.6)

and

Bx(r, ϕ) =
∞∑
n=1

(
r

r0
)n−1(Bmag

n sin(n− 1)ϕ+Amag
n cos(n− 1)ϕ), (17.7)

By(r, ϕ) =
∞∑
n=1

(
r

r0
)n−1(Bmag

n cos(n− 1)ϕ−Amag
n sin(n− 1)ϕ), (17.8)

where again we have written in shorthandBmag
n , Amag

n for Bmag
n (r0), A

mag
n (r0). The definition (17.3),

in the magnet frame shown in Fig. 17.6 (left), results in the following sign conventions for the multipole
coefficients:

• Bmag
1 is the dipole field pointing into positivey direction, i.e., a positive field bends a positively

charged particle inwards. It corresponds to the conventions of Section 17.1.
• Amag

1 is the skew dipole field pointing into positivex direction, i.e., inwards. A positive skew
dipole field bends a positively charged particle downwards. It corresponds to the conventions of
Section 17.1.

• A positiveBmag
2 is a quadrupole field that implies horizontal defocusing of Beam 1. This is a sign

reversion with respect to the conventions of Section 17.1.
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• A positiveAmag
2 is a skew quadrupole that implies defocusing of Beam 1 in the (x,z) plane rotated

clockwise byπ/4 (points in this rotated plane have coordinatesy = −x). This is a sign reversion
with respect to the conventions of Section 17.1 (resulting from the sign reversion of the quadrupole
field).

17.4.2 The local reference frame of Beam 1

In the local reference frame of Beam 1 (shown in Fig. 17.6, right) the field is expanded as

By1 + iBx1 =
∞∑
n=1

(BBeam1
n + i ABeam1

n )
(
z1
r0

)n−1

= BBeam1
N

∞∑
n=1

(bBeam1
n + i aBeam1

n )
(
z1
r0

)n−1

(17.9)

with z1 = x1+iy1. This definition results in the following sign conventions for the multipole coefficients:

• BBeam1
1 is the dipole field pointing into positivey1 direction, i.e., a positive field bends a positively

charged particle inwards. It corresponds to the conventions of Section 17.1.
• ABeam1

1 is the skew dipole field pointing into positivex1 direction, i.e., outwards! A positive skew
dipole field bends a positively charged particle upwards. This is a sign reversion with respect to
the conventions of Section 17.1.

• A positiveBBeam1
2 is a quadrupole field that implies horizontal focusing of Beam 1. It corresponds

to the conventions of Section 17.1.
• A positiveABeam1

2 is a skew quadrupole that implies defocusing of Beam 1 in the(x1, s) plane
rotated clockwise byπ/4 (points in this rotated plane have coordinatesx1 = y1). This is a sign
reversion with respect to the conventions of Section 17.1.

Remark 2: Both in the magnet frame and in the local frame of Beam 1, the mappingBn → An implies
a rotation of the magnet element in the mathematically negative (!) sense. For the observer looking
downstream of Beam 1 this is a clockwise rotation of the magnet element in case ofBmag

n → Amag
n

and a counter clockwise rotation of the magnet element in case ofBBeam1
n → ABeam1

n . Rossbach and
Schmüser [178] expand the field as

By + iBx =
∞∑
n=1

(Bn − i An)
(
z

r0

)n−1

, (17.10)

where the mappingBn → An implies a rotation of the magnet in mathematically positive sense which
seems more natural. Nothing canonical, however, as the multipole coefficients have to match the cal-
culated or measured ones at a given reference radius. If we measureBr, expressed according to Eq.
(17.5), by means of the flux linkage through a rotating tangential coil and perform a Fourier analysis of
the voltage signal thus obtained, then because of the usual conventionf(x) = 1

2a0 +
∑∞

n=1 an cosnx +
bn sinnx, it is rather the plus sign that has to be evoked. �

17.4.3 Field error definition in the accelerator design program MAD

The MAD program uses a Maclaurin series expansion of the integrated (along the magnet axis) field at
the mid-planey1 = 0 with

By1(x1) = B0 +
dBy1
dx1

∣∣∣∣
x1=y1=0

x1 + ...+
1
n!

dnBy1
dxn1

∣∣∣∣
x1=y1=0

xn1 + ... (17.11)

=
∞∑
n=0

1
n!
BMAD
n,n xn1 (17.12)

=
∞∑
n=0

1
n!
BρKn,nx

n
1 , (17.13)
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MAD-X Input HKICKER VKICKER BMAD
0,n BMAD

0,n TILT BMAD
0,s BMAD

0,s TILT

BBeam1
n , ABeam1

n −BBeam1
1 ABeam1

1 BBeam1
1 −ABeam1

1 ABeam1
1 BBeam1

1

Defl. Beam 1 Outwards Upwards Inwards Downwards Upwards Inwards

Polarity Negative Negative Positive Positive Negative Positive

Convention dipole skew dipole skew skew dipole

EDMS 90042 dipole dipole dipole

Bmag
n , Amag

n −Bmag
1 −Amag

1 Bmag
1 Amag

1 −Amag
1 Bmag

1

Table 17.1: Transformation table for MAD-X input, polarity convention (EDMS Doc. Nr. 90042) and dipole coefficients in the

magnet frame. TILT is the so-called roll angle about the longitudinal axis (a positive angle represents a clockwise rotation of

the magnet. Notice that in MAD-X a tilted dipole corresponds to a negative skew dipole.

whereBρ is the magnetic rigidity of the beam and the roman subscriptn denotes the normal multi-
pole coefficient. The same definition holds for the skew field components (denoted asBMAD

n,s ) with the
reference frame (!) rotated clockwise around the beam axis byπ/2N .

Thus the sign conventions for the multipole coefficients follow those of Section 17.4.2:

• BMAD
0,n is the dipole field pointing in the positivey1 direction, i.e., a positive field bends a positively

charged particle inwards.
• BMAD

0,s is the skew dipole field pointing in the positivex1 direction (in the Beam 1 frame, i.e.,
outwards). A positive skew dipole field thus deflects Beam 1 upwards.

• A positiveBMAD
1,n is a quadrupole field that implies horizontal focusing of Beam 1.

• A positiveBMAD
1,s is a skew quadrupole that implies defocusing of Beam 1 in the(x1, s) plane

rotated clockwise byπ/4 (points this rotated plane have coordinatesx1 = y1).

Remark 3: Only the User’s Reference Manual of the (obsolete) MAD 9.01 program gives the sign
conventions for the multipole coefficients (page 11,12), unfortunately with type-setting errors (cut-and-
paste of text segments). MAD-X obeys the same rules, as can be seen in Tables 17.1 and 17.21. The
MAD-X manual gives the sign conventions for theKn,n andKn,s on page 10 for the quadrupole and on
page 11 for the sextupole. The description of the TILT angle is erroneous, however. It should read: A
TILT=π/4 turns a normal into anegativeskew quadrupole2. �

1Thanks to Frank Schmidt AB-ABP for running the test cases.
2The description has now been updated.

MAD-X Input BMAD
2,n BMAD

2,n TILT BMAD
2,s BMAD

2,s TILT

BBeam1
n , ABeam1

n BBeam1
2 −ABeam1

2 ABeam1
2 BBeam1

2

Effect on Focusing Q1 + Q1 - Focusing

on Beam 1 in horizontal Q2 - Q2 + in horizontal

plane plane

Polarity Conv. Positive Positive Negative Positive

EDMS 90042 quadrupole skew quad. skew quad. quadrupole

Bmag
n , Amag

n −Bmag
2 −Amag

2 Amag
2 −Bmag

2

Table 17.2: Transformation table for MAD-X input, polarity convention (EDMS Doc. Nr. 90042) and quadrupole coefficients

in the magnet frame. TILT is the so-called roll angle about the longitudinal axis (a positive angle represents a clockwise rotation

of the magnet. Notice that in MAD-X a tilted quadrupole corresponds to a negative skew quadrupole.
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17.5 Transformations between the magnet- and the Beam1 frame

Tables 17.1 and 17.2 show the transformations for MAD-X input, multipole coefficients in the moving
frame of Beam 1, the polarity conventions (EDMS Doc. Nr. 90042), and the multipole coefficients in
the magnet frame.

It can be seen that unlike stated in an older version of the EDMS document No. 90042, the polarity
conventions donot follow the beam physics conventions. The polarity conventions are compatible with
the conventions in the Beam 1 frame as far as the normal multipoles are concerned. They are not coherent
with the MAD conventions for the skew multipoles. Remember that a clockwise rotation of the magnet
element (observer looking downstream of Beam 1) results in mappingsBmag

n → Amag
n butBBeam1

n →
−ABeam1

n .

The transformations laws between the multipole coefficients read:

rn−1
0

(n− 1)!
BMAD
n,n = BBeam1

n = (−1)n−1Bmag
n , (17.14)

rn−1
0

(n− 1)!
BMAD
n,s = ABeam1

n = (−1)nAmag
n . (17.15)

For the relative multipoles of a normal magnet we get withBn = BNbn, An = BNan and the relation
B′
N = (−1)N−1BN :

bBeam1
n = (−1)n−Nbmag

n , aBeam1
n = (−1)n−N+1amag

n , (17.16)

and for a skew magnet (Bn = ANbn,An = ANan):

bBeam1
n = (−1)n−N+1bmag

n , aBeam1
n = (−1)n−Namag

n . (17.17)

The proof can be found in Section 16.9.

17.6 Orbit correctors

Orbit correctors are powered from bi-polar power supplies. As can bee seen from Table 17.1 a positive
horizontal kick on Beam 1, deflecting outwards, requires positive current into theB (!) terminal while
a positive kick on Beam 2, deflecting outwards, requires current to enter theA terminal. In a similar
manner, a positive vertical kick on Beam 1, deflecting upwards, requires positive current into theB
terminal while a positive kick on Beam 2, deflecting upwards, requires current to enter theA terminal.
When both beams pass through a single aperture, Beam 1 is used to define the polarity (Beam 1 being
deflected outwards/upwards and Beam 2 inwards/downwards with a positive kick).

In the electrical layout scheme a positive kick corresponds to a positive current reading on the
bi-polar power supply. If Beam 1 is affected the current enters theB terminal, when Beam 2 is affected
the current enters theA terminal.

17.7 Position of the connection terminals

The position of the external connection terminals of magnets or magnet assemblies defines thenormal
installation direction in the tunnel, e.g., with the external connection terminals upstream or downstream
of Beam 1, see Section 17.7. In particular multipole correctors within the magnet assembly might have
their connection terminals facing downstream of Beam 1, e.g., MCB in the SSS, MCS in the MB, ref.
Table 17.3 (column D).

The magnet’s optical function may change depending on the multipole order, i.e.,

Bup
n = (−1)n−1Bdown

n , Aup
n = (−1)nAdown

n . (17.18)

The terminals are (re)-labeled such that if the current enters theA terminal the field is indeed positive in
the sense of the polarity conventions in Section 17.1.
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Remark: It has to be noted that the field quality of the magnet modules is always measured in the
magnet frame and consequently therelative higher order field harmonics may change sign in the magnet
assembly depending on the multipole order, i.e., for the relative multipoles of a normal magnet:

bup
n = (−1)n−Nbdown

n , aup
n = (−1)n−N+1adown

n , (17.19)

and for a skew magnet:

bup
n = (−1)n−N+1bdown

n , aup
n = (−1)n−Nadown

n . (17.20)

�

The normal installation direction of the magnets is given in Table 17.3 together with the number of
magnets, the operation temperature and current, the magnetic length, the inductance and the resistance
at room temperature. The kickers and experimental magnets are excluded.

Column E gives the magnet type according to the LHC equipment catalog. 1: Main dipole, 2: Sep-
aration dipoles, 3: Main quadrupole, 4: Insertion region quadrupoles, 5: Lattice correctors 6: Multipole
correctors, 7: Orbit correctors, 8: Compensators for experimental magnets, 9: Septa.

Colums A and C give the number of apertures and the number of connection terminals, corre-
spondingly. Four different types of magnets can be identified.

• Single aperture magnets, e.g., MQY with one aperture and one pair of terminals (A=1,C=1).
• Two-in-one magnets with one pair of connection terminals, e.g., MB (A=2,C=1).
• Two-in-one magnets with two pairs of connection terminals for individual powering of the aper-

tures, e.g., MQ (A=2,C=2).
• Magnet modules (individually powered) assembled in twin aperture sub-assemblies, e.g., MO,

MQS, MQTL (A=2,C=2).

This classification scheme avoids having to distinguish between two-in-one magnets with a common
iron yoke (more or less magnetically coupled) and magnet modules in a common (twin aperture) support
structure (magnetically decoupled), which in some cases also allow an individual cold testing of the
modules. These technicalities are not important for polarity issues.

The following magnet assemblies are found in the LHC machine:

• MCBCA (35): Superconducting twin-aperture dipole corrector magnet assembly in a MQM-type
common support structure. In the MCBCA, the modules are arranged with MCBCV in the internal
aperture, i.e, the magnetic field is horizontal, while MCBH is mounted in the external aperture, i.e,
the magnetic field is vertical.

• MCBCB (33): Superconducting twin-aperture dipole corrector magnet assembly in a MQM-type
common support structure. In the MCBCB, the modules are arranged with MCBCH in the internal
aperture, i.e, the magnetic field is vertical, while MCBV is mounted in the external aperture, i.e,
the magnetic field is horizontal.

• MCBCC (8): Superconducting twin-aperture dipole corrector magnet assembly in a MSCB-type
common support structure. In the MCBCC, the modules are arranged with MCBCV in the internal
aperture, i.e, the magnetic field is horizontal, while MCBH is mounted in the external aperture, i.e,
the magnetic field is vertical.

• MCBCD (8): Superconducting twin-aperture dipole corrector magnet assembly in a MSCB-type
common support structure. In the MCBCD, the modules are arranged with MCBCH in the internal
aperture, i.e, the magnetic field is vertical, while MCBV is mounted in the external aperture, i.e,
the magnetic field is horizontal.

• MCBX (16): Concentrically nested single aperture dipole correctors, one horizontal MCBXH
(inside) and one vertical MCBXV (outside) associated to Q1 (between Q1 and Q2) and to Q2
(between the two Q2 modules).
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• MCBXA (8): Nested single aperture horizontal and vertical dipole correctors identical to MCBX
with additional concentrically nested multipole correctors MCSX (B3) inside, and MCTX (B6)
outside. Assembly associated to Q3 (between Q3 and D1).

• MCBYA (18): Superconducting twin wide-aperture dipole corrector magnet assembly in a MQM-
type common support structure. In the MCBYA, the modules are arranged such that the field in
the internal aperture is horizonal, while the external is vertical.

• MCBYB (20): Superconducting twin wide-aperture dipole corrector magnet assembly in a MQM-
type common support structure. In the MCBYB, the modules are arranged such that the field in
the internal aperture is vertical, while the external is horizontal.

• MCDO (1232): Nested multipole spool correctors MCD (B5) and MCO (B4) inside, mounted on
each beam on the MBA dipoles.

• MCSOX (8): Set of nested multipole correctors MCSSX (A3), MCOSX (A4) and MCOX (B4)
close to Q3 (between Q3 and DFBX).

• MSCBA (158): Superconducting twin-aperture sextupole-, dipole corrector magnet-assembly. The
external aperture is composed of a sextupole MS and a vertical field dipole (horizontal orbit-
corrector) MCBH. The internal aperture is composed of a sextupole MS and a horizontal field
dipole (vertical orbit-corrector) MCBV.

• MSCBB (154): Superconducting twin-aperture sextupole-, dipole corrector magnet-assembly. The
external aperture is composed of a sextupole MS and a horizontal field dipole (vertical orbit-
corrector) MCBV. The internal aperture is composed of a sextupole MS and a vertical field dipole
(horizontal orbit-corrector) MCBH.

• MSCBC (32): Superconducting twin-aperture sextupole-, dipole corrector magnet-assembly. The
external aperture is composed of a skew sextupole MSS and a vertical field dipole (horizontal orbit-
corrector) MCBH. The internal aperture is composed of a normal sextupole MS and a horizontal
field dipole (vertical orbit-corrector) MCBV.

• MSCBD (32): Superconducting twin-aperture sextupole-, dipole corrector magnet-assembly. The
external aperture is composed of a normal sextupole MS and a horizontal field dipole (vertical
orbit-corrector) MCBV. The internal aperture is composed of a skew sextupole MSS and a vertical
field dipole (horizontal orbit-corrector) MCBH.

The arrangements of the magnet assemblies with the position of the connection terminals, are sketched
in Figs. 17.7 - 17.10. The figures define thenormalposition of the connection terminals.

E x t e r n a l
( A p e r t u r e  1 )

I n t e r n a l
( A p e r t u r e  2 )

M B B

M B M C S

M C S

M B A

M C O
M C D

M C D O
M C O
M C D

M C D O

d o w n s t r e a m

Fig. 17.7: Arrangement of the magnet assemblies in the MBA and MBB dipole cryomagnets.

If the magnets, or magnet assemblies, are installed in the LHC tunnel with the connection terminals
pointing into opposite direction, the assembly is marked with a star in the electrical layout database and
layout drawings, see Section 17.8.

17.8 Turned magnets and magnet assemblies

For various reasons, e.g., space available for connections and vacuum equipment, a magnet or an entire
magnet assembly may be installed in the LHC tunnel in a reversed sense with respect to the normal
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E x t e r n a l
( A p e r t u r e  1 )

I n t e r n a l
( A p e r t u r e  2 )

A R C - S S S

M Q
M S M C B H

M S M C B V

M O( M Q T )
( M Q S ) ( M S S )

( M S S ) ( M C B H )

( M C B V )

M S C B A ( B , C , D ) d o w n s t r e a m

Fig. 17.8: Arrangement of the magnet assemblies in the arc short straight sections (SSS). Different combinations of magnets,

polarities, and the presence (or not) of jumper connections to the cryogenic transfer line and of pressure plugs result in 40

variants [148].
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E x t e r n a l
( A p e r t u r e  2 )

I n t e r n a l
( A p e r t u r e  1 )

Fig. 17.9: Arrangement of the magnet assemblies MCBYA(B) and MCBCA(B,C,D). Notice that the normal position of the

connection terminals is downstream of Beam 1 so that Aperture 2 is on the right seen from the connection end of the magnet

(with the connections at the bottom), i.e, on the external side.
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M C B X H
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M C B X V

M C T XM C S X

M C S O X

M C O S X
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M C O X

d o w n s t r e a m

Fig. 17.10: Arrangement of the magnet assemblies MCBX, MCBXA, and MCSOX.

direction, i.e., turned byπ around the vertical axis. The construction and internal connections of these
magnets (assemblies) are not changed. Also the naming of the connection terminalsA andB are not
changed. However, the magnet’s optical function may change depending on the multipole order,

Bturn
n = (−1)n−1Bnorm

n , Aturn
n = (−1)nAnorm

n . (17.21)

In this case the polarity is changed on the warm side of the magnet which is reflected in the electrical
layout database and layout drawing, where the magnet is marked with a star.

The relative higher order field harmonics may change sign in the magnet assembly depending on
the multipole order, i.e., for the relative multipoles of a normal magnet:

bturn
n = (−1)n−Nbnorm

n , aturn
n = (−1)n−N+1anorm

n , (17.22)

and for a skew magnet:

bturn
n = (−1)n−N+1bnorm

n , aturn
n = (−1)n−Nanorm

n . (17.23)

17.8.1 Example 1: Compensators in IR2 and IR8

As an example, the electrical layouts of the spectrometer dipole magnet compensations in IR2 and IR8 are
shown in Fig. 17.11. The experiments in these insertion points use spectrometer (dipole) magnets which



CHAPTER 17. LHC MAGNET POLARITIES 211

distort the beam trajectories. This effect is locally compensated with three orbit correctors placed in
the straight sections between the interaction point and the final focusing triplet, [29]. The compensators
are powered according to the rules for the orbit correctors in the arc, i.e., a positive kick (upwards or
outwards) on Beam 1 is obtained by a positive setting on the bi-polar power supply and the current
entering theB terminal of the compensators. Notice the change of polarity for the turned, vertically
deflecting magnet MBXWT in IR2 while the turned, horizontally deflecting magnet MBXWS keeps its
optical function.
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Fig. 17.11: Electrical layouts of the spectrometer dipole magnet compensation scheme in IR2 (left) and IR8 (right). Notice the

change of polarity for the turned, vertically deflecting magnet MBXWT in IR2 while the turned, horizontally deflecting magnet

MBXWS keeps its optical function. Symbol for the ideal current source according to IEC-60617-2: Graphical symbols for

diagrams.

17.8.2 Example 2: Inner triplets in IR2,8 and IR1,5

The electrical layouts of the inner triplet quadrupoles with their adjacent lattice correctors is shown in
Fig. 17.12.

The inner triplets in IR2,8 are shown on the bottom and IR1,5 are shown on the top. For each
magnet element the following information is provided. Optical function of the quadrupoles, multipole
order of the magnet element, stars indicating turned magnet (sub-assemblies), an indication whether or
not the polarity changes when the magnet is turned, the position of the connection terminal (ref. CDD
document LHCLSX__%), the terminal in which the current enters, and the magnet polarity (according
to the EDMS 90042 document) when the bipolar power supply has a positive setting.

The triplet corrector elements arenot powered like spool piece circuits as these magnets do not
provide a magnet by magnet correction but and overall kick minimization, taking into account all triplet
quadrupoles, the D1 and D2 dipole and the Q4 quadrupole magnets left and right from the IP. The
magnets thus follow the convention that a positive current entering the A terminal implies a positive field
independent of the polarity of the quadrupole magnet they are attached to.

17.9 Electrical circuits in the LHC machine

The LHC machine layout comprises eight arcs and sixteen dispersion suppressor zones. The continuous
cryostat of 2.7 km in length, includes one arc zone and two dispersion suppressor zones at each extremity.
Five types of superconducting bus-bars are installed to power the magnets:

• Bus-bars for main dipole circuits, DCB.
• Bus-bars for spool piece corrector circuits (600A), DCC.
• Flexible multi-core cable in the N- or N’-line (6 kA), DCD. The DCD’s are only present in the

insertion and dispersion suppressor regions with half-cell indexj ≤ 10 for the powering of the
MQM quadrupole magnets.
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Fig. 17.12: Electrical layout of the inner triplets in IR1,5 (top) and IR2,8 (bottom). Row 1: Optical function of the quadrupole.

Row 2: Current entering A or B terminal. Row 3: Stars indicate the turned magnets. Row 4: Name of the magnet element.

Notice that MCSSX, MCOSX, and MCOX are nested magnet elements in an assembly called MCSOX. Row 5: Multipole order

of the magnet element. Row 6: Polarity changes when the magnet is turned (Y = yes , N = no). Row 7: Polarity of the magnet

elements when the bipolar power supply has a positive reading.

• Bus-bars for defocusing main quadrupole circuits, DCQD.
• Bus-bars for focusing main quadrupole circuits, DCQF.
• Flexible multi-core cable for the lattice corrector circuits (600A) in the N-line, DCA.

Six main bus-bars are used for the powering of the main dipoles and the quadrupole circuits rated at 13
kA. 20 auxiliary bus-bars rated at 600 A supply the spool-piece correctors of the MB magnets. These
26 bus-bars will be joined at each interconnection plane between two cryo-magnets. A flexible, su-
perconducting cable with 42 auxiliary bus-bars feeds the corrector magnets associated with the main
quadrupoles, housed in the short straight sections (SSS). The bus-bar cable is routed through the so-
called N-line, located outside the main magnet cold masses. Junctions of the N-line cable segments
will be made at each interconnection between a cryo-dipole and a SSS. The polarity of a magnet can be
checked by means of voltage taps connected to the A terminals of the magnet units. All the signals from
the voltage taps are routed out of the cold mass via an instrumentation feedthrough system (IFS).

The position of a half-cell along the circumference of the collider is uniquely described by the
cell naming convention, e.g., CjLi, where j is the half-cell number and i is the octant number. The letter
L stands for “left of the intersection point”. The magnet components are located inside half-cells. The
naming convention for the three locations occupied by the three dipole assemblies and for the intersection
planes is shown in Fig. 17.13, [132].

Fig. 17.13 also shows the electrical circuits for the main dipoles in the arc-cells. For official
references see CDD document LHCLSD_%.

17.10 Electrical quality assurance

The parameters to be verified in the framework of the electrical quality assurance (ELQA) include:

• Continuity of bus-bars and magnet interconnections.
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( p o s i t i v e )
B e a m  2

B e a m  1

Fig. 17.15: Spool piece corrector circuits. RCS for the sextupole spool pieces (green), RCD for the decapole (magenta) and

RCO for the octupole spool pieces (orange). B2 for the inner ring (in the M2-line), B1 for the outer ring (in the M1-line).

• Authentication of the magnet type by means of its measured ohmic resistance.
• Magnet polarity check using the voltage taps on the A terminal.

The methodology applied to the continuity verification consists of feeding a stable DC current into a
branch of the tested circuit. Voltage drops across precision resistors, connected in series at both extremi-
ties of the branch, confirm its continuity. The authentication and polarity of magnets connected in series
within the branch are verified by measuring differential voltage drops between voltage taps at the mag-
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Fig. 17.16: Lattice corrector circuits for the magnet elements powered from the auxiliary multi-conductor cable in the N-line.

C11R3-C16R3 have been used because the five different electrical interconnection types can be found in close vicinity.

net’s A terminal and the source- or sink end of the branch. The voltage measurements are compared to
known parameters stored in a database. In order to define a systematic approach for the verification of
the about 70000 splices, all different electrical interconnection types and corresponding configurations
have been determined by analyzing the data in the LHC reference database. This analysis resulted in the
definition of 5 interconnection types in the N-line circuits, 6 types for the circuits of the spool-pieces in
the arc zone, and 6 types for the circuits of the spool-pieces in the dispersion suppressor region.

For the verification of the 42 auxiliary bus-bars in the N-line, the access to three successive inter-
connection planes is required at the level of the N-line interconnection board, see Fig. 17.17. Fig. 17.18
shows the scheme for the verification of a magnet powered from the 42 auxiliary bus-bars cable. First
the continuity of the circuit is assured by measuring voltage drops across the current reading resistors.
Measured voltage drops between the allocated wire slots on the central interconnection board and the
source and sink ends indicate the correct distribution of the wires. Finally the polarity and the type of
the connected magnet are checked by measuring the expected voltage between the voltage tap attached
to the magnet and the sink end. The verification of the auxiliary spool-piece bus-bars only requires the
access to the extremities of a cell.

The design of a mobile system for the circuit verification in the LHC tunnel has been done, con-
sidering

• a verification of a full cell,
• a qualification of all types of interconnections with a single tool, which can be independently

operated by two persons,
• the hardware optimized for tunnel dimensions and storage underneath the cryo-magnets,
• fast connection of cables and connectors, and
• software for the automatic validation of measured data with respect to the LHC reference database.

The mobile system is composed of a central unit to be placed at the center of the cell and includes a
portable computer running the software application, two de-multiplexers positioned at the extremities of
the cell, and the connectors and cables for pick-up, routing and dispatching of measurement and control
signals.
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Fig. 17.17: Left: Position of the interconnection board in the interconnection region between SSS and MB. Bottom right:

Interconnection board assemled and awaiting test before ultrasonic welding. Top right: Slot assignment on the interconnection

board.

The required signals are picked-up by connectors especially developed to ensure a fast plug-in
and a reliable electrical contact. At the extremities of the cell two relay-based de-multiplexers allow the
selection of a subset of signals. The selection of the required channel is done via 6 digital lines driven
from the central unit. The signals coming from the central N-line interconnection board are directly
routed to the connection box of the central unit. The voltage tap signals needed for the polarity checks
are routed from each cryo-magnet instrumentation interface box to the connection box via four dedicated
cables, see Fig. 17.19.

The central unit contains a data acquisition system, including a high precision digital multimeter,
two switching matrices allowing the independent reading of the 3160 possible voltage combinations
generated from the 217 signals gathered along the cell, and an I/O card for the control of the whole
system. In total, sixteen digital output lines are used in a sink mode to provide the control of the two
de-multiplexers. Five analog channels are used. Four provide the current reading and the fifth allows
for the differential voltage reading of two signals out of the 3160 possible combinations. The system is
controlled by a LabVIEW based program with a GPIB Universal Serial Bus (USB) interface using the

Fig. 17.18: Scheme for the verification of a magnet powered from the 42 auxiliary bus-bars cable.
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Fig. 17.19: Scheme of the mobile test system.

standard protocol IEEE 488.2. The system allows fully automatic verification and it is adapted to any
configuration of the electrical circuit under test.

The control of the system is based on the LabVIEW application and an Oracle database containing
the information needed to perform the electrical qualification and allowing the storage of the test results.
The ELQA-DB database contains two parts, one containing the test tables and one containing the results
tables. The tests tables have been automatically generated by applying a package of PL/SQL scripts to
the LHC reference database. This ensures that the latest version of the LHC machine parameters is used.
The generated database contains all electrical interconnection data necessary to perform and validate
the electrical verification. The Oracle database is duplicated into a MS-Access format which can be
exploited on portable computers, in order to have a self-sufficient test system in the LHC tunnel.
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Magnet E Description N T Inom lm L R A C D

Units K A m H Ω

MB 1 B1 Main dipole coldmass 1232 1.9 11850 14.3 0.102 2 1 u

MBRB 2 B1 Twin apert. sep. dipole (194 mm) D4 2 4.5 5520 9.45 0.052 2 1 u

MBRC 2 B1 Twin apert. sep. dipole (188 mm) D2 8 4.5 6000 9.45 0.052 2 1 u

MBRS 2 B1 Single apert. sep. dipole D3 4 4.5 5520 9.45 0.026 1 1 u

MBW 2 B1 Twin apert. dipole D3,D4 in IR3,7 20 NC 720 3.4 0.18 0.055 2 1 u

MBWMD 8 A1 Dipole compensator for ALICE, IR2 1 NC 550 2.62 0.639 0.172 1 1 u

MBX 2 B1 Single apert. sep. dipole D1 4 1.9 5800 9.45 0.026 1 1 u

MBXW 2 B1 D1 dipole in IR1,5 24 NC 750 3.4 0.145 0.06 1 1 u

MBXWH 8 B1 Dipole compensator for LHC-b, IR8 1 NC 750 3.4 0.145 0.04 1 1 u

MBXWS 8 B1 Dipole compensator for LHC-b, IR8 2 NC 780 0.78 0.04 0.05 1 1 u

MBXWT 8 A1 Dipole compensator for ALICE, IR2 2 NC 600 1.53 0.08 1 1 u

MCBCH 7 B1 Orbit corr. in MCBCA(B,C,D) 84 1.9/4.5 100+ 0.904 2.84 1 1 d

MCBCV 7 A1 Orbit corr. in MCBCA(B,C,D) 84 1.9/4.5 100+ 0.904 2.84 1 1 d

MCBH 7 B1 Arc orbit corr. in MSCBA(B,C,D), hor. 376 1.9 55 0.647 6.02 1 1 d

MCBV 7 A1 Arc orbit corr. in MSCBA(B,C,D), vert. 376 1.9 55 0.647 6.02 1 1 d

MCBWH 7 B1 Single apert. orbit corr., hor. 8 NC 550 1.7 0.05 0.043 1 1 u

MCBWV 7 A1 Single apert. orbit corr., vert. 8 NC 550 1.7 0.05 0.043 1 1 u

MCBXH 7 B1 Horizontal orbit corr. in MCBX(A) 24 1.9 550 0.45 0.287 1 1 u

MCBXV 7 A1 Vertical orbit corr. in MCBX(A) 24 1.9 550 0.48 0.175 1 1 u

MCBYH 7 B1 Orbit corr. in MCBYA(B) 38 4.5 72 0.899 5.27 1 1 d

MCBYV 7 A1 Orbit corr. in MCBYA(B) 38 4.5 72 0.899 5.27 1 1 d

MCD 6 B5 Decapole corr. in MCDO 1232 1.9 550 0.066 0.0004 1.34 1 1 u

MCO 6 B4 Octupole corr. in MCDO 1232 1.9 100 0.066 0.0004 3.11 1 1 u

MCOSX 6 A4 Skew octupole in MCSOX 8 1.9 100 0.138 0.0032 12.1 1 1 u

MCOX 6 B4 Octupole associated to MCSOX 8 1.9 100 0.137 0.0044 13.0 1 1 u

MCS 6 B3 Sextupole corr. 2464 1.9 550 0.11 0.0008 0.1 1 1 d

MCSSX 6 A3 Skew sextupole in MCSOX 8 1.9 100 0.132 0.0078 13.7 1 1 u

MCSX 6 B3 Sextupole in MCBXA 8 1.9 100 0.576 0.0047 1 1 u

MCTX 6 B6 Dodecapole in MCBXA 8 1.9 80 0.615 0.0292 1 1 u

MO 5 B4 Octupole lattice corr. in arc SSS 168 1.9 550 0.32 0.00015 4.5 2 2 u

MQ 3 B2 Lattice quadrupole in the arc 392 1.9 11870 3.1 0.0056 0.87 2 2 u

MQM 4 B2 Insertion region quad. 3.4 m 38 1.9/4.5 5390∗ 3.4 0.0151 2 2 u

MQMC 4 B2 Insertion region quad. 2.4m 12 1.9/4.5 5390∗ 2.4 0.0107 2 2 u

MQML 4 B2 Insertion region quad. 4.8 m 36 1.9/4.5 5390∗ 4.8 0.0213 2 2 u

MQS 5 A2 Skew quad. lattice corr. in arc SSS 32 1.9 550 0.32 0.031 0.33! 2 2 u

MQSX 6 A2 Skew quadrupole Q3 8 1.9 550 0.223 0.014 8.02 1 1 u

MQT 5 B2 Tuning quad. in arc SSS 160 1.9 550 0.32 0.031 0.33! 2 2 u

MQTLH 5 B2 MQTL (Half Shell Type) 24 4.5 400 1.3 0.120 1.49 2 2 d

MQTLI 5 B2 MQTL (Inertia Tube Type) 36 1.9 550 1.3 0.120 2 2 d

MQWA 4 B2 Twin apert. quad. in IR3,7. FD or DF 40 NC 710 3.108 0.028 0.037 2 1 u

MQWB 4 B2 Twin apert. quad. in IR3,7. FF or DD 8 NC 600 3.108 0.028 0.037 2 1 u

MQXA 4 B2 Single apert. triplet quad. Q1, Q3 16 1.9 6450 6.37 0.090 1 1 u

MQXB 4 B2 Single apert. triplet quad. Q2 16 1.9 11950 5.5 0.019 1 1 u

MQY 4 B2 Insertion wide apert. quad. 3.4 m 24 4.5 3610 3.4 0.074 2 2 u

MS 5 B3 Arc sext. corr. next to MCBH, MCBV 688 1.9 550 0.369 0.036 0.21! 1 1 u

MSDA 9 A1 Ejection dump septum, module A 10 NC 880 4.088 0.036 0.027 1 1 u

MSDB 9 A1 Ejection dump septum, module B 10 NC 880 4.088 0.056 0.034 1 1 u

MSDC 9 A1 Ejection dump septum, module C 10 NC 880 4.088 0.079 0.041 1 1 u

MSIA 9 B1 Injection septum, module A 4 NC 950 3.73 0.010 0.011 1 1 u

MSIB 9 B1 Injection septum, module B 6 NC 950 3.73 0.024 0.0164 1 1 u

MSS 5 A3 Arc skew sextupole corr. in MCBH 64 1.9 550 0.369 0.036 1 1 u

Table 17.3: LHC magnet equipment names. Kickers and experimental magnets are excluded. E = Type (see text). N = Number

of magnets, T = operation temperature, I = nominal current,lm = magnetic length, L = self inductance R = ohmic resistance at

room temperature (if apertures are individually powered then R and L are given for one aperture), A = number of apertures, C

= number of pairs of connection terminals, D = Normal position of the connection terminals, u: upstream, d: downstream of

Beam 1. NC = Normal conducting. (*) 4310 A at 4.5 K. (+) 80 A at 4.5 K. (!) Protection resistor in parallel. Reference: LHC

functional layout database.
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Chapter 18

Principles of Numerical Field
Computation

For it is unworthy of excellent men
to lose hours like slaves in the labour of calculation

which could safely be regulated to anyone else if machines were used,
Gottfried Wilhelm Leibniz (1646-1716).

A variety of methods have been developed for the computation of electromagnetic fields in practi-
cal applications. Among the best known are the Finite-Difference, the Finite-Element (FEM) and the
Boundary-Element (BEM) methods. These start with the formulation of the physical laws by means
of partial differential- or integral equations and employ local approximations of the system variables
after suitable discretization of the problem domain. The Finite Integration Technique (FIT) is based
on Maxwell’s equations in integral form, which are then transformed into a system of linear algebraic
equations. Modern approaches start with the Maxwell equations in global form discretized on so-called
cell-complexes. These methods are denoted as Discrete Electromagnetism (DEM) methods.

In order to understand the special properties of these methods and the reasoning which leads to
their application in the design and optimization of the LHC magnets, it is sufficient to concentrate on
some aspects of the formulations. The function approximation with finite or boundary elements and the
solution techniques will be explained only very briefly.

With the application to superconducting accelerator magnets in mind, we will furthermore con-
centrate on the most simple case of magnetostatic field problems. The concepts of FEM computation are
first explained with a one-dimensional problem where the exact solution is known, and will then be ex-
plained by means of the most commonly used method for magnetostatic problems, with the total vector
potential formulation and triangular elements with linear shape functions.

18.1 One-Dimensional Finite-Element solution

18.1.1 Formulation of the problem

Consider the boundary value problem

∇2u = f(x), x ∈ Ω = [0, 1] (18.1)

which for one dimensionu = u(x) reads

d2u(x)
dx2

= f(x), x ∈ Ω = [0, 1], (18.2)

and which fulfills boundary conditions of the Dirichlet type, e.g.,

u(x)|x=0 = u0, u(x)|x=1 = u1, (18.3)

219
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Fig. 18.1: Left: One-dimensional boundary value problem. Right: Approximation of the solution within all-togetherJ finite

elements.

or one Dirichlet and one Neumann type boundary condition of the form

du
dx

∣∣∣∣
x=0

= q0, or
du
dx

∣∣∣∣
x=1

= q1. (18.4)

This problem is a one-dimensional representation of the heat conduction equation with unit conductivity.
With a constant heat source, i.e.,f(x) = C and homogeneous Dirichlet boundary conditionsu(x)|x=0 =
u(x)|x=1 = 0, the analytical solution of the boundary value problem is found by adding the particular
solution

up(x) =
Cx2

2
(18.5)

to the general solution

uh(x) = ax+ b (18.6)

of the homogeneous differential equation. The coefficientsa and b are determined by the boundary
conditions and the solution reads, c.f. Fig. 18.1.

u(x) =
C

2
(
x2 − x

)
. (18.7)

18.1.2 Weighted residual

For the approximate solution ofu(x) the differential equation (18.2) is only approximately fulfilled. The
residual

r =
d2u(x)

dx2
− f(x), (18.8)

is only zero for the exact solutionu(x). A good approximation can be obtained if the residual error is
forced to be zero in a weighted projective sense over the problem domainΩ:∫

Ω
w(x)r(x) dΩ =

∫
Ω
w(x)

d2u(x)
dx2

dΩ−
∫

Ω
w(x)f(x) dΩ = 0, (18.9)

with w(x) being a specially chosen weighting function.
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18.1.3 Weak Form

Using the integration-by-parts rule∫ b

a
ϕψ′ dx = [ϕψ]ba −

∫ b

a
ϕ′ψ dx (18.10)

to integrate the term
∫
Ωw(x)d2u(x)

dx2 dΩ yields withw(x) = ϕ and du(x)
dx = ψ the weak formof the

boundary value problem:

−
∫

Ω

dw(x)
dx

du(x)
dx

dΩ +
[
w(x)

du(x)
dx

]1

0

−
∫

Ω
w(x)f(x) dΩ = 0. (18.11)

The name weak form is due to the reduced differentiability requirements onu(x) which are achieved,
however, at the expense of increased requirements on the differentiability of the weighting function.
The weak formulation of the problem allows the approximation of the solution through linear basis
functions and the consideration of Neumann type boundary conditions which are therefore called the
natural boundary conditions. Let us nowassumethat these Neumann type boundary conditions are
homogeneous. Eq. (18.11) then reduces to∫

Ω

dw(x)
dx

du(x)
dx

dΩ = −
∫

Ω
w(x)f(x) dΩ . (18.12)

18.1.4 Discretization

We partition the domainΩ into J elementsΩj with

Ω =
J⋃
j=1

Ωj (18.13)

with a total ofN nodes, i.e., the boundaries of the elements. Within the line elementΩj = [xn−1, xn]
the potentialuj(x) is assumed to vary linearly between the nodes and is approximated by a first order
polynomial

uj(x) = αj1 + αj2x x ∈ Ωj , (18.14)

the so-called basis function, c.f. Fig. 18.1. Continuity ofu(x) is necessary to ensure the differentiation in
Eq. (18.11). One useful form of identification of the nodes is to number them in a global order. Another
approach, preferable when we examine a single element, is to label nodes locally by the element number.
The approximated valuesun at the nodes of the elementj can be expressed in the global numbering
scheme as

un−1 = αj1 + αj2xn−1, un = αj1 + αj2xn . (18.15)

Applying Cramer’s rule to solve forαj1 andαj2 yields

αj1 =

∣∣∣∣∣ un−1 xn−1

un xn

∣∣∣∣∣∣∣∣∣∣ 1 xn−1

1 xn

∣∣∣∣∣
, αj2 =

∣∣∣∣∣ 1 un−1

1 un

∣∣∣∣∣∣∣∣∣∣ 1 xn−1

1 xn

∣∣∣∣∣
. (18.16)

The solutions forαj1 andαj2 are therefore

αj1 =
xnun−1 − xn−1un

xn − xn−1
, αj2 =

un − un−1

xn − xn−1
, (18.17)
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For any point within the elementj, u(x) can therefore be expressed as a function of the nodal values of
the element as

uj(x) = αj1 + αj2x =
xn − x

xn − xn−1
un−1 +

−xn−1 + x

xn − xn−1
un. (18.18)

Introducing the so-called local element shape functionsNjk(x), k = 1, 2, with k being the local node
numbering in the elementj

Nj1(x) =
xn − x

xn − xn−1
, Nj2(x) =

−xn−1 + x

xn − xn−1
, (18.19)

we can rewrite the weak formulation for one elementj:∫
Ωj

dwl(x)
dx

∑
k=1,2

dNjk(x)
dx

u(k) dΩj = −
∫

Ωj

wl(x)f(x) dΩj (l = 1, 2). (18.20)

Hereu(1) = un−1 andu(2) = un correspond to the local node numbering in the element.

18.1.5 Galerkin’s method

Numerical methods now differ in the choice of the weighting functions. Galerkin’s1 method uses the
element shape functionsNjk(x) as weighting functionswl(x) and we obtain

∫
Ωj

dNjl(x)
dx

∑
k=1,2

dNjk(x)
dx

u(k) dΩj = −
∫

Ωj

Njk(x)f(x) dΩj (l = 1, 2) (18.21)

which, omitting the argument ofNjk, yields the following linear equation system∫ xn

xn−1

(
dNj1

dx
dNj1

dx
un−1 +

dNj1

dx
dNj2

dx
un

)
dx = −

∫ xn

xn−1

Nj1f(x) dx , (18.22)∫ xn

xn−1

(
dNj2

dx
dNj1

dx
un−1 +

dNj2

dx
dNj2

dx
un

)
dx = −

∫ xn

xn−1

Nj2f(x) dx . (18.23)

The linear equation system reads in matrix form:

[kj ] · {uj} = {fj} (18.24)

with the symmetricstiffnessmatrix

[kj ] =
∫ xn

xn−1

( dNj1

dx
dNj1

dx
dNj1

dx
dNj2

dx
dNj2

dx
dNj1

dx
dNj2

dx
dNj2

dx

)
dx , (18.25)

the vector of the node potentials

{uj} =

(
un−1

un

)
, (18.26)

and the so-called element force vector

{fj} = −
∫ xn

xn−1

(
Nj1

Nj2

)
f(x)dx. (18.27)

1Boris Galerkin (1871-1945).
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18.1.6 Inhomogeneous Neumann boundary conditions

For the consideration of inhomogeneous Neumann boundary conditions, e.g.,du
dx |x=0 = q0 in element

Ω1 the element boundary matrix[t1] is added

[t1] =

(
N11(x)|x=0

0

)
=

(
1
0

)
(18.28)

to the linear equations system (18.24):

[k1]{u1}+ [t1]{q0} = {f1}. (18.29)

In a final step we have to introduce the Dirichlet boundary conditions oressential boundary conditions.
We can force the condition to be fulfilled by simply writing the values into the{uj} vector of the ele-
ment concerned. To avoid an over-determination of the equation system, the corresponding weighting
functions are set to zero. This procedure will be explained by means of the example in the next section.

18.1.7 Numerical example

As an example of the numerical solution of the boundary value problem (18.7), the domainΩ shall be
divided into 4 finite elementsΩj , j = 1, ..., 4 of equidistant lengthL, as shown in Fig. 18.2. The stiffness
matrices[kj ] yield

[kj ] =
∫ xn

xn−1

( dNj1

dx
dNj1

dx
dNj1

dx
dNj2

dx
dNj2

dx
dNj1

dx
dNj2

dx
dNj2

dx

)
dx

=
∫ xn

xn−1

 1
(xn−xn−1)2

−1
(xn−xn−1)2

−1
(xn−xn−1)2

1
(xn−xn−1)2

 dx =

 1
L

−1
L

−1
L

1
L

 , (18.30)

and the vectors{fj} read withf(x) = C

{fj} = −
∫ xn

xn−1

(
Nj1

Nj2

)
Cdx = −C

∫ xn

xn−1

 xn−x
xn−xn−1

−xn−1+x
xn−xn−1

dx

= − C

2L

(
2xnx− x2

−2xn−1x+ x2

)∣∣∣∣∣
xn

xn−1

= − C

2L

(
(xn − xn−1)2

(xn−1 − xn)2

)
= −

(
0.5CL
0.5CL

)
. (18.31)

Arranging all the contributions into one single matrix gives

1
L

−1
L 0 0 0

1
L

2
L

−1
L 0 0

0 −1
L

2
L

−1
L 0

0 0 −1
L

2
L

−1
L

0 0 0 −1
L

1
L





u1

u2

u3

u4

u5


= −



0.5CL

CL

CL

CL

0.5CL


. (18.32)

With u1 = u5 = 0 the first and last rows and columns in the global stiffness matrix are eliminated and
the equations system becomes

2
L

−1
L 0

−1
L

2
L

−1
L

0 −1
L

2
L



u2

u3

u4

 = −


CL

CL

CL

 . (18.33)
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Fig. 18.2: Left: Element shape functions. Right: Finite element solution of the boundary value problem with homogeneous

Dirichlet boundary conditions.

The solution of the problem is (with C=4 and L=0.25):
u2

u3

u4

 = −


3L
4

L
2

L
4

L
2 L L

2

L
4

L
2

2L
4



CL

CL

CL

 =


−0.375

−0.5

−0.375

 . (18.34)

The analytical solution and its finite element approximation are shown in Fig. 18.2.

18.2 The FEM model problem in magnet design

Consider the typical model problem in magnet design as shown in Fig. 18.3, consisting of two different
domains:Ωi the iron region with permeabilityµ(H) andΩa the air region with the permeabilityµ0.
The regions are connected to each other at the interfaceΓai. Furthermore, each volume is bounded by a
surfaceΓ (also denoted∂Ω) itself consisting of two different partsΓH andΓB with their outward normal
vectorn. The elementary model problem as shown in Fig. 18.3 is a mixed boundary value problem. The
non-conductive air regionΩa may also contain a certain number of conductor sourcesJ which do not
intersect the iron regionΩi.

Using the vector potential for the solution of the three dimensional magnetostatic boundary value
problem one has to impose boundary conditions for the tangential and normal components ofA. This is
an easy task if the boundary surfaces are parallel to the coordinate surfaces. Otherwise the components
of A with respect to the basis{ex, ey, ez} have to be transformed into the local frame{n, t1, t2}. In the
mathematical description below, we will therefore assume (unlike shown in Fig. 18.3) that the boundary
conditions are imposed on coordinate surfaces.

18.3 Total vector-potential (curl− curl) formulation

As the divergence of the magnetic flux is zero, the application of a total magnetic vector potential in the
domainΩ = Ωa ∪ Ωi automatically satisfies Eq. (10.58). Ampère’s law (10.57) then takes the form

curl
1
µ

curlA = J in Ω (18.35)

which, augmented with a penalty term [163] to guarantee the fulfillment of the Coulomb gauge, becomes

curl
1
µ

curlA− grad
1
µ

div A = J inΩ. (18.36)
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The boundary and interface conditions can be summarized as:

A · n = 0 on ΓH , (18.37)
1
µ

div A = 0 on ΓB, (18.38)

n× (A× n) = 0 on ΓB, (18.39)

1
µ

( curlA)× n = 0 on ΓH , (18.40)[
1
µ

div A
]

ai

= 0 on Γai, (18.41)[
1
µ

( curlA) × n
]

ai

= 0 on Γai, (18.42)

[A]ai = 0 on Γai. (18.43)

18.4 Weighted residual

The domainΩ = Ωa ∪ Ωi is discretized into finite-elements in order to solve this problem numerically.
For the approximate solution ofA in a finite element mesh, the differential equation (18.36) is only
approximately fulfilled

curl
1
µ

curlA− grad
1
µ

div A− J = R (18.44)

with a residual vectorR. A linear equation system for the unknown nodal valuesA(k) of the vector
potential can be obtained by minimizing the weighted residualsR in an average sense over the domain

               

                                

Ωi

Ωa

Ωa

µ(H)

µ0

µ0

ΓH n× (H× n) = 0 Ht = 0

ΓH

ΓB

B · n = 0

Bn = 0

Γai

Γai

Fig. 18.3: Elementary model problem for the numerical field calculation of superconducting magnets. In the iron domain the

total vector-potential is displayed. The non-conductive air regionΩa contains a certain number of conductor sourcesJ which

do not intersect the iron regionΩi.
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Ω, i.e., ∫
Ω

wa ·RdΩ = 0 (a = 1, 2, 3) (18.45)

with the vector weighting functions

w1 =

w1

0
0

 , w2 =

 0
w2

0

 , w3 =

 0
0
w3

 , (18.46)

wherew1, w2, w3 are arbitrary (but known) weighting functions. The vector weighting functionswa

have to obey the homogeneous boundary conditions

wa · n = 0 onΓH , (18.47)

wa × n = 0 onΓB. (18.48)

Forcing the weighted residual to zero yields∫
Ω

wa ·
(

curl
1
µ

curlA− grad
1
µ

div A
)

dΩ =
∫

Ω
wa · J dΩ (a = 1, 2, 3). (18.49)

18.5 Weak form in 3-D

With the boundary conditions (18.47) and (18.48) forwa and the following generalizations of the inte-
gration by parts rule2∫

Ω

(
curl

1
µ

curlA
)
·wa dΩ =

∫
Ω

1
µ

curlA · curlwadΩ−
∮

Γ

1
µ

( curlA× n) ·wadΓ, (18.50)

∫
Ω

(
− grad

1
µ

div A
)
·wa dΩ =

∫
Ω

1
µ

div A div wadΩ−
∮

Γ

1
µ

div A(n ·wa)dΓ, (18.51)

the weighted residual of (18.36) can be transformed to∫
Ω

1
µ

curlA · curlwadΩ−
∫

ΓH

1
µ

( curlA× n) ·wadΓH +
∫

Ω

1
µ

div A div wadΩ−∫
ΓB

1
µ

div A(n ·wa)dΓB −
∫

Γai

(
1
µ

div Ai(ni ·wa) +
1
µ0

div Aa(na ·wa)
)

dΓai −∫
Γai

(
1
µ

( curlAi × ni) +
1
µ0

( curlAa × na)
)
·wadΓai =

∫
Ω

wa · J dΩ, (18.52)

with a = 1,2,3. Due to the boundary conditions (18.38) and (18.40)-(18.42), all the boundary integrals in
Eq. (18.52) vanish and therefore

∫
Ω

1
µ

curlwa · curlA dΩ +
∫

Ω

1
µ

div wa div A dΩ =
∫

Ω
wa · J dΩ (18.53)

with a = 1,2,3. Eq. (18.53) is called the weak form of the vector-potential formulation because the second
derivatives have been removed and the continuity requirements onA have been relaxed at the expense
of an increase in the continuity conditions of the weighting functions. Only this makes possible the use

2Eq. (18.50) is proved by substitutinga = wa andb = 1
µ

curlA in Eq. (5.124). Eq. (18.51) is proved by substituting

ϕ = 1
µ

div A anda = wa in Eq. (5.127).



CHAPTER 18. PRINCIPLES OF NUMERICAL FIELD COMPUTATION 227

of elements with linear shape functions. Inside these elements, the first derivative of the shape functions
is a constant and the second derivative vanishes. On the element boundary we find a jump in the first
derivative and a Diracδ-function for the second.

The boundary value problem (18.36)-(18.43) is identical with the weak formulation (18.53) to-
gether with the boundary conditions (18.37), (18.39) and (18.43) which can be considered when the
matrix of the linear equation system is assembled. These boundary conditions are also calledessential,
in contrast to the boundary conditions (18.38), (18.40)-(18.43) which are incorporated in the weak for-
mulation and are callednaturalboundary conditions. The natural boundary conditions are only satisfied
in the weak sense.

18.6 Weak form in 2-D

In two dimensions, with∂∂z = 0, the Coulomb gauge is automatically fulfilled and Eq. (18.53) further
reduces to ∫

Ω

1
µ

curlw3 · curlAz dΩ =
∫

Ω
w3 · Jz dΩ. (18.54)

With the relationcurlGz = gradGz × ez it follows:∫
Ω

1
µ

gradw3 · gradAz dΩ =
∫

Ω
w3 · Jz dΩ. (18.55)

The essential boundary conditionn × (A × n) = 0 on ΓB takes the easy formAz = 0on ΓB and the
boundary condition onΓH , A · n = 0 is automatically fulfilled asn ⊥ ez.

18.7 Assembling the matrix

In 3-D the solution is approximated element-wise by the potential vectorsAj (containing the three
components of the vector potential) which are expanded with respect to the element shape functions
Nk(x) and their nodal valuesA(k):

Aj(x) =
K∑
k=1

Nk(x)A(k) x ∈ Ωj , (18.56)

whereK is the number of nodes of the elementΩj and

A =

AxAy
Az

 . (18.57)

TheNk(x) are the shape functions which are associated with the elementj and which are zero outside
that element. A linear equation system for the unknownsA(k) can be obtained by forcing the weighted
residual to zero in an average sense over the elementΩj and integration by parts, which yields the weak
integral form foroneelement with Eq. (18.56) to be substituted into Eq. (18.53):∫

Ωj

1
µ

curlwa · curl

(
K∑
k=1

Nk(x)A(k)

)
dΩ +

∫
Ωj

1
µ

div wa div

(
K∑
k=1

Nk(x)A(k)

)
dΩ =

∫
Ωj

wa · J dΩ . (18.58)

If the weighting functions are chosen as the element shape functionsNl, l = 1, ...,K (Galerkin’s
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Fig. 18.4: Finite element mesh of the LHC main dipole coil. The mesh required for the accurate modeling of the coil is

very dense, resulting in large number of unknowns in particular if the surrounding iron yoke geometry has to be considered.

Simplifications of the coil geometry yield inaccurate field quality estimates.

method) we get [71]:∫
Ωj

1
µ

curlNla · curl

(
K∑
k=1

Nk(x)A(k)

)
dΩ +

∫
Ωj

1
µ

div Nla div

(
K∑
k=1

Nk(x)A(k)

)
dΩ =

∫
Ωj

Nla · J dΩ (18.59)

for l = 1, ...K anda = 1, 2, 3, with

Nk1,l1 =

Nk,l

0
0

 , Nk2,l2 =

 0
Nk,l

0

 , Nk3,l3 =

 0
0
Nk,l

 , (18.60)

Eq. (18.59) can be rewritten in a matrix form as

[k]{A} = {f}. (18.61)

The matrix[k] is often called thestiffnessmatrix (by reference to elasticity problems), and{f} is the
elementforcevector.{A} is the vector of the nodal potential function. The stiffness matrix has the form

[k] =


k11 · · · k1K

...
...

...

kK1 · · · kKK

 (18.62)

for a element withK nodes with three degrees of freedom per node. The coefficientsklm(l,m =
1, ...,K) in this matrix are3 × 3 matrices and can be calculated by means of Gauss-integration. The
Galerkin method has the important property that the stiffness matrix is sparse and symmetric.

The equation system for the entire domainΩ can be assembled through the merging of the element
(sub)-systems in the resulting equation system

[K]{A} = {F} (18.63)

with the introduction of the so-called nodal functionsNGn(x) with

NGn(x) = Nk(x) forx ∈ Ωj , (18.64)
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wheren is the global node number in the domainΩ, ref. Fig. 19.1.

Remark: The current densityJ appears on the right hand side of the weak integral equation
(18.59). In consequence, when using FEM for the solution of the field problem in accelerator magnet
design, the complicated shape of the superconducting coils must be modeled in the finite element mesh,
c.f. Fig. 18.4. While this is possible but cumbersome in 2-D, it would be impossible in three-dimensions.

�

18.8 Questions

1. What is a finite element shape function. How are they constructed for linear triangular elements (3
nodes).

2. Explain the weighted residuum and the weak formulation.



Chapter 19

Finite Element Shape Functions

The solution domainΩ = Ωa ∪ Ωi is discretized into a number of interconnected sub-regionsΩj called
finite-elements, a procedure which is usually referred to asmeshing. We will limit ourselves to tri-
angles and quadrangles to mesh two-dimensional domains and parallelepipeds (hexahedra) for three-
dimensional domains. The hexahedra are generated by simple extrusion from the 2-D mesh.

19.1 Global shape functions

We will start with the most simple three noded triangular element in the plane. We shall also limit
ourselves to theLagrange1 elements, where the potential at nodes of the element are the degrees of
freedom. AHermite2 element on the contrary takes both the potential (or field value) and its partial
derivative as unknowns. The conventions for the numbering of nodes and elements in the problem
domain are given in Table 19.1.

j 1 ... J Number of finite element

k 1 ...K Local number of nodes of element j

n 1 ... N Global number of all nodes

Table 19.1: Conventions for the numbering of nodes and elements

The domainΩ = Ωa ∪ Ωi is discretized (meshed) into finite-elementsΩj . The mesh generation
by means of topological and geometrical domain decomposition is explained in Chapter 20. Within a
particular elementj thez component of the vector potentialAj(x) = Azj (x, y) is approximated by

Aj = α1 + α2x+ α3y, x ∈ Ωj . (19.1)

The above functions with finite support are calledbasisfunctions and are defined on the elementj only.
The approximated node potentialsA(k) (the subscriptz is hereafter omitted) at the three local nodes
k = 1, 2, 3 of the elementj can then be expressed as

A(1) = α1 + α2x1 + α3y1, (19.2)

A(2) = α1 + α2x2 + α3y2, (19.3)

A(3) = α1 + α2x3 + α3y3. (19.4)

Solving this set of equations forα1, α2, α3 yieldsα1

α2

α3

 =

 1 x1 y1

1 x2 y2

1 x3 y3


−1A(1)

A(2)

A(3)

 (19.5)

1Joseph-Louis Lagrange (1736-1813).
2Charles Hermite (1822-1901).

230



CHAPTER 19. FINITE ELEMENT SHAPE FUNCTIONS 231

and using Cramer’s3 rule:

α1 =
1
D

∣∣∣∣∣∣∣
A(1) x1 y1

A(2) x2 y2

A(3) x3 y3

∣∣∣∣∣∣∣ , α2 =
1
D

∣∣∣∣∣∣∣
1 A(1) y1

1 A(2) y2

1 A(3) y3

∣∣∣∣∣∣∣ , α3 =
1
D

∣∣∣∣∣∣∣
1 x1 A

(1)

1 x2 A
(2)

1 x3 A
(3)

∣∣∣∣∣∣∣ , (19.6)

with

D =

∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣ = (x2y3 − x3y2 + x3y1 − x1y3 + x1y2 − x2y1) (19.7)

which is two times the surface spanned by the triangle. With the abbreviations

a1 = x2y3 − x3y2 , a2 = x3y1 − x1y3 , a3 = x1y2 − x2y1 ,

b1 = y2 − y3 , b2 = y3 − y1 , b3 = y1 − y2 ,

c1 = x3 − x2 , c2 = x1 − x3 , c3 = x2 − x1 .

(19.8)

it yields

D = ak + bkxk + ckyk k = 1, 2, 3 (19.9)

and the solutionα1, α2, α3 can be written as

α1 = (a1A
(1) + a2A

(2) + a3A
(3))/D, (19.10)

α2 = (b1A(1) + b2A
(2) + b3A

(3))/D, (19.11)

α3 = (c1A(1) + c2A
(2) + c3A

(3))/D, (19.12)

For a general point within the elementj the potential can therefore be approximated with

Aj(x) = α1 + α2x+ α3y

= [(a1 + b1x+ c1y)A(1) + (a2 + b2x+ c2y)A(2) + (a3 + b3x+ c3y)A(3)]/D

=
3∑

k=1

Nk(x)A(k) x ∈ Ωj (19.13)

with the local element shape functions (also called trial or interpolation functions)

Nk(x) = Nk(x, y) =
ak + bkx+ cky

ak + bkxk + ckyk
(k = 1, 2, 3) . (19.14)

In the FEM formulation only the element shape functions appear but not the basis functions (19.1). In
the nodek the respective element shape function has to be equal to one, i.e.,

Nk(xk) = 1 . (19.15)

If all nodal valuesA(k) are equal, the solution has to be constantAj = A(k) which yields a second
characteristic for the shape functions

3∑
k=1

Nk(x) = 1 . (19.16)

3Gabriel Cramer (1704-1752).
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Together with the condition (19.15) we get

Nk(xl) = δkl =

{
1 for l = k

0 for l 6= k
(19.17)

Figure 19.1 shows the element-wise defined basis functionsAj = α1 + α2x + α3y the complete linear
nodal functionNGn of a global node and the shape functionNk in the local nodek = 3 of element
j = 6.

Remark: The field problem is solved by means of a potential function that has to be continuous
not only for the exact solution but also for the approximated solution across element boundaries (C0

continuity). The continuity of the approximated solution is guaranteed because the basis functions and
the nodal potentials are identical along the common boundaryΓij between two elementsi andj. The
tangential derivatives∂A∂t of the basis functions are continuous whereas the normal derivatives∂A

∂n are
not. Consequently the normal component of the magnetic flux density (Bn) is continuous whereas the
tangential components of the field (Ht) can have a jump-discontinuities across the element boundary.�

19.2 Barycentric and local coordinates

In Section 19.1 the shape functions of first order triangular elements were derived in Cartesian (global)
coordinates through the inversion of a 3×3 matrix. If a high order polynomial is chosen as the basis
function, the derivation of the basis functions will be complicated and not intuitive by any means. It is
therefore worthwhile to study ways of writing down the shape-functions directly, making use of Eqns.
(19.15) and (19.16). It turns out that Eq. (19.14) is nothing but a transformation from Cartesian coordi-
nates to a natural system ofbarycentriccoordinates, which are also called area coordinates.

Let there be given three pointsP1, P2, P3 in R2 (i.e., with position vectorsr1, r2, r3) that are not
aligned. Then for each pointP ∈ R2 (position vectorr) there is one and only one set{λ1, λ2, λ3} of real
numbers (weights) for whichr =

∑3
i=1 λiri and

∑3
i=1 λi = 1 . The pointP is by definition the center

of mass of the weighted point masses at positionsPi and the numbersλi are said to be the barycentric
coordinates, see Section 4.6.1. Consequently, the coordinate transformation for the pointP expressed in
terms of its barycentric coordinates is

x = λ1x1 + λ2x2 + λ3x3 , (19.18)

y = λ1y1 + λ2y2 + λ3y3 , (19.19)

1 = λ1 + λ2 + λ3. (19.20)
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Fig. 19.1: Left: Element-wise defined (linear) basis functionsAj = α1 + α2x + α3y. Middle: Complete (linear) nodal

functionNGn of global noden = 5. Right: Shape function (also called trial or interpolation function)N3 in local nodek = 3

of elementj = 6.
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Fig. 19.2: Barycentric (area) coordinates and local coordinates in a linear triangular element.

The last equation above indicates that only two of the three barycentric coordinates are independent.
Solving the equation system inλ1, λ2, λ3 yields

λ1 = N1, λ2 = N2, λ3 = N3 . (19.21)

This is left as an exercise and proves that for linear triangular elements the shape functions are nothing
but the barycentric coordinates of the triangle. Note, however, that the relations between the barycentric
coordinates and the shape functions are not always that easy. Nevertheless, it paves the way to an intuitive
explanation of the shape functions.

Any pointP within the element is determined by the three barycentric coordinates which can be
expressed as

λ1 =
aP23

a123
λ2 =

aP31

a123
λ3 =

aP12

a123
(19.22)

whereA is the area of the triangles as shown in Fig. 19.2, hence the name area coordinates4. If the point
P is located on the edge 2-3, then the areaaP23 is zero and thusλ1 = 0, hence the edge 2-3 is the axis
of λ1 = 0.

In order to simplify the evaluation of the derivatives of the shape functions, local coordinates(ξ, η)
are introduced, ref. Fig. 19.2 through the transformation

x = x3 + (x1 − x3)ξ + (x2 − x3)η , (19.23)

y = y3 + (y1 − y3)ξ + (y2 − y3)η . (19.24)

Then

λ1 = ξ, λ2 = η, λ3 = 1− ξ − η. (19.25)

To express the local coordinates through the global Cartesian coordinates is then a simple task:

ξ =
2aP23

2a123
=
a1 + b1x+ c1y

D
, (19.26)

η =
2aP31

2a123
=
a2 + b2x+ c2y

D
, (19.27)

4This concept can easily be extended to three dimensions, e.g., for a 4 noded tetrahedral element by relating the volumes
λ1 = VP234

V1234
.
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with ai, bi as defined in (19.8) or

ξ =
x2y3 − x3y2 + (y2 − y3)x+ (x3 − x2)y
x2y3 − x3y2 + x3y1 − x1y3 + x1y2 − x2y1

, (19.28)

η =
x3y1 − x1y3 + (y3 − y1)x+ (x1 − x3)y
x2y3 − x3y2 + x3y1 − x1y3 + x1y2 − x2y1

. (19.29)

19.3 Quadrilateral higher order elements

The so-called simplex elements (triangular in 2-D, tetrahedral in 3-D) have the disadvantage that curved
domain boundaries can only be modeled by polygonal approximations. The advantage of a higher order
approximation of the potentials may be lost due to a rather rough geometrical approximation. An alter-
native are quadrangular curvilinear elements which can be found in most commercial software packages.
This choice also avoids numerically unfavourable prisms when the geometry is simply extruded into the
third dimension. The general idea behind higher order quadrilateral elements with curved sides is their
mapping from basic rectangles (2-D) or hexahedra (3-D), sometimes called the parent element, in the lo-
cal (ξ, η,) or (ξ, η, ζ) coordinate system into curved elements in the global (x, y) and (x, y, z) coordinate
systems, respectively. See Fig. 19.3.

If the coordinate transformation for the nodes are derived from the element shape functions as
used for the potential approximation themselves, a concept first introduced in [218], then the transformed
elements are namedquadrilaterals. The points with coordinatesxj , yj will lie at appropriate points of
the element boundary as from the general definition of the element shape function it is clear that these
have a unit value at the point in question and are zero elsewhere.

Aj =
K∑
k=1

Nk(ξ, η)A(k) , (19.30)

xj =
K∑
k=1

Nk(ξ, η)x(k) , (19.31)

yj =
K∑
k=1

Nk(ξ, η)y(k) . (19.32)

As these functions are polynomials, the transformation is non-linear and the resulting element shapes are
therefore curvilinear as desired, c.f. Fig. 19.3. The most widely used isoparametric elements are the 8
noded quadrilaterals in 2-D and the 20 noded elements in 3-D. Suitable sets of basis functions can be
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Fig. 19.3: Local and global coordinate system of a quadrilateral element.



CHAPTER 19. FINITE ELEMENT SHAPE FUNCTIONS 235

found through the construction of the Pascal5 triangle, Table 19.2. The aim is to find element expansions
which possess the highest order of a complete polynomial for minimum degrees of freedom.

We can compose for the 2-D quadrilateral elementj with K = 8 nodes:

Aj = α1 + α2ξ + α3η + α4ξ
2 + α5ξη + α6η

2 + α7ξ
2η + α8ξη

2 =

= (1, ξ, η, ξ2, ξη, η2, ξ2η, ξη2){α} = {P}T {α} (19.33)

which yields a linear equation system for the eight coefficients
A(1)

A(2)

.

.

 =


1 ξ1 η1 ξ

2
1 ξ1η1 η

2
1 ξ

2
1η1 ξ1η

2
1

1 ξ2 η2 ξ
2
2 ξ2η2 η

2
2 ξ

2
2η2 ξ2η

2
2

. . . . . . . .

. . . . . . . .



α1

α2

.

.

 (19.34)

or in matrix notation

{A} = [C]{α} (19.35)

and therefore

{α} = [C]−1{A}. (19.36)

Now

Aj = {P}T {α} = {P}T [C]−1{A} =
K=8∑
k=1

Nk(ξ, η)A(k) . (19.37)

If two adjacent elements are generated from adjacent parent elements in which the shape functions are
C0 then the quadrilaterals areC0 as well. This is obvious as adjacent elements are given the same sets
of coordinates at nodes. The same holds, as far as continuity of the potentialAj is concerned.

The finite element procedure requires the differentiation and integration of potential functions with
respect to the global (x, y,(z)) coordinate system. However, it is easier to calculate the derivatives with
respect toξ, η (andζ) because the shape functions are given in local coordinates. Applying the chain
rule gives (

∂
∂x
∂
∂y

)
Nk =

(
∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

) (
∂
∂ξ
∂
∂η

)
Nk = [J ]

(
∂
∂ξ
∂
∂η

)
Nk (19.38)

with the Jacobi matrix[J ] of the coordinate transformation. This coordinate transformation has to be
unique, with a unique inverse and has to lead to compatible sides of adjacent elements. Consequently,

5Blaise Pascal (1623-1662).

1

ξ η

ξ2 2ξη η2

ξ3 3ξ2η 3ξη2 η3

ξ4 4ξ3η 6ξ2η2 4ξη3 η4

ξ5 5ξ4η 10ξ3η2 10ξ2η3 5ξη4 η5

Table 19.2: Pascal triangle for the construction of a set of basis functions for 8 noded elements.
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Fig. 19.4: Two models and finite element meshes of the round iron yoke in a rectangular space. Collinear sides (left) should be

avoided as they may lead to poor numerical stability. Note that the coil is not represented by the mesh. The reason for this will

be explained in Section 21.1.

collinear element edges, shown on the left hand side of Fig. 19.4, have to be avoided. The two sides that
meet in the common mesh point are orthogonal in theξ, η plane but collinear in thex, y plane. This can
only be possible if the Jacobian is singular (i.e.,det[J ] = 0) at this mesh point.

It is known from differential geometry that the Jacobian of the inverse transformation is the inverse
of the Jacobian of the forward transformation and can therefore be easily be calculated.(

∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

)
=

(
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

)−1

=

(∑K
k=1

∂Nk(ξ,η)
∂ξ x(k)

∑K
k=1

∂Nk(ξ,η)
∂ξ y(k)∑K

k=1
∂Nk(ξ,η)

∂η x(k)
∑K

k=1
∂Nk(ξ,η)

∂η y(k)

)−1

(19.39)

In Eq. (19.38) the right hand side can be evaluated as the shape functionsNk are given in local coordi-
nates. Further,x andy are explicitly given by the mapping so that the Jacobian can be found explicitly
in terms of the local coordinates.

Because of the intrinsic symmetry of the element in the local coordinate system, the inverse of
matrix [C] does not have to be calculated and more systematic ways of generating the shape functions
can be applied.

19.3.1 Generating the shape functions

Elements with shape functions only dependent on the coordinates of nodes, placed on the element bound-
ary are said to be from the serendipity class6. Consider the rectangular element in the local coordinate
system as shown in Fig. 19.3. For an element only containing the corner nodes 1-4 the product of linear
Lagrangian polynomials of the form

1
4
(1 + ξ)(1 + η) (19.40)

results in a unit value at the top right corner (3) whereξ = η = 1 and zero at all other corners. As a linear
variation of the shape function of all sides exists, the continuity on the element boundary is guaranteed.
Introducingξi, ηi as the local coordinates at nodeiwhich take values of−1, 0, 1 according to the position
of the node, the form

Ni =
1
4
(1 + ξξi)(1 + ηηi) (19.41)

6After The Three Princes of Serendip known for their chance discoveries, e.g., one of them discovered that a mule (camel)
blind of the right eye had travelled the same road lately, because the grass was eaten only on the left side where it was worse
than on the right. Horace Walpole, 1754.
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allows a compact notation of all element shape functionsNi for i = 1, ..., 4. Extending this idea to
quadratic elements with 8 nodes results in

N1,2,3,4 =
1
4
(1 + ξξi)(1 + ηηi)(ξξi + ηηi − 1), (19.42)

N5,7 =
1
2
(1− ξ2)(1 + ηηi), (19.43)

N6,8 =
1
2
(1 + ξξi)(1− η2). (19.44)

19.4 Exercises

19.4.0.1 Finite element shape functions

The C-core magnet shown in Fig. 19.5 was calculated numerically, with the total vector potential formu-
lation in the FEM domain (iron yoke) and linear triangular elements. The values of the vector potentials
are given as (all in Tm)A1 = 0.0005,A2 = 0.041,A3 = 0.037,A4 = 0.006,A5 = 0.039,A6 = 0.016,A7

= 0.018. Calculate the flux (by means of Stoke’s theorem) through the yokes12 and the poles34. What
can be said about the continuity ofHt andBn along the interfaces56 between the elements?
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Fig. 19.5: Flux distribution in numerically calculated (LEP) C-core dipole magnet.



Chapter 20

Quadrilateral Mesh Generation

Although it is intuitive how a mesh should be constructed, we will start with a formal definition of a (two
dimensional) mesh:

We consider the domainΩ bounded by∂Ω in form of a polygon so that the domain can be parti-
tioned into triangular or quadrangular sub-domains denotedΩj . Then a partitioning, consisting of nodes
(0-cells), edges (1-cells) and surfaces (2-cells) and volumes (3-cells), which obeys the conditions that

• the union of allJ elements spans the entire problem domain, i.e.,Ω =
⋃J
j=1 Ωj ,

• each edgeΓ has two distinct nodes,
• eachn-cell is associated with at least one(n + 1)-cell, i.e., each node is associated with an edge

and each edge with a surface,
• each edge in the middle of the domain is associated with exactly two surfaces,
• each edge on the boundary is associated with exactly one surface,
• two points are connected with exactly one edge,
• two surfaces have at most one edge in common,
• boundaries of sub-regions coincide with edges,

is called a mesh when it is endowed with a metric and is called a cell-complex when only the topology
of the mesh is defined. The edges of a cell-complex can also be curvilinear as they only define the
neighbourhood between the nodes.

A mesh generator based on topology and domain decomposition, which was developed at the
University of Stuttgart, Germany [149] has been implemented in the ROXIE program package. The
following extensions have been added:

• Parametric input for the definition of design variables for mathematical optimization.
• Implementation of design features for the definition of material boundaries.
• Modular magnet geometry input by means of the GNU m4 macro language.
• Extension of the method to 8 noded (higher order) quadrilateral elements.
• A morphing algorithm for optimization and sensitivity studies which avoids re-meshing and chang-

ing mesh topologies.

20.1 Definition of the domain boundaries

The geometry is defined through the domain boundaries of simply connected (makro) domainsΩd, not
to be confused with the finite elementΩj . Holes within these domains have to be specified at a later
stage. The data has to be provided in a file namedfilename.ironwherefilenamehas to correspond to the
data file for the coil geometry. The syntax for the generation of this input file is explained in detail in
Annex 47.

The boundaries of the domains have to be specified through a polygon ofn ≥ 3 keypoints and
an odd number of points between them which are generated according to a user supplied parameter.

238
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1
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f 1
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Fig. 20.1: Left: Topology decomposition (cutting edges A,B,C). Middle: Domain decomposition (cutting edges 1,2,3...). Right:

After the topology decomposition the sub-domain is topologically equivalent to a disk with a hole.

For the definition of the keypoints, design variables of up to 100 characters can be defined and later be
addressed by the optimziation algorithm. Two keypoints have to be joined by a “Hyperline” which can
be in the form of a straight line, an arc, an ellipse, or a hyperbola. A domain is created by a “HyperArea”
which can be bounded by any numbern ≥ 3 of lines. The polygon defining the domain boundary has
to be closed and the lines have to be consistently ordered in a mathematically positive sense, i.e., anti
clockwise. Holes of any shape are defined in the same manner and then cut into one (and only one)
domain by means of the “HyperHoleOf” command. It must be guaranteed that if there is more than one
hole within a domain, they will not intersect. Simply connected domains are subsequently named “of
order 0”, domains with one hole are of order 1 etc..

20.2 Topology decomposition

The quadrilateral mesh generator developed by Nowottny [149] is based on the methods of topology de-
composition and geometrical domain decomposition. In a first step, the input geometry, see for example
Fig. 20.3 (a), is decomposed into areas that are topologically equivalent to disks, i.e., holes are eliminated
by means of an additional edgeΓ, see Fig. 20.3 (b). It can be shown that a quadrilateral mesh withn
quadrilaterals has an even number of edges (mb) at its boundary. By counting the number of inner edges
(mi) and boundary edges in a mesh we get4n = mb + 2mi from which follows thatmb is even. If the
domainΩ is multiply connected, the order ofΩ is reduced by one, using a cutting edge between a hole
and the domain boundary∂Ω or by connecting two holes inside the domain. The cutting edge is then
considered as a new part of the boundary. A domain of orderg can thus be reduced to a topological disk
of order 1 (disk with a hole) by means ofg − 1 additional edges. In order to introduce optimal cutting
edges the following objective functions is evaluated:

Γ∗ = minf(Γ) = min
{
λ1

L2

min{a1, a2}
+ λ2

L

min{C1, C2}
+ λ3(4π − ϕ1 − ϕ2)

}
(20.1)

The first term relates the length of the edgeL to the cut-off surfacesa1 anda2. L is squared to obtain
a dimensionless number. This way the maximum surface is cut by means of the cutting edge (cutting of
bottlenecks). The second term aims at cutting a surface of maximum circumferenceC by means of the
cutting edge. The third term maximizes the inner anglesϕ at pointP1 andP2. Theλi are weighting
factors, by defaultλi = 1.

The cutting edge is always a straight line between keypoints and it is checked to be feasible, i.e.,
Γ ∈ Ωd. The set of all feasible cutting edges is denotedKd. This set has a maximum of0.5n(n− 3) ele-
ments, forn being the number of keypoints of the domain. The principle of the topology decomposition
is shown in Fig. 20.1 (left).

20.3 Domain decomposition

Figure 20.1 (middle) shows the process of geometrical domain decomposition, Figure 20.3 (c) shows
the result for a real world application. The shape of the two sub-domainsΩ1 andΩ2 is optimized again
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by means of Eq. (20.1) after each cut. This decomposition is applied recursively toΩ1 andΩ2 until
the remaining sub-domains are regarded as simple, see Fig. 20.3 (c) and [149]. Each time, additional
points are inserted along the cutting edges according to the density of points on the domain boundary. A
domainΩd is calledsimpleif

• the number of nodes is less than 6,
• the domain does not contain “bottle-necks”, i.e., the square of the circumference related to the

surfaceC
2

a approaches the value4π (which is the limiting value for the circle),
• and the biggest inner angle of the nodesϕ(P ) is less thenπ.
• In case of a triangle, the conditiona + b < c has to be fulfilled in order to avoid unfavourable

angles in the elements generated by the mesh closing algorithm.

20.4 Meshing of simple domains

Simple domains are then filled with quadrilateral elements using a modified paving (advancing front)
strategy [30]. In this approach an area is filled from the outside to the inside by adding full rows of
quadrilateral elements, c.f. Fig. 20.3 (d) and Fig. 20.2 (left). The advantage of this method is that
additional nodes created are regular, i.e., the mesh is structured such that each node is connected to 4
quadrangles.

The computing time needed for the decomposition of an area withm contour points grows with
O(m3) if an area is divided into two sub-domains each time, and it is proportional tom4 if small 4-
noded areas are cut away. This shows the importance of minimizingL2/A during the decomposition.
The time consumption for the paving of simple areas with quadrilateral meshes, however, grows only
with O(m2) [149].

If no more row of elements can be paved into the domain, the mesh is closed by means of a mesh
closing algorithm which is visualized in Fig. 20.2 (right).

20.5 Smoothing

Finally, a smoothing algorithm is applied which leaves the mesh topology unchanged and which consists
of the following methods.

• Laplace-smoothing for the enlargement of small angles within each elementΩj by placing the
pointP into the barycenter of the neighbouring points.

• Edge-smoothing to reduce large angles by calculating the smallest distance of a point to all its
neighbouring points. This closest neighbour is calledPN . Then the position of the pointP is
moved according tor(Pnew) = r(P ) + δ(r(P )− r(PN )).

Fig. 20.2: Paving and mesh-closing in simple domains.
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(c) (d)

(a) (b)

Fig. 20.3: The different steps of the quadrilateral mesh generation using geometrical domain decomposition. Plot (a) shows

the input contour polygon, (b) the geometry after the topology decomposition, (c) the geometrically decomposed geometry and

(d) the finite-element mesh before smoothing.

• Angle-smoothing to increase short distances between mesh points by finding the node with the
biggest inner angle in the element and subsequently moving the adjacent nodes in the direction of
this node.

Fig. 20.3 shows the steps at the example of an LHC dipole yoke lamination. Figure 20.4 shows the
meshed iron yoke, insert, and collar geometry of the LHC main dipole (left) and of the MQM quadrupole
magnet (right).

(Yoke)

(Insert)

(Collar)

Fig. 20.4: Left: Quadrilateral higher order finite element mesh of the LHC main dipole iron yoke, insert, and stainless steel

collar. Right: Quadrilateral finite element mesh for the MQM quadrupole magnet.
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20.6 Re-meshing and morphing

In order to make the mesh generator suitable for optimization and sensitivity analysis, the geometry
is defined in a parametric way and the finite element mesh is updated for each trial solution in the
optimization process. The obvious method to realize mesh changes with updated iron geometry is to
calculate the new domain boundaries and repeat the domain decomposition. The evolution of the mesh
during a parametric study and its impact on the field harmonics showed, however, that this procedure
implies changes in the mesh topology. Consequently, discontinuities in the calculated field harmonics
are observed.

Point-based morphing is a technique known from computer graphics [16]. Applications for inves-
tigating similarities and relationships in the structure and shape of animals and plants using morphing
algorithms are introduced in [92]. Point-based morphing uses some given translation vectorss defined
explicitly at some point locationsPi, i = 1, . . . , n which are in our case the polygon pointsPi on the
shifted domain boundaries. Then the translation vectors of any mesh pointQ can be calculated as

s(Q) =
n∑
i=1

s(Pi) · wi
|r(Q)− r(Pi)|

(
n∑
i=1

wi
|r(Q)− r(Pi)|

)−1

, (20.2)

wherewi are weighting factors (wi = 1 by default) andr(Q) are the position vectors of the mesh points.

Applying this algorithm to the finite element meshes conserves the mesh topology. Figure 20.5
demonstrates the application of the point-based morphing algorithm to academic magnet geometries of
quadrupolar symmetry. The aim of such a yoke geometry could be the compensation of persistent current
field errors by means of saturating iron yoke parts (See also Chapter 27). In the upper left figure the mesh
has been generated forα = 20◦, whereas in the figure on the bottom right the mesh has been generated
for α = 27◦. The figures on the other diagonal show the meshes obtained through morphing from the
original mesh while preserving the mesh topologies.

Figure 20.6 shows two meshes of different topology for two different hole positions(x, y)lefthole =
(17mm, 31.7mm) and (x, y)right

hole = (29mm, 38.6mm) in the ferro-magnetic insert of the LHC main

= 27α

= 20

= 20α

α α = 27

α

α

α

α

re−meshingre−meshing

α

α

morphing

α

morphing

α

Fig. 20.5: Demonstration of point-based morphing with a simple iron yoke of quadrupolar symmetry.
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xhole = 17 mm xhole = 29 mm

hole holey y = 38.6 mm= 31.7 mmFig. 20.6: Meshed ferro-magnetic insert for two different hole positions ((x, y)left = (17mm, 31.7mm), (x, y)right =

(29mm, 38.6mm), x = y = 0 at the left bottom corner of the insert). The two mesh topologies are very different.

dipole. These holes are needed for tightening rods for the pre-assembly of collar packs. The tightening
rods are made from non-magnetic stainless steel and therefore the permeability of free space is assumed
in the calculations. Although the position of this hole is determined by mechanical considerations and
is therefore not a parameter in the field optimization process, it is interesting to study the sensitivity of
this hole position on the multipole field errors. The most effected field error is the relative quadrupolar
b2 field component.

Figure 20.7 shows the evolution of theb2 component as a function of thex-coordinate of the hole
in the insert. The hole was shifted along a line with an inclination of30◦ with regard to the abscissa.
It can be seen in Fig. 20.7 that the quadrupole component at nominal field level is sensitive to small
geometry changes in this region, whereas the quadrupole component is insensitive to the hole position at
injection field level (I = 0.06 Inom, Inom = 11800 A) and at half the nominal excitationI = 0.5 Inom.
At low and medium field level the iron insert is not saturated and therefore the effect of the hole on the
magnetic resistance of the insert is negligible.

Subtracting the fitted line (polynomial of3rd order) leads to the residuum plot that is shown in
Fig. 20.7 (right). The graph shows several discontinuities, especially at nominal field level, but also at
half the nominal field. Such discontinuities in the field harmonics can be explained by topology changes
of the finite element mesh and consequently different numerical errors in the field solution. If the hole
position were a parameter in the field optimization, these discontinuities would obviously have an impact
on the convergence of optimization algorithms, especially if gradient-based optimization strategies are
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Fig. 20.7: Top: Evolution of the quadrupole componentb2 for three different excitational levels,0.06, 0.5, and1 times the

nominal currentInom = 11800 A, as a function of thex-coordinate of the hole in the insert. The geometry is re-meshed each

time. Bottom: Residuum ofb2 in % as a function of thex-coordinate of the hole in the insert. The geometry is re-meshed each

time
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xhole = 17 mm xhole = 29 mm

hole holey y = 38.6 mm= 31.7 mmFig. 20.8: Meshed insert for two different hole positions ((x, y)lefthole = (17mm, 31.7mm), (x, y)right
hole = (29mm, 38.6mm),

x = y = 0 at the left bottom corner of the insert). The mesh was created for(x, y)hole = (25mm, 36.3mm) and afterwards

the morphing algorithm was applied.

used. Even though the absolute error introduced by mesh-topology changes is rather small (∼ 1%), the
discontinuity of the relative field componentb2, and hence the discontinuity of the objective function will
have a strong impact on the convergence of optimization algorithms. If the sensitivity of the hole position
on the multipole field errors were studied near one of these mesh topology changes, the resulting Jacobi
matrix would contain spurious coefficients. Figure 20.8 shows the meshes for the two hole positions as
before but with the mesh generated for the hole in the lower position, and subsequent application of the
morphing algorithm. The mesh topology remains unchanged. Figure 20.9 shows the results of the field
computations.

The residuum plot shown in Fig. 20.9 confirms that the discontinuities observed in the previous
calculations, Fig. 20.7, are due to changes in the mesh topology. It also shows that the morphing strategy
must not be abused for too big variations. As a matter of fact, ill-conditioned element shapes might
result. In this case, the program issues a warning and performs a re-meshing of the geometry. The
example underlines the importance of using the morphing algorithm instead of re-meshing for sensitivity
studies.
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Fig. 20.9: Left: Evolution of the quadrupole componentb2 for three different excitational levels,0.06, 0.5, and1 times the

nominal currentInom = 11800 A, as a function of thex-coordinate of the hole in the insert. The morphing algorithm is applied.

Right: Residuum ofb2 in % as a function of thex-coordinate of the hole in the insert. The morphing algorithm is applied

20.7 Questions

1. Why are quadrilateral elements used in magnet design. How are they constructed.?
2. What is a morphing strategy? Why is it better to use morphing for sensitivity studies in magnet

design?



Chapter 21

Numerical Field Computation for
Accelerator Magnets

Magnets for particle accelerators have always been a key application of numerical methods in electro-
magnetism. Hornsby [101], in 1963, developed a code based on the finite-difference method for the
solving of elliptic partial differential equations and applied it to the design of magnets. Winslow [229]
created the computer code TRIM (Triangular Mesh) with a discretization scheme based on an irregular
grid of plane triangles by using a generalized finite-difference scheme. He also introduced a variational
principle and showed that the two approaches lead to the same result. In this respect, the work can be
viewed as one of the earliest examples of the finite-element method applied to the design of magnets.
The POISSON code, which was developed by Halbach and Holsinger [95], was the successor of this
code and was still being applied for the optimization of the superconducting magnets for the LHC during
the early design stages. Halbach had also [93] introduced, in 1967, a method for optimizing coil arrange-
ments and pole shapes of magnets based on the TRIM code, an approach he named MIRT. In the early
1970s a general purpose program (GFUN) for static fields had been developed by Newman, Turner, and
Trowbridge that was based on the magnetization integral equation and was applied to magnet design [7].

When the LHC magnets are ramped from injection field level of 0.54 T to their nominal field of
8.33 T with the excitation cycle, as shown in Fig. 21.1, two nonlinear effects on the multipole field
components appear: at low field due to the superconducting filament magnetization and at high field due
to the saturation of the iron yoke. Fig. 21.2 shows the lower-order relative field harmonics in the main
bending magnets as a function of the excitational current in these magnets. Fig. 21.3 shows the relative
permeability (µr) in the iron yoke as a function of the excitation current at 4500 and 10500 A for a dipole
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Fig. 21.1: Excitation cycle for the LHC main dipole circuits.
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Fig. 21.2: Variation of the transfer functionB/I and the relative quadrupole field component as a function of the excitational

current. Note the effect of the iron saturation at higher field levels and the superconductor magnetization at low excitational

levels.

model magnet. The holes in the mid-plane are used in order to balance magnetic resistance for the flux
paths in the middle and in the outer region of the yoke.

For magnets with saturating iron yoke, numerical methods have to be used to replace the imaging
method. It is advantageous to use numerical methods that do not require the modeling of the coils in
the finite-element mesh and allow a distinction between the coil-field and the iron magnetization effects,
to confine both modeling problems on the coils and FEM-related numerical errors on the magnetization
effects in the iron yoke. The integral equation method of GFUN would qualify but leads to a very large
(fully populated) matrix of the linear equation system.

The program FEM2D, developed at the University of Graz, Austria, by Bardi, Biro, and Preis,
includes a reduced vector-potential(Ar) formulation, which is linked to the ROXIE code. Besides pro-
viding a more accurate and appropriate method for the field calculation, this link permits the application
of mathematical optimization techniques implemented in the ROXIE program. A graphical pre-processor

              

                              

              

                              

Fig. 21.3: Relative permeability (µr) in the iron yoke of a dipole model with separated collars, as a function of the excitation

current at 4500 (left) and 10500 A (right). The holes in the mid-plane are used in order to balance magnetic resistance for the

flux paths in the middle and in the outer region of the yoke.
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developed at CERN for the meshing of the domain with quadrilateral higher-order elements also supports
the feature-based design by means of yoke macros created with the GNU m4 macro language.

Experience has shown that the influence of the far-field boundary on the multipoles is smaller
using the reduced vector-potential formulation, since the reduced field accounts for only about 20% of
the total field and thus the error from the far-field boundary on the total field is reduced. Although the
mesh in the air region does not have to match the coil geometry, the air region must nevertheless be
meshed. This is not a problem in the 2-dimensional calculations but proves troublesome in the 3-D case.

The method of coupled boundary-elements and finite-elements (BEM-FEM), developed by Fetzer,
Haas, and Kurz at the University of Stuttgart, Germany, combines a finite-element description using
incomplete quadratic (8-noded in 2-D and 20-noded in 3-D) elements and a gauged total vector-potential
FEM formulation for the interior of the magnetic domains, and a boundary element (BEM) formulation
for the coupling of these parts to the exterior, which includes excitation coils. This implies that the air
regions need not to be meshed at all. Experience has shown that the gauged formulation is applicable
for the field calculation of superconducting magnets, although some accuracy problems persist at low
excitation, see Chapter 23.

21.1 Reduced vector-potential formulation

We have already said that using the reduced scalar-potential method results in cancellation errors in
unsaturated iron domains. Applying the total vector-potential formulation, the current densityJ appears
on the right hand side of the differential equations (18.55) or (18.53). In consequence, when using the
FE-method for the solution of this problem the relatively complicated shape of the coils must be modeled
in the FE-mesh. The mesh required for the accurate modeling of the coil with its keystoned cable and
insulation layers is very dense, resulting in large number of unknowns, in particular if the surrounding
iron yoke geometry has to be considered. Simplifications of the coil geometry yield inaccurate field
quality estimates. A formulation that avoids the representation of the coil geometry in the FE-mesh is
the reduced vector-potential method. The vector-potentialA is split into two parts:

A = As + Ar (21.1)

whereAr is the reduced vector-potential due to the iron magnetization andAs is the impressed vector
potential due to the source currents in free space. Accordingly

B = µ0Hs + curlAr. (21.2)

The source vector potential can be calculated with Biot-Savart-type integrals from the coil current distri-
bution according to Eq. (13.10). The field equations can then be derived as follows: From Eq. (11.37),
replacingA with As + Ar we get

curl
1
µ

curl (Ar + As)− grad
1
µ

div (Ar + As) = J inΩ (21.3)

from which follows

curl
1
µ

curlAr − grad
1
µ

div Ar = J− curl
1
µ

curlAs

= curlHs − curl
µ0

µ
Hs

= curl
(
Hs −

µ0

µ
Hs

)
in Ω. (21.4)
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The boundary and interface conditions read:

Ar · n = 0 on ΓH , (21.5)
1
µ

div Ar = 0 on ΓB, (21.6)

1
µ

curlAr × n = −µ0

µ
Hs × n on ΓH , (21.7)

n · curlAr = −µ0n ·Hs onΓB, (21.8)[
1
µ

div Ar

]
ai

= 0 on Γai, (21.9)[
1
µ

( curlAr) × n
]

ai

= 0 on Γai, (21.10)

[Ar]ai = 0 onΓai. (21.11)

Eq. (21.4) and the boundary conditions can be brought together in the weak integral form by means of
the identities∫

Ω

(
curl

1
µ

curlAr

)
·wa dΩ =∫

Ω

1
µ

curlAr · curlwadΩ−
∮

Γ

1
µ

( curlAr × n) ·wadΓ , (21.12)

for thecurl− curl term,∫
Ω

(
− grad

1
µ

div Ar

)
·wa dΩ =

∫
Ω

1
µ

div Ar div wadΩ−
∮

Γ

1
µ

div Ar(n ·wa)dΓ, (21.13)

for the treatment of the penalty term and∫
Ω

curl
(
Hs −

µ0

µ
Hs

)
·wa dΩ =

∫
Ω

(
Hs −

µ0

µ
Hs

)
· curlwadΩ−∮

Γ

(
Hs × n− µ0

µ
Hs × n

)
·wadΓ, (21.14)

for the right hand side. Taking into account thatHs × n = 0 onΓH , and considering the boundary
conditions (18.47) and (18.48) forwa, the weak integral form of the reduced vector-potential formulation
reads:

∫
Ω

curlwa ·
1
µ

curlAr dΩ +
∫

Ω
div wa ·

1
µ

div Ar dΩ =
∫

Ω
curlwa · (Hs −

µ0

µ
Hs) dΩ

with a = 1,2,3. In the air regionΩa, µ = µ0, and therefore the right hand side of the above equation is
zero. The current density does not appear explicitly in the equation and the required source field in the
iron region can be calculated by means of Biot-Savart’s law.

Fig. 21.4 (top) shows the distribution of the source field|Bs|, the middle figure shows the reduced
field distribution|Br| from the iron magnetization, and the bottom figure shows the distribution of the
total field |Btot| at a current of 11700 A and 8.33 T central field. Both excitational and reduced fields
show a gradient in the aperture due to the cross-talk between the two beam-channels. With the optimized
shape of the iron yoke the two gradients cancel each other in the total field. This results in a symmetric
field distribution in the aperture with only a smallb2 field component.
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Fig. 21.4: Top: Distribution of the source field|Bs|. Middle: Reduced field|Br| from the iron magnetization. Bottom: Total

field distribution|Btot|.



Chapter 22

Coupling of Boundary-Elements and
Finite-Elements

The disadvantage of the finite-element method (FEM) is that only a finite domain can be discretized,
and therefore the field calculation in the magnet coil-ends, with their large fringe fields requires a large
number of elements in the air region. The relatively new boundary-element method (BEM) is defined
on an infinite domain and can therefore solve open boundary problems without approximation with far-
field boundaries. The disadvantage is that non-homogeneous materials are difficult to consider. The
BEM-FEM method couples the finite-element method inside magnetic bodiesΩi = ΩFEM with the
boundary-element method in the domain outside the magnetic materialΩa = ΩBEM, by means of the
normal derivative of the vector-potential on the interfaceΓai between iron and air. The principle of the
method is shown in Fig. 22.1.

The application of the BEM-FEM method to magnet design has the following intrinsic advantages:

• The coil field can be taken into account in terms of its source vector-potentialAs, which can be
obtained easily from the filamentary currentsIs by means of Biot-Savart type integrals without the
meshing of the coil.

y
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Fig. 22.1: Elementary model problem for the BEM-FEM coupling method
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• The BEM-FEM coupling method allows for the direct computation of the reduced vector-potential
Ar instead of the total vector-potentialA. Consequently, errors do not influence the dominating
contributionAs due to the superconducting coil.

• Because the field in the aperture is calculated through the integration over all the BEM elements,
local field errors in the iron yoke cancel out and the calculated multipole content is sufficiently
accurate even for very sparse meshes.

• The surrounding air region need not be meshed at all. This simplifies the pre-processing and avoids
artificial boundary conditions at some far field boundaries. Moreover, the geometry of the perme-
able parts can be modified without regard to the mesh in the surrounding air region, which strongly
supports the feature based, parametric geometry modeling that is required for mathematical opti-
mization.

• The method can be applied to both 2-D and 3-D field problems.

22.1 The elementary model problem

The elementary model problem for a single aperture model dipole (featuring both Dirichlet and Neumann
boundary conditions on the iron yoke) is shown in Fig. 22.2.

               

                    

Ωi = ΩFEM

Ωa = ΩBEM

Ωa = ΩBEM

M

µ0

ΓH n× (H× n) = 0

ΓB

B · n = 0

Γai = ΓBEMFEM

���

ΓBEMFEM

Fig. 22.2: Elementary model problem for the numerical field calculation of a superconducting (single aperture) model magnet.

In the iron domain the total vector-potential is displayed. The non-conductive air regionΩa contains a certain number of

conductor sourcesJ which do not intersect the iron regionΩi. The finite-element method inside the magnetic bodyΩi = ΩFEM

is coupled with the boundary-element method in the domain outside the magnetic materialΩa = ΩBEM, by means of the normal

derivative of the vector-potential on the interfaceΓai = ΓBEMFEM between iron and air.
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22.2 The role of Green’s identities

We recall Green’s first and second identity∫
Ω
( gradϕ · gradψ + ϕ∇2ψ)dΩ =

∮
Γ
ϕ gradψ · ndΓ (22.1)∫

Ω
(ϕ∇2ψ − ψ∇2ϕ)dΩ =

∮
Γ
(ϕ gradψ − ψ gradϕ) · ndΓ (22.2)

which are generalizations of the integration by parts rules∫ x2

x1

(ϕϕ′′ + ϕ′
2
)dx = [ϕϕ′]x2

x1
, (22.3)

∫ x2

x1

(ϕψ′′ − ψϕ′′)dx = [ϕψ′ − ψϕ′]x2
x1
. (22.4)

to two or three dimensions. Green’s theorems play a vital role in numerical field computation as they
constitute the junction between the FEM and the BEM method as shown in Fig. 22.3.

22.3 The FEM part

Inside the magnetic domainΩi a gauged vector-potential formulation is applied. Starting from for the
vector Poisson equation (11.49) the complete formulation of the problem reads

− 1
µ0
∇2A = J + curlM inΩi, (22.5)

A · n = 0 on ΓH , (22.6)
1
µ0

div A = 0 on ΓB, (22.7)

n× (A× n) = 0 on ΓB, (22.8)

1
µ

( curlA)× n = 0 on ΓH , (22.9)[
1
µ0

div Aa

]
ai

= 0 on Γai, (22.10)

1
µ0

( curlAi − µ0M)× ni +
1
µ0

( curlAa)× na = 0 on Γai (22.11)

[A]ai = 0 on Γai (22.12)

Weighted
Residual
Method

Weighting Function =
Element shape function

Weighting Function =
Fundamental solution

of the Laplace operator

Green's 1. Theorem
(Removal of

second derivative)

Green's 2. Theorem
(Removal of all

volume integrals)

Weak integral
form

Fredholm integral
equation

FEM

BEM

Fig. 22.3: The role of Green’s first and second identity in the FEM and BEM method.
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Eq. (22.11) is the continuity condition ofHti = Hta on the interface between iron and air. Forcing the
weighted residual to zero yields

−
∫

Ωi

1
µ0
∇2A ·wadΩi =

∫
Ωi

(J + curlM) ·wadΩi (a = 1, 2, 3), (22.13)

w1 =

w1

0
0

 , w2 =

 0
w2

0

 , w3 =

 0
0
w3

 . (22.14)

The weighting functionswa obey the homogeneous boundary conditions

wa · n = 0 onΓH , (22.15)

wa × n = 0 onΓB. (22.16)

With Green’s first identity∫
Ωi

∇2A ·wadΩi = −
∫

Ωi

grad (A · ea) · gradwa dΩi +
∫
∂Ωi

∂A
∂ni

·wa dΓ (22.17)

and the relation∫
Ωi

curlM ·wadΩi =
∫

Ωi

M · curlwadΩi −
∫
∂Ωi

(M× ni) ·wa dΓ (22.18)

we get for the weak form

1
µ0

∫
Ωi

grad (A · ea) · gradwa dΩi −
1
µ0

∫
ΓB

(
∂A
∂ni

− (µ0M× ni)
)
·wa dΓB

− 1
µ0

∫
ΓH

(
∂A
∂ni

− (µ0M× ni)
)
·wa dΓH −

1
µ0

∫
Γai

(
∂A
∂ni

− (µ0M× ni)
)
·wa dΓai =∫

Ωi

M · curlwa dΩi +
∫

Ωi

wa · J dΩi (22.19)

for a = 1,2,3. With the boundary conditions (22.6) - (22.9), and taking into account that the current
density in the iron domain is zero, Eq. (22.19) further reduces to

1
µ0

∫
Ωi

grad (A · ea) · gradwa dΩi −
1
µ0

∮
Γai

(
∂A
∂ni

− (µ0M× ni)
)
·wa dΓai =∫

Ωi

M · curlwa dΩi (22.20)

with a = 1,2,3. It is shown in [71] that the continuity condition ofHt at the boundary between iron and
air

1
µ0

( curlAi − µ0M)× ni +
1
µ0

( curlAa)× na = 0 on Γai (22.21)

is equivalent to

∂Ai

∂ni
− (µ0M× ni) +

∂Aa

∂na
= 0 on Γai (22.22)

whereni is the normal vector onΓai pointing out of the FEM domainΩi, andna is the normal vector on
Γai pointing out of the BEM domainΩa. The boundary integral term on the boundaryΓai in Eq. (22.20)
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serves as the coupling term between the BEM and the FEM domain. Let us nowassumethat the normal
derivative onΓai

QΓai = −
∂ABEM

Γai

∂na
(22.23)

is given. If the domainΩi is discretized into finite-elementsΩj (C0-continuous, isoparametric 20-noded
hexahedron elements are used) and the Galerkin method is applied to the weak formulation, then a linear
system of equations is obtained

([
KΩiΩi

] [
KΩiΓai

]
0[

KΓaiΩi

] [
KΓaiΓai

] [
T
])

{
AΩi

}{
AΓai

}{
QΓai

}
 =

(
0
0

)
(22.24)

with all nodal values ofAΩi , AΓai andQΓai grouped in arrays{
AΩi

}
=
(
A(1)

Ωi
,A(2)

Ωi
, . . .

)T
, (22.25){

AΓai

}
=
(
A(1)

Γai
,A(2)

Γai
, . . .

)T
, (22.26){

QΓai

}
=
(
Q(1)

Γai
,Q(2)

Γai
. . . .

)T
. (22.27)

The subscriptsΓai andΩi refer to nodes on the boundary and in the interior of the domain, respec-
tively. The domain and boundary integrals in the weak formulation yield the stiffness matrices

[
K
]

and
the boundary matrix

[
T
]
. The stiffness matrices depend on the local permeability distribution in the

nonlinear material. All the matrices in (22.24) are sparse.

22.4 The BEM part

By definition, the BEM domainΩa contains no iron and thereforeM = 0 andµ = µ0. Eq. (11.49) then
reduces to

∇2A = −µ0J . (22.28)

As Cartesian coordinates are used, Eq. (22.28) decomposes into three scalar Poisson equations to be
solved. For an approximate solution of these equations, the weighted residual forced to zero yields:∫

Ωa

∇2Aw dΩa = −
∫

Ωa

µ0Jw dΩa. (22.29)

Employing Green’s theorem∫
Ω
(ϕ∇2ψ − ψ∇2ϕ)dΩ =

∮
Γ
(ϕ
∂ψ

∂n
− ψ

∂ϕ

∂n
)dΓ (22.30)

yields ∫
Ωa

A∇2wdΩa = −
∫
Ωa

µ0Jw dΩa +
∫
Γai

A
∂w

∂na
dΓai −

∫
Γai

∂A

∂na
wdΓai . (22.31)

In Eq. (22.31) it is already considered that all the boundary integrals on the far field boundaryΓBEM
∞

vanish. Now the weighting function is chosen as the fundamental solution of the Laplace equation,
which is in 3-D

w = u∗ =
1

4π|r− r′|
. (22.32)
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ΩBEM

90◦ wedge half space 90◦

inverse wedge

Θl
1
2 π π 3

2 π

Θl
2π

1
4

1
2

3
4

Table 22.1: Different anglesΘ for 2-D domains.

With

∂w

∂na
= q∗ = − 1

4π|r− r′|2
(22.33)

and

∇2w = −δ(|r− r′|) (22.34)

we obtain the Fredholm1 integral equation of the second kind:

Θ
4π
A+

∫
Γai

QΓai u
∗ dΓai +

∫
Γai

AΓai q
∗ dΓai =

∫
Ωa

µ0Ju
∗ dΩa. (22.35)

As is common practice in literature on boundary element techniques, e.g. [46], the notationu∗ for the
fundamental solution is used in Eq. (22.35). The right hand side of Eq. (22.35), the last remaining domain
integral is a Biot-Savart type integral, Eq. (13.8), for the source vector potentialAs.

The components of the vector-potentialA at arbitrary pointsr ∈ Ωa , e.g., on the reference radius
for the field harmonics, have to be computed from (22.35) as soon as the components of the vector-
potentialAΓai and their normal derivativesQΓai on the boundaryΓai are known.Θ is the solid angle
enclosed by the domainΩa in the vicinity of r and Θl

2π is called theedge factor. It is 1 if the pointr
is situated within the BEM domain and 0.5 if it is on a straight edge of the domain, see Table 22.1.
For the discretization of the boundaryΓai into individual boundary elementsΓai,j , againC0-continuous,
isoparametric 8-noded quadrilateral boundary elements (in 3-D) are used. In 2-D, line elements with
3 nodes are used. They have to be consistent with the elements from the FEM domain touching this
boundary. The components ofAΓai andQΓai are expanded with respect to the element shape functions,
and Eq. (22.35) can be rewritten in terms of the nodal data of the discrete model,

Θ
4π

A = As −
{
QΓai

}
·
{
g
}
−
{
AΓai

}
·
{
h
}
. (22.36)

In Eq. (22.36),g results from the boundary integral with the kernelu∗, andh results from the boundary
integral with the kernelq∗. The discrete analogue of the Fredholm integral equation can be obtained
from Eq. (22.36) by successively putting the evaluation pointr at the location of each nodal pointrj .
This procedure is called point-wise collocation and yields a linear system of equations, i.e.,[

G
]{

QΓai

}
+
[
H
]{

AΓai

}
=
{
As

}
. (22.37)

In Eq. (22.37),
{
As

}
contains the values of the source vector-potential at the nodal pointsrj , j = 1, 2, . . .

. The matrices
[
G
]

and
[
H
]

are unsymmetrical and fully populated.

1Ivar Fredholm (1866-1927).
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Iteration

Algorithm

FEM

BEM

Q
(i)
a

A
FEM,(i)
Γ

A
BEM,(i)
ΓR(i)

R(i) =A
BEM,(i)
Γ −A

FEM,(i)
Γ

Fig. 22.4: Schematic of the iterative solver for coupled BEM-FEM computation. The indexi denotes the iteration step.

22.5 The BEM-FEM Coupling

An overall numerical description of the field problem can be obtained by complementing the FEM de-
scription (22.24) with the BEM description (22.37) which results in

[
KΩiΩi

] [
KΩiΓai

]
0[

KΓaiΩi

] [
KΓaiΓai

] [
T
]

0
[
H
] [

G
]


{
AΩi

}{
AΓai

}{
QΓai

}
 =

 0
0{
As

}
 . (22.38)

Equation (22.37) gives exactly the missing relationship between the Dirichlet data
{
AΓai

}
and the Neu-

mann data
{
QΓai

}
on the boundaryΓai. It can be shown [121] that this procedure yields the correct

physical interface conditions, the continuity ofn ·B andn×H acrossΓai.

Eq. (22.37) is solved iteratively as shown in Fig. 22.4. The indexi denotes the step of iteration. In
the initial step, the vector potentialAΓai at the boundary nodes are taken as the source vector potentialAs

which is calculated from the Biot-Savart’s law for the line currents approximating the current distribution
in the superconducting coils.

The BEM-FEM program, implemented in the ROXIE package, performs several iterations of this
kind. The first iteration process considers the non-linearity of the magnetic permeabiltiyµr in the iron
yoke. Iteration is continued until the residual

R(i) = ABEM,(i)
Γai

−AFEM,(i)
Γai

(22.39)

falls below a user supplied value.
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22.6 Examples

22.6.1 Field quality in collared coils

The stainless-steel collars for the double aperture magnets with a relative permeability ofµr = 1.0025
create asymmetries in the magnetic field when the field qualitity in the collared coil assembly is measured
at room temperature and with only one aperture powered, see Fig. 22.5.

Fig. 22.5: Geometric model of one dipole coil powered for room temperature measurement in the combined collar structure

assuming a constant relative permeability ofµr = 1.0025. The figure displays the magnetic flux density in the collars.

The room temperature measurements indicate possible manufacturing errors at an early stage in
the assembly process. The relative field errors at 17 mm reference radius in the aperture are given in
Table 22.2.

As was mentioned earlier, the BEM-FEM method does not require the meshing of the coil (which
can therefore be modeled with the required accuracy) and does not require a far field boundary condition
which would influence considerably the results of this unbounded field problem.

22.6.2 The beam screen

A beam screen, see Fig. 22.6 (right), will shield the magnet cold bore from the synchrotron radiation
emitted by the circulating proton beam. The internal copper layer of the beam screen will also decrease
the wall impedance for the beam image currents. The screen has to be nonmagnetic (a relative perme-
ability of less than 1.003 is specified) in order not to destort the multipole content in the aperture.

The calculations were performed for a 2-D cross-section, the effect of the slots was taken into
account by means of an adapted stacking factor in the two-dimensional calculations, [9]. The field errors
produced by the beam screen were calculated through the comparison of field calculations with and
without the screen in an open boundary problem, with excitation from a idealcos Θ current distribution
producing a pure dipole field. This allowed for a fine discretization of the beam screen and cold bore. As
the cold bore has a perfect cylindrical shape, it does not create higher order field errors.

In order to validate the calculations, we compare to measurements of a screen (reference 50L)
made of the nonmagnetic stainless steel grade P506, centered in the cold bore tube of a dipole model
magnet. The beam screen consists of a 1 mm thick, 300 mm long tube of 48.5 mm diameter and with

Nominal Additional

b2 0.000 b6 0.000 ∆b2 −0.239 ∆b6 0.000
b3 3.915 b7 0.745 ∆b3 −1.173 ∆b7 −0.058
b4 0.000 b8 0.000 ∆b4 −0.012 ∆b8 0.000
b5 −1.038 b9 0.122 ∆b5 0.305 ∆b9 0.003

Table 22.2: Additional field errors (bbare
n − b0

n) in a coil collar assembly with right-hand-side aperture powered for warm

measurements (units of10−4 at 17 mm) and nominal values for a bare coil without collar.



CHAPTER 22. COUPLING OF BOUNDARY-ELEMENTS AND FINITE-ELEMENTS 258

               

                                     

Fig. 22.6: Cross-section of the main dipole coil with the cold bore and beam screen.

a vertical aperture of 38.9 mm perforated with slots and flattened at the top and bottom. The internal
surface of the screen is covered by a 50µm thick layer of copper. The nominal relative permeability
µr of the beam screen material is 1.003 for the beam-screen and 1.0025 for the cooling tube. The
calculations have also been performed for a relative permeability of 1.002 for both the beam-screen and
the cooling tube.

For the field measurements, the sample slides against the cold bore by means of a nonmagnetic
rod fastened to the thrust bearings of the magnetic measuring shaft in the cryostat. The magnetic mea-
surements were performed with the beam screen in two different positions with respect to the magnetic
shaft, [208]. The results of the measurements are compared to the calculations in Table 22.3.

22.6.3 Dipole short models

As was stated in the introduction, the LHC required a major effort to guarantee that the superconducting
dipoles perform to specifications. For this reason an R&D program for the development of the super-
conducting dipoles was started in 1995. The aim of the program was to study the influence of individual
coil parameters, pre-stress in the coil, collar material and yoke structure on a series of otherwise identical
model dipoles. A maximum turn-around and testing efficiency was achieved by reducing the length of
the models from 14 m to approximately 1 m and by manufacturing single aperture models with only one
coil in a re-usable iron yoke.

In Dipole In Quadrupole

Calculation Calculation Measured Calculation

µr = 1.002 µr = 1.003 (0.6 mm) µr = 1.003

∆b2 0.000 0.000 0.000

∆b3 -0.248 -0.33 -0.3 0.000

∆b4 0.000 0.000 0.310

∆b5 0.226 0.295 0.25 0.000

∆b6 0.000 0.000 -0.259

∆b7 -0.166 -0.213 -0.18 0.000

∆b8 0.000 0.000 0.213

∆b9 0.127 0.163 0.000

Table 22.3: Calculations of the additional field errors (bScreen
n − b0

n) due to the beam-screen compared to the measured values

which are scaled to the nominal thickness. All in units of10−4.
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Fig. 22.7: ROXIE model of the 1m long coil-test facility (CTF).

The short models have a coil length of 1.05 m and a magnetic yoke of only 402 mm approximately
centered in the magnet in order to leave the configuration in the end and connection region unchanged
with respect to the long prototypes. The geometrical model is shown in Fig. 22.7.

The magnetic field homogeneity of the models is systematically measured in a vertical test set-up
where the magnet is suspended inside a cryostat. The measurement of the field is done using radial pick-
up coils mounted on a glass-fiber shaft which rotates in the bore of the magnet. Five adjacent pick-up coil
sections are installed to measure the field dependence along the magnet bore. Each rotating pick-up coil
delivers a signal proportional to the total flux linkage which is a function of the angular position. Based
on an independent calibration of the pick-up it is then possible to reconstruct the angular dependence of
the field and perform a harmonic analysis of the measured signal.

A drawback of the short length of the dipole models is that end effects influence the magnetic field
quality in the center of the magnet. As the rotating pick-up coils deliver multipoles averaged over their
length, and the pick-up in the center of the magnet has a length of 200 mm (half the length of the magnetic
yoke) the interpretation of measurements becomes difficult. In order to study systematic effects in the
field quality, it is necessary to calculate, with a high precision, the 3-D multipole field errors in these
magnets as a function of thez-position. Fig. 22.8 shows the relative multipole componentsb3, b5 and
b7 (related to the main fieldB1 of 8.24 T calculated at 11530 A for the 2-D model, at 17 mm reference
radius) as a function of thez-position.z = 0 is the center of the magnet. The iron yoke ends atz = 201
mm.

To validate the field computation, the results of the 3-D field calculation are compared to the
measurements on the single aperture model MBSMS21. The multipoles are computed as a function
of the excitation current over a length of 550 mm along the magnet bore. The computed dipole field
B1(z) and the multipolesbn(z) are used to compute the average multipoles over the length spanned
by the measurement pick-up coils. This averaging step is necessary to obtain quantities comparable to
the measured values. The results of the measured and simulated normal dipole and normal sextupole
component are shown in Fig. 22.9 together with the 2-D approximation for the long magnet. It can be
seen that the short models show a globally different saturation behavior compared to the long dipoles.

22.6.4 End field in long dipole prototype magnets

In order to reduce the peak field in the coil-end and thus to increase the quench margin in the region
with a weaker mechanical structure, the magnetic iron yoke is cut back at the magnet’s extremity. Fig.
22.10 shows on the left a total cut back of the iron yoke (dipole models till 1998) and on the right the
final version where the yoke collar structure is made of three parts with a non-magnetic nested stainless
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Fig. 22.8: Multipole errors in the 1m long coil-test facility (CTF) (at 17 mm reference radius, in units of10−4, related to the

main fieldB1 of 8.2452 T calculated at 11530 A for the two dimensional model) as a function of the z-position.z = 0 is the

center of the magnet. The iron yoke ends atz = 201 mm.

steel insert. This insert is not modeled in the 3-D field computations. The BEM-FEM coupling method
was used for the calculation of the end-fields in the magnet models as shown in Fig. 22.10 (left). The
computing time for the 3-D calculation is in the order of 5 hours on a DEC Alpha 5/333 workstation. The
iterative solution of the linear equation system converges better in the case of a high excitational field
than in the case of the injection field with its non-saturated iron yoke. It is therefore still impossible to
apply mathematical optimization techniques to the 3-D field calculation with iron yoke. However, as the
additional effect from the fringe field on the field quality is low, it is sufficient to calculate the additional
effect and then partially compensate with the coil design, if necessary.

It has already been explained, that the BEM-FEM coupling method allows the distinction between
the coil field and the reduced field from the iron magnetization. Fig. 22.11 shows the field compo-
nents along a line in the end-region (non-connection side) of the twin-aperture dipole prototype magnet
(MBP2), 43.6 mm above the beam-axis in Aperture 2 (on a radius between the inner and outer layer
coil) from z = -200 mm inside the magnet yoke toz = 200 mm outside the yoke. The iron yoke ends at
z = -80 mm, the onset of the coil-end is atz = 0.
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Fig. 22.9: Measured and computed transfer functionB1/I in T/kA (left) andb3 at 17 mm reference radius (right) as a function

of the excitation (between injection and nominal field) averaged over the length of the measurement pick-up coil (200 mm).
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Fig. 22.10: Left: The main dipole models till 1998 featured an end design with the superconducting coils sticking out of the

magnetic iron yoke in order to reduce the peak field to main field ratio in the coils. Right: The final version of the LHC main

magnet end geometry with the yoke collar structure made of three parts with a non-magnetic nested stainless steel insert. This

insert with a specified relative permeability ofµr = 1.005 is not modeled in the 3-D field computations.

22.6.5 Fringe field in the coil-end region

The iron yoke ends approximately 80 mm from the onset of the coil-end at the non-connection side
and about 300 mm from the onset of the coil-end at the connection end. This asymmetry results from
the aim of a further reduction of the field in the ramp and splice region. Fig. 22.12 shows the field
components along a line in the end-region of the twin-aperture dipole prototype magnet (MBP2) at the
position of the so-called N-Line, housing superconducting cable for the powering of corrector magnets
in the short-straight-sections (SSS).
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Fig. 22.11: Magnetic flux density at nominal current along a line atx = 97mm,y = 43.6 mm (above the beam-axis of aperture

2 on a radius between the inner and the outer layer coil) fromz = -200 mm inside the magnet yoke toz = 200 mm outside the

yoke. The iron yoke ends atz = -80 mm, the onset of the coil-end is atz = 0. Left: Coil field, Middle: Reduced field from iron

magnetization, Right: Total field. Note the different scales and the relatively small contribution from the yoke.
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Fig. 22.12: Fringe field outside the dipole cold mass near the coil-end region at the position of the N-Line. Left: Connection

end, Right: Return end.

The line extendes fromz = - 500 mm (inside the magnet yoke) toz = 400 mm outside the yoke.
The onset of the coil-ends are atz = 0. On the non-connection side the iron yoke ends atz = -80 mm, on
the connection side atz = -300 mm.

22.7 Questions

1. Why is it possible to decouple the coil and iron yoke design in superconducting magnets. Would
this also be possible in conventional magnets?

2. Give at least three advantages of the BEM-FEM coupling method for the calculation of fields in
superconducting accelerator magnets.



Chapter 23

BEM-FEM Coupling with Total Scalar
Potential

A wise man does not trust all his eggs to one basket,
Miquel de Cervantes (1547-1616), El ingenioso hidalgo Don Quixote de la mancha.

Using node-based finite-elements with the Coulomb gauge for the 3-D implementation creates numerical
problems as the permeability jumps on the material boundariesΓai, and therefore the interface condition
on the boundary between iron and air implies a large jump in the divergence ofA, a quantity which
should actually be zero. However, because the method of finite-elements ensures only theapproximate
satisfaction of the weak form, an error in the fulfillment of the Coulomb gauge1

µ div A = 0 in Ω is
present in air domains which are part of the FEM domain, e.g. holes and nodges. Due to the interface
condition the error in the iron region is then considerably higher still. A large error in the satisfac-
tion of the Coulomb gauge results in even larger errors in fulfilling Ampère’s law as the penalty term
grad 1

µ div Ar is far from zero. Therefore the use of an ungauged formulation is desirable. In the 2-D
case the divergence of the vector potential is always zero, and the above problem does not appear.

23.1 The BEM-FEM coupled total scalar potential formulation

In most superconducting magnets the coil can be completely embedded in a separating surfaceΓs such
that the domain outsideΓs is simply connected and contains no currents. The magnetic fieldH outside
Γs can therefore be represented by a single-valued scalar magnetic potentialϕm as

H = − gradϕm. (23.1)

The coil can be decomposed into filamentary current loops, each to be replaced by a homogeneous
surface distribution of magnetic dipoles. The magnetic dipoles are located on a surface spanned by the
loop. The shape of this surface is somewhat arbitrary, as long as it does not penetrateΓs. The surface
distribution of magnetic dipoles can equivalently be regarded as a double layer of fictitious magnetic
charges. This means that throughout the whole space the magnetic scalar potentialϕm is governed by

divµ gradϕm = −ρm, (23.2)

whereρm is the density of fictitious magnetic charges. InsideΓs there is a singular distribution of
magnetic charges which represents the current in the coil.

The coil is surrounded by an iron yoke, which coincides with the finite element sub-domainΩFEM.
Equation (23.2) withρm=0 in ΩFEM can be rewritten in its weak form and discretized by nodal finite
elements using the standard Galerkin procedure.

In the air regionΩBEM we haveµ = µ0 and Eq. (23.2) reduces to

∆ϕm = −ρm

µ0
. (23.3)

263
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Multiplication by the Green functionu∗ of free space, Eq. (22.32) and two integrations by parts yields
an integral representation of the scalar potential,

ϕm =
1
µ0

∫
ΩBEM

ρmu
∗ dΩ

︸ ︷︷ ︸
ϕS

+
∮
Γai

(
ϕm

∂u∗

∂n
− ∂ϕm

∂n
u∗
)
dΓai

︸ ︷︷ ︸
ϕR

. (23.4)

From Eq. (23.4) it can be seen that the potentialϕm at an arbitrary pointr outside the yoke consists of
a source termϕS due to the superconducting coil and a reduced potentialϕR due to the iron magnetiza-
tion. The source term is directly computed from the filamentary current loops. This is usually done by
integrating their magnetic fieldHS along a contour from some reference pointr0 to the observation point
r. We use a different approach whereϕS is directly computed as a double layer potential and additional
integration can be avoided. The contribution of a single loop carrying the currentIS can be shown to be

ϕS(r ) = IS

∫
ΓLoop

∂u∗(r′, r )
∂nr′

dΓ(r′). (23.5)

The integral in Eq. (23.5) is nothing but the solid angle under which the loop appears from the pointr. If
the loop is decomposed into triangular patches, this angle can be computed analytically from geometrical
data [54].

Eq. (23.4) carries over to a linear system by discretization of the iron-air interfaceΓai into nodal
boundary elements and point-wise collocation. It is only on this interface where the values ofϕS ac-
cording to Eq. (23.5) are actually needed. The equation systems resulting from the FEM and BEM can
be easily coupled together, because both formulations have identical Dirichlet and Neumann boundary
dataϕm and−µ∂ϕm/∂n, respectively. Thus the continuity ofn ×H andn ·B across the interface is
ensured. One finally obtains

[
KΩiΩi

] [
KΩiΓai

]
0[

KΓaiΩi

] [
KΓaiΓai

] [
T
]

0
[
H
] [

G
]


{
ϕΩi

}{
ϕΓai

}{∂ϕm

∂n

}
 =


0

0{
ϕS

}
 , (23.6)

where
[
K
]

are the FEM stiffness matrices,
[
T
]

the FEM boundary matrix,
[
G
]

the BEM matrix resulting
from the Green function and

[
H
]

the BEM matrix resulting from its normal derivative. The subscripts
Ωi andΓai refer to interior and boundary nodes ofΩFEM.

The equation system (23.6) is nonlinear and must therefore be solved by iteration. Possible meth-
ods are theM(H)-iteration, where a simple update of the magnetization takes place, or the well-known
Newton method. In each iteration step a linear system with the same structure as (23.6) has to be solved.
This can in turn be done iteratively with the help of a Krylov subspace method where the preconditioning
is based on domain decomposition [174].

Once the solution of Eq. (23.6) has been obtained the reduced field can be computed from Eq.
(23.4) and

BR = −µ0 gradϕR. (23.7)

For the contributionBS due to the coils it is better to start directly from Biot-Savart’s law, becauseϕS

according to Eq. (23.5) suffers from discontinuities insideΓs.

23.2 Example

At the example of the single aperture short model magnet, which is described in detail in Section 22.6,
the scalar potential formulation has been compared to its dual BEM-FEM coupled vector-potential for-
mulation with respect to computational resources and numerical results. The convergence of the methods
is presented in Table 23.1.



CHAPTER 23. BEM-FEM COUPLING WITH TOTAL SCALAR POTENTIAL 265

Formulation High field Low field High field Low field

13000 A 3000 A 13000 A 3000 A

Utilized memory 49.7 MB

Vector M(B) Steps 40 80 b3 (z1) 1.0054 2.6827

Potential GMRES Steps 830 1889 b3 (z2) 3.3111 2.6174

M(B) Residual (dB) -45.9 -45.1

Tsolv 726. 1493.

Tinteg 13763. 13748.

Vector Newton Steps 8 9 b3 (z1) 1.0061 2.6829

Potential GMRES Steps 277 2851 b3 (z2) 3.3104 2.6178

Newton Residual (dB) -46.4 -45.6

Tsolv 335. 1824.

Tinteg 13781. 13749.

Utilized memory 18.7 MB

Scalar M(H) Steps 277 400 b3 (z1) 1.5761 2.6890

Potential Bi-CGSTAB Steps 6223 5703 b3 (z2) 3.7987 2.6422

M(H) Residual (dB) -24.6 -28.9

Tsolv 1183. 1126.

Tinteg 7740. 7714.

Scalar Newton Steps 13 6 b3 (z1) 1.5958 2.6840

Potential Bi-CGSTAB Steps 2390 505 b3 (z2) 3.9557 2.6325

Newton Residual (dB) -49.3 -50.9

Tsolv 379. 140.

Tinteg 7674. 7653.

Table 23.1: The normalized residual is defined as10 log ||Ax − b||/||b|| (dB). Values above -40 dB indicate convergence

problems.Tsolv is the CPU time in sec. for the solving of the nonlinear problem,Tinteg is the CPU time in sec. for calculating

the Kirchhoff integrals over all the BEM elements. All CPU times refer to a DEC AlphaStation 600/5/333. Relative sextupole

component in the center of the magnet (z1 = 0) and outside the iron yoke (z2 = 217 mm) in units of10−4 at 17 mm reference

radius.

The nonlinearity has been treated either by a simple update of the magnetization (M(B) in the
vector andM(H) in the scalar potential case, respectively) or by Newton’s method (outer iteration). For
the solution of the resulting equation system (inner iteration) in each nonlinear step, different precondi-
tioned iterative solvers have been examined. In the case of the vector-potential formulation the GMRES
(Generalized Minimum Residual) solver [201] and in the case of the scalar potential formulation, the
Bi-CGSTAB (Biconjugate Gradient Stabilized) solver [225] worked most efficiently.

The scalar potential formulation only requires a third of the memory and shows the best overall
performance in terms of solver speed when combined with the Newton iteration. At a current of 13000 A
and a central field of about 9 T in the aperture (resulting in a saturation of the iron yoke) the advantage is
smaller. However, the time for calculating the Kirchhoff1 integrals is reduced and the reduced memory
allocation allows mesh refinement or the calculation of more complicated cases such as the two-in-one
model magnets with two beam pipes in a common iron yoke structure.

The results for the relative sextupole component (which is the most sensitive to the iron magne-
tization) in the center of the magnet and outside the iron yoke are also given in Table 23.1 in units of
10−4 at a 17 mm reference radius. The method for the outer iteration shows only a slight effect on the
sextupole component as long as the residual is below -40 dB. For small excitation the results are basically
the same, whereas at high field the sextupole component both in the center and outside the yoke is higher
when the scalar potential formulation is used. The difference is about half a unit in10−4. A higher
sextupole component indicates a lower saturation of the yoke and consequently a lower flux density in

1Gustav Kirchhoff (1824-1878).
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the aperture of the magnet (B1 = 9.0818 T calculated with the vector-potential formulation,B1 = 9.0699
T with the scalar potential formulation).



Chapter 24

Integral Quantities of the Field Solutions

Having found the numerical solution of the system variable, magnetic vector or scalar potential as the
case may be, we may want to do some post-processing too. Field components are calculated by means of
differential quotients which may then be plotted or subjected to a Fourier transform. For the operation of
magnets the inductance and electromagnetic forces are important quantities. The numerical calculation of
the inductance directly from the magnetic vector potential will be described in this chapter. In particular,
we will treat the effect of iron saturation on stored energy and inductance.

24.1 Linear circuits

24.1.1 Stored energy

In the linear case, the stored magnetic energy in a volumeV is given by the integral

W =
1
2

∫
V

H ·BdV . (24.1)

Because ofdiv (A×H) = H · curlA−A · ( curlH), Eq. (24.1) can be rewritten as [130]:

W =
1
2

∫
V

H · curlA dV

=
1
2

∫
V

div (A×H) dV +
1
2

∫
V

A · curlHdV

=
1
2

∫
∂V

(A×H) · da +
1
2

∫
V

A · curlHdV . (24.2)

The term1
2

∮
(A×H) · da vanishes on the far-field boundary asA ∝ 1/r,H ∝ 1/r2,da ∝ r2 as can be

seen from the Biot-Savart type integrals.

Inner surfaces (which have to be considered from both sides) are not contributing to the total
energy as long as they carry no surface currents (α = 0) which is true in case of finite conductivity and
excitation without jump discontinuity.

Proof:

W =
1
2

∮
(A×H) · da =

1
2

∑
i

∫
ai

[A× (H2 −H1)] · n2 dai

=
1
2

∑
i

∫
ai

A · [(H2 −H1)× n2] dai =
1
2

∑
i

∫
ai

A ·αdai (24.3)

which is zero forα = 0. �
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The magnetic energy can then be calculated with

W =
1
2

∫
V

A · curlHdV =
1
2

∫
V

A · J dV. (24.4)

Remark: We have to worry about the gauge invariance of this result: What will be the calculated
magnetic energy forA′ = A+ gradψ?

W =
1
2

∫
V

A′ · J dV

=
1
2

∫
V

A · J dV +
1
2

∫
V

gradψ · J dV

=
1
2

∫
V

A · J dV +
1
2

∫
∂V
ψ(J · n) da− 1

2

∫
V
ψ div J dV . (24.5)

We have thus to impose that no current is leaving the boundary of the integration domain and that all
current carrying conductors are closed within the domain. �

For the 2-D calculation of coil cross-sections made ofk strands, the energy per unit length can be
calculated as

W/l =
1
2

∑
k

Azk
Ik. (24.6)

In this expressionAzk
refers to the vector potential due to the currents (other than theIk in the wire)

which produce the fieldBk in that wire and therefore neglects the magnetic energy in the wire.

24.1.2 The energy inside a strand

From Ampère’s law we get for a round wire with radiusr0 and currentI:∫
∂a

H · ds =
∫
a
J · da , (24.7)

H 2πr =
I

πr20
πr2, (24.8)

H =
Ir

2πr20
. (24.9)

For magnetically neutral materials, the energy in a hollow cylinder with an inner radiusr, thicknessdr
and lengthl is

dW =
1
2
BH 2πrldr = µ0H

2 πrldr =
µ0lI

2

4πr40
r3dr. (24.10)

Therefore the total energy in the wire is

W

l
=
µ0I

2

4πr40

∫ r0

0
r3dr =

µ0I
2

16π
. (24.11)

For one aperture of the LHC main dipole the stored energy at 8.33 T (linear calculation with equivalent
inner radius of the iron yoke of 98 mm) is 237 kJ/m. The inner layer consists of 15 turns (have to be
considered× 4 for one aperture), with each turn containing 2×18 strands with a current of 320 A each.
The outer layer consists of 25 turns, with each turn containing 2×14 strands with a current of 411.5 A
each. The energy stored in the strands can then be calculated to 4.3 J/m and can, indeed, be neglected.
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24.1.3 Self and mutual inductance

Combining Eqns. (13.10) and (24.4) yields

W =
µ0

8π

∫
V

∫
V ′

J(r) · J(r ′)
|r− r ′|

dV ′ dV. (24.12)

For a set ofn closed current loops with current densitiesJi(r), (i = 1, 2, ..., n), J(r) =
∑n

i=1 Ji(r) we
get

W =
n∑
i=1

n∑
j=1

Wij =
µ0

8π

n∑
i=1

n∑
j=1

∫
V

∫
V ′

Ji(r) · Jj(r ′)
|r− r ′|

dV ′ dV

=
µ0

8π

n∑
i=1

n∑
j=1

IiIj

∫
V

∫
V ′

Ji(r) · Jj(r ′)
IiIj |r− r ′|

dV ′ dV. (24.13)

With the mutual inductances defined as

Lij =
µ0

4πIiIj

∫
V

∫
V ′

Ji(r) · Jj(r ′)
|r− r ′|

dV ′ dV (24.14)

and measured in henry1 [L] = 1H = 1V·s·A−1. Eq. (24.13) can be rewritten as

W =
1
2

n∑
i=1

n∑
j=1

LijIiIj . (24.15)

We see from Eq. (24.14) that the inductance only depends on the coil geometry. It also shows the
symmetry

Lij = Lji. (24.16)

For i = j the coefficient (24.14) is called the self-inductance. The inductances can be calculated directly
using Eq. (24.14) or by calculating the stored energy and comparing with (24.15).

For the inner inductance of a strand we get from its energy, Eq. (24.11):

Li
l

=
µ0

8π
= 0.05

mH
km

(24.17)

which is independent of the wire radius.

24.1.4 Worked example

As an example consider the nested skew-dipole, sextupole corrector as it is shown in Fig. 24.1. The two
dipole coils are connected in series, we shall call them coil 1 and coil 2. The six coils of the sextupole
magnet are also connected in series and are referred to as coil 3, coil 4, ... , coil 8. The self and mutual
inductances can be derived by powering one single coil at a time (e.g., coil i, containingk individual
wires and total currentI) and calculating the stored magnetic energy according to Eq. (24.6). This gives

Lii =
2Wsingle

I2
, (24.18)

(Wsingle = Wii). Subsequently, powering any two coilsi andj with the same currentI yields because
of the symmetry of the mutual inductances:

Lij =
1
2

(
2Wdouble

I2
− Lii − Ljj

)
(24.19)

with Wdouble = Wij + Wji. The self and mutual inductances for the combined corrector are given in
Table 24.1.

1Joseph Henry (1797-1878).
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Fig. 24.1: Cross-section of a dipole/sextupole corrector magnet with magnetic field modulus in the coil. Coil 1 = Blocks

1-4,15-18; Coil 2 = Blocks 5-8, 19-22; Coil 3 = Blocks 9, 23; Coil 4 = Blocks 10, 24; Coil 5 = Blocks 11, 25; etc.

24.1.5 The magnetic flux

In Chapter 16.3 we showed that for simply connected domains and outside current-carrying conductors
the field can be represented through a magnetic scalar potential

H = − gradϕm . (24.20)

If we now assume one single closed loop of a wire with negligible cross-section (i.e.,V does not con-
tain the conductor and hence the inner energy of it), the stored magnetic energy can be calculated by
integrating

W =
µ0

2

∫
V

H ·HdV =
µ0

2

∫
V

( gradϕm)2dV, (24.21)

whereV is the (current free) external volume. Using the identity

div (ϕm gradϕm) = ϕm∇2ϕm + ( gradϕm)2, (24.22)

Coil 1 2 3 4 5 6 7 8

1 12.601 6.517 −0.245 0.252 0.478 −0.478 −0.252 0.245

2 6.517 12.601 −0.478 −0.252 0.245 −0.245 0.252 0.478

3 −0.245 −0.478 0.136 0.027 −0.010 0.009 −0.010 0.027

4 0.252 −0.252 0.027 0.136 0.027 −0.010 0.009 −0.010

5 0.478 0.245 −0.010 0.027 0.136 0.027 −0.010 0.009

6 −0.478 −0.245 0.009 −0.010 0.027 0.136 0.027 −0.010

7 −0.252 0.252 −0.010 0.009 −0.010 0.027 0.136 0.027

8 0.245 0.478 0.027 −0.010 0.009 −0.010 0.027 0.136

Table 24.1: Self and mutual inductances per unit length inmH/m for the combined dipole and sextupole corrector magnet.



CHAPTER 24. INTEGRAL QUANTITIES OF THE FIELD SOLUTIONS 271

considering that∇2ϕm = 0 , and applying Gauss’ theorem
∫
V div gdV =

∫
∂V g · da yields

W =
µ0

2

∫
V

( gradϕm)2dV =
µ0

2

∫
V

div (ϕm gradϕm)dV =

µ0

2

∫
∂V
ϕm gradϕm · da. (24.23)

Now the surface is split up into a surface at infinite distance and the surface of the current loopas which,
itself, consists of an upper (with outward normaln1) and a lower surface (with outward normaln2), see
Fig. 13.6.

W =
µ0

2

∫
a∞

ϕm gradϕm · da +
µ0

2

∫
as

ϕm gradϕm · da

= 0 +
µ0

2

∫
as

[ϕm1 gradϕm · n1 + ϕm2 gradϕm · n2] da

=
µ0

2

∫
as

(ϕm1 − ϕm2) gradϕm · nda

=
1
2

∫
as

(ϕm2 − ϕm1)Bnda . (24.24)

The surface of the current loopas can be regarded as a double layer of fictitious magnetic charges [130],
on whichϕm2 − ϕm1 is constant

ϕm2 − ϕm1 = I (24.25)

and therefore

W =
1
2

∫
as

IBnda =
1
2
IΦ . (24.26)

The concept of the magnetic double layer is explained in Section 13.6. Comparing the result (24.26)
with

W =
1
2
L11I

2 =
1
2
(L11I)I (24.27)

yields

Φ = L11I . (24.28)

For multiple conductors we get from Eq. (24.26):

W =
1
2

n∑
i=1

IiΦi (24.29)

Because of Eq. (24.15), slightly edited

W =
1
2

n∑
i=1

Ii

n∑
j=1

LijIj . (24.30)

we get

Φi =
n∑
j=1

LijIj . (24.31)



CHAPTER 24. INTEGRAL QUANTITIES OF THE FIELD SOLUTIONS 272

With Eqns. (24.4) and (24.26) we also find for a single coil:

Φ =

∫
V A · JdV

I
. (24.32)

If the currents are time dependent, the induced voltage will be

Ui = −dΦi

dt
= −

n∑
j=1

Lij
dIj
dt

(24.33)

and for a single coil

U = −LdI
dt

(24.34)

which is sometimes called a back-emf.

It is now interesting to note that in the above nested corrector magnet a changing field in the skew
dipole coil does not induce a voltage across the six (series connected) coils of the sextupole coil (and
vice-versa), as can be verified by adding the mutual inductances from Table 24.1.

UDipole = U1 + U2 =
8∑
j=3

L1j
dIj
dt

+
8∑
j=3

L2j
dIj
dt

= 0 . (24.35)

In general, acosmΘ coil cannot induce a voltage in a nestedcosnΘ coil.

24.2 Non-linear circuits

24.2.1 Magnetic energy

In order to study the magnetic energy in materials with magnetic hysteresis we shall now consider a torus
of ferromagnetic material withN excitational windings that excite the field of modulus

H =
NI

2πr
(24.36)

at the ring’s mean radius. The induced voltage in the pick-up coil is

U =
dΦ
dt

=
dB
dt
a. (24.37)

The power needed for exciting the field is

dW
dt

= NI
dΦ
dt

= NIa
dB
dt

=
NI

2πr
a2πr

dB
dt

= HV
dB
dt
. (24.38)

whereB is the mean induction on the ring’s cross-section. Therefore

1
V

dW
dt

= H
dB
dt
, (24.39)

w =
W

V
=
∫ B2

B1

HdB = HB|B2
B1
−
∫ H2

H1

BdH, (24.40)

which yields for a complete cycle

w =
∮
HdB =

∮
Hµ0(dH + dM) = µ0

∮
HdM. (24.41)
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The magnetic energy in a volumeV is therefore given by

W =
∫
V

(∫ B

0
H · dB

)
dV . (24.42)

Because ofdiv (dA×H) = H · curl dA−dA · curlH = H ·dB−J ·A, Eq. (24.42) can be rewritten
as

W =
∫
V

(∫ A

0
J · dA

)
dV. (24.43)

24.2.2 Self inductance

In the presence of iron parts with saturation dependent magnetization, we can still define the self induc-
tance as

L(I) =
Φ(I, t)
I(t)

, (24.44)

with the flux linkage depending onI, t and the currentI being a function oft. Therefore the back-emf.
is

U(t) = −dΦ(I, t)
dt

(24.45)

and the stored energy is (comp. Eq. (24.38))

dW
dt

= I
dΦ
dt

, (24.46)

dW = I
dΦ
dt

dt = IdΦ , (24.47)

W =
∫ Φ

0
IdΦ . (24.48)

With the total differential ofΦ:

dΦ =
∂Φ
∂t

dt+
∂Φ
∂I

dI (24.49)

it follows:

|U(t)| =
dΦ(I, t)

dt
=
∂Φ(I, t)
∂t

+
∂Φ(I, t)
∂I

dI(t)
dt

=
∂(L(I)I(t))

∂t
+
∂(L(I)I(t))

∂I

dI(t)
dt

= L(I)
dI(t)
dt

+ I(t)
dL(I)

dI
dI(t)
dt

=
(
L(I) + I(t)

dL(I)
dI

)
dI(t)
dt

. (24.50)

If the induced voltage is measured during the ramping of the magnet, then the so-called differential
inductance

Ld(I) = L(I) + I
dL(I)

dI
(24.51)
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Fig. 24.2: Left: Vector potential in the iron yoke of the LHC insertion quadrupole (MQXA). Right: Self inductance in (mH/m)

and differential inductance for the insertion quadrupole as a function of the excitational current.

is obtained and can be listed for the range of current values. The stored energy can then be calculated
from the differential inductance with

W =
∫ I0

0
ILd(I)dI . (24.52)

Fig. 24.2 shows the vector potential in the iron yoke of the LHC insertion quadrupole and the self and
differential inductance as a function of the excitational current.

From Eq. (24.44), using the chain rule, one can easily verify that

Ld(I) =
dΦ(I)

dI
. (24.53)

In non-linear circuits the mutual inductances cannot be calculated with Eq. (24.19). Instead, the differ-
ential mutual inductances are calculated with

Mjk(I1, ..., Ij , ..., Ik, ..., In) =
dΦjk(I1, ..., Ij , ..., Ik, ..., In)

dIj
(24.54)

which is the rate of change of the flux in coilk due to a change of excitation in coilj. In a non-linear
circuit, this rate of change depends, however, on the excitation of all then coils in the circuit.

24.3 Electromagnetic forces

The electromagnetic force on a current carrying conductor is given by

Fm =
∫
V

J×BdV. (24.55)

It modifies in case of line currents to

Fm =
K∑
i=1

Iis×B . (24.56)

Fig. 24.3 shows the electromagnetic force components (at nominal field level) of a model magnet.
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24.4 Maxwell’s stress tensor

For a domain that is free of all magnetic materials, Eq. (24.55) yields

Fm =
∫
V

1
µ0

( curlB)×BdV. (24.57)

Because

( curlB)×B =

∣∣∣∣∣∣∣
ex ey ez

∂Bz
∂y − ∂By

∂z
∂Bx
∂z − ∂Bz

∂x
∂By

∂x − ∂Bx
∂y

Bx By Bz

∣∣∣∣∣∣∣ , (24.58)

thex-component of this vector is

[( curlB)×B] · ex = Bz
∂Bx
∂z

−Bz
∂Bz
∂x

−By
∂By
∂x

+By
∂Bx
∂y

. (24.59)

Now it is not easy to see but easy to verify that

[( curlB)×B] · ex =
∂

∂x
(B2

x −
1
2
| B |2) +

∂

∂y
(ByBx) +

∂

∂z
(BzBx)−Bx div B. (24.60)

By repeating this step for the remaining components, Eq. (24.58) can be rewritten as

( curlB)×B = div S−Bdiv B, (24.61)

with the stress tensor

S =

B2
x − 1

2 | B |2 BxBy BxBz

ByBx B2
y − 1

2 | B |2 ByBz

BzBx BzBy B2
z − 1

2 | B |2

 . (24.62)

The divergence of a tensor is defined by the expression

( div S)j =
3∑

k=1

∂Sjk
∂xk

. (24.63)
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Therefore with Eqns. (24.57), (24.61),div B = 0, and applying a generalized divergence theorem we
get the expression for the electromagnetic force:

Fm =
∫
V

1
µ0

div SdV =
∫
∂V

1
µ0

S · nda . (24.64)

Introducing the components from the tensor (24.62) yields

S · n = (B · n)B− 1
2
|B|2n (24.65)

and

Fm =
∫
∂V

(
1
µ0

(B · n)B− 1
2µ0

|B|2n
)

da . (24.66)

24.4.1 Integration of the Maxwell stress tensor

From Eq. (24.64) we get for the components of the force acting on an ensemble of objects inside a closed
surface

Fi =
∫
∂V

∑
j

Sijnjda , (24.67)

whereFi denotes the force components in an orthogonal coordinate system (i = 1, . . . , 3), da is the
infinitesimal surface element,nj the components of the surface normal vectorn andSij the components
of the Maxwell stress tensor.

24.4.2 Contribution of a straight line in the 2-D cross-section

In the 2-D case the surface integral in Eq. (24.67) is calculated as an integral on a closed line being
extruded into 3-D. The infinitesimal surface elementda becomes̀ ds, where` denotes the extrusion
length. With` = 1 m, Eq. (24.67) yields the force per unit length. Let us now consider a straight line of
origin (x0, y0) and angleα lying in the plane of the 2-dimensional cross-section (z = 0):

r(λ) =

 x0

y0

0

+ λ

 cosα
sinα

0

 . (24.68)

The parameterλ determines the position along the line. The normal vector tor is
n = ±(sinα,− cosα, 0)T , with the signs chosen such thatn points to the outward direction of the
enclosed area. The contribution to the surface integral is

Fline = ± `

µ0

λ2∫
λ1

−Bx(r)By(r) cosα+ 1
2

(
Bx(r)2 −By(r)2

)
sinα

+Bx(r)By(r) sinα− 1
2

(
By(r)2 −Bx(r)2

)
cosα

0

 dλ . (24.69)

If the line is parallel to thex-axes (α = 0) we obtain the well known equation

Fline = ∓ `

2µ0

λ2∫
λ1

 2Bx(r)By(r)
By(r)2 −Bx(r)2

0

 dλ . (24.70)

In order to obtain a closed integration path several line contributions have to be added. Another possi-
bility is to close the integration path far away from the sources, where the components of the Maxwell
stress tensor vanish.
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Fig. 24.4: Left: Cross-section of a permanent magnet quadrupole in zero-clearance design. One sector is shifted by10mm out

of its original position. Right: Electomagnetic force (F ‖ er) as a function of the radial shift of one sector.

As an example we performed the force computation for a high field gradient (450 T/m) quadrupole
with permanent magnets in a so-called zero-clearance design, c.f. Fig. 24.4. Integrating the Maxwell
stress tensor for different displacements of one of the sectors gives an estimate of the forces acting dur-
ing the assembly of the device.

Due to symmetry, the normal force components cancel for the two line integrals shown in Fig. 24.4
whereas the tangential components add up. The end points of the lines were chosen sufficiently far
outside the magnet, where all the field components vanish. Fig. 24.4 (right) shows the tangential force
as a function of the displacement of one of the permanent magnet sectors.

24.4.3 Integration on a circle

Let us consider a circle with the center at(x0, y0, 0), the radiusR and the angular parameterϑ, that lies
in the plane of the 2-D cross-section (z = 0):

r(ϑ) =

 x0

y0

0

+R

 cosϑ
sinϑ

0

 . (24.71)

The normal vectorn of this closed line is(cosϑ, sinϑ, 0). The infinitesimal surface element becomes
dA = `Rdϑ. Hence, Eq. (24.67) yields

Fcircle =
`R

µ0

π∫
−π

Bx(r)By(r) sinϑ+ 1
2

(
Bx(r)2 −By(r)2

)
cosϑ

Bx(r)By(r) cosϑ+ 1
2

(
By(r)2 −Bx(r)2

)
sinϑ

0

 dϑ . (24.72)



Part V

Superconductor Magnetization and Time
Transient Fields

278



Chapter 25

Field Diffusion in Conducting Domains

25.1 The diffusion equation

We recall Maxwell’s equations in classical vector-analytical form when the displacement current can be
neglected:

curlH = J, (25.1)

curlE = −∂tB, (25.2)

div B = 0, (25.3)

div D = ρ. (25.4)

Since div ( curlg) = 0 for all vector fieldsg, B can be defined in terms of a vector potential byB =
curlA. From Eqns. (25.1), (25.1) and the constitutive equationB = µ0(H + M) we obtain

curlA = µ0 (H + M) , (25.5)

1
µ0

curl ( curlA) = J + curlM. (25.6)

From Eqns. (25.2) and (25.1) we get

curl (E + ∂tA) = 0, (25.7)

which yields

E = −∂tA− gradϕ, (25.8)

ϕ being an arbitrary scalar field. Combining Eqns. (25.6) and (25.8) we have

∇2A− κµ0∂tA− grad ( div A + κµ0ϕ) = −µ0 curlM. (25.9)

The vector fieldA is not unique, however. A gauge transformation

A′ = A + gradψ, (25.10)

ϕ′ = ϕ− ∂tψ. (25.11)

may be applied, whereA′ andϕ′ fulfill Eq. (25.9).

If there is no impressed electric field density, thegradϕ component of the electric field can be
omitted. Then the Maxwell gauge

div A = 0 (25.12)

simplifies Eq. (25.9). More generally, it can be shown that a gauge functionψ that is a solution of

∇2ψ − κµ0∂tC = −div A + κµ0ϕ (25.13)

279
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provides the same result, thediffusion equationfor the vector potentialA,

∇2A = κµ0∂tA, (25.14)

where curlM = 0 is assumed. We could also have employed the constitutive equationB = µH and
thus obtained

∇2A = κµ∂tA. (25.15)

Applying the curl operator to both sides of Eq. (25.15) yields

∇2B = κµ0∂tB. (25.16)

The magnetic fieldB is gauge-invariant, as the transformationA → A′ does not changeB. Gauge con-
ditions together with additional boundary conditions make the vector potential unique. From Maxwell’s
equations and the constitutive equationB = µH it follows

curl curlE = −∂t curlB = −∂tµ curlH = −∂tµJ = −∂tµκE. (25.17)

If ρ = 0 it follows that div E = 0 and with Eq. (5.70) we can writecurl curlE = −∇2E. Thus

∇2E = κµ∂tE. (25.18)

With J = κE we also have

∇2J = κµ∂tJ. (25.19)

With Eqns. (25.15), (25.16), (25.18) and (25.19) we have thus found forA,B,E and J the same
parabolic vector differential equation which is known in its scalar form as the diffusion equation in
thermodynamics.

25.2 Sinusoidal field on conductive half space

In this section we will apply a sinusoidal magnetic field to a conductive half space, as shown in Fig. 25.1
(left). The half space is assigned the material properties of very pure copper at cryogenic temperature
of 5 K and exposed to a magnetic field of 8.33 T, as encountered by the LHC beam screen. A varying
magnetic field induces an electric field which will lead to an eddy current distribution according to the
local Ohm’s lawJ = κE. The eddy currents are directed as to produce a magnetic field opposing the
applied magnetic field.

Remark: Considering an applied field tangential to the material interface, and applying the conti-
nuity conditions for the electromagnetic fields, Eq. (25.16) can be simplified to

∂2By(x, t)
∂x2

= µ0κ
∂By(x, t)

∂t
. (25.20)

Approximating

∂2B

∂x2
≈ B

L2
,

∂B

∂t
≈ B

Td
, (25.21)

the diffusion equation can be solved for thetime constant

Td ≈ µκL2, (25.22)

proportional to the square of the characteristic lengthL of the configuration. The result can also inter-
preted in view of theskin effect: If a field is excited on the conductor surface for a given timet0 then it
can penetrate into the conducting domain by approximately

δ ≈
√

t0
µκ

. (25.23)
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Fig. 25.1: Left: Conductive half space in presence of a dynamic parallel magnetic field. Right: Conductive plate in a time

variant, homogeneous, parallel field

We will now apply a parallel sinusoidal magnetic flux density

By(0, t) = B̂1 cosωt = B̂1 Re
{
ejωt

}
. (25.24)

For the configuration shown in Fig. 25.1 we assume that a current distribution (proportional to∂tB) will
be induced that attenuates the field inside the half space. We solve the diffusion equation assuming an
attenuated sinusoidal wave,

By(x, t) = B̂1 Re
{

ej(ωt−kx)
}
, (25.25)

which yields

k2 = −jωκµ0, (25.26)

and thus

k = ±1− j

δ
with δ =

√
2

ωκµ0
. (25.27)

Finally

By(x, t) = B̂1 Re
{

e−x/δ+j(ωt−x/δ)
}

= B̂1 e−x/δ cos(ωt− x/δ). (25.28)

Eq. (25.1) reduces to

1
µ0

∂By(x, t)
∂x

= Jz(x, t). (25.29)

The resulting current density is therefore

Jz(x, t) =
1
µ0

B̂1 Re
{
−1 + j

δ
e−x/δ+j(ωt−x/δ)

}
,

= − 1
µ0

B̂1

√
2
δ

e−x/δ cos(ωt− x/δ + π/4). (25.30)

We can see from Eq. (25.30) that the applied sinusoidal field enters the half space while atx = δ
the amplitude has fallen to1e ≈ 0.368 times its original valueB̂1. The parameterδ is thus called the
penetration depthor skin depth. Fig. 25.2 shows the results.

Table 25.1 lists the penetration depth in copper for different temperature and magnetic-field con-
ditions.
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Fig. 25.2: Distribution of the magnetic flux density (left) and the eddy current density (right) during a half period of a sinusoidal

applied field.

25.3 Conductive plate in a parallel field

Consider the conductive plate shown in Fig. 25.1 (right). With the dimensionless time variable

τ =
t

Td
=

t

µ0κb2
(25.31)

and the dimensionless coordinate

ξ =
x

b
(0 ≤ ξ ≤ 1), (25.32)

whereb is the plate thickness, the diffusion equation becomes

∂2
y(ξ, τ)
∂ξ2

=
∂By(ξ, τ)

∂τ
. (25.33)

We can now define the boundary conditions

By(0, τ) = By(1, τ) = f(τ) (25.34)

and the initial condition

By(ξ, 0) = 0. (25.35)

Penetration depthδ [m]

Frequencyf Cu at 300 K

and 0 T

Cu at 5 K

and 0 T

Cu at 5 K

and 8.33 T

1 Hz 6.5 · 10−2 8.4 · 10−3 1.3 · 10−2

10 Hz 2.0 · 10−2 2.6 · 10−3 4.1 · 10−3

100 Hz 6.5 · 10−3 8.4 · 10−4 1.3 · 10−3

1 kHz 2.0 · 10−3 2.6 · 10−4 4.1 · 10−4

10 kHz 6.5 · 10−4 8.4 · 10−5 1.3 · 10−4

Table 25.1: Penetration depth of very pure copper at different temperature and magnetic field conditions.
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This boundary value problem can be solved using the Laplace transform of Eq. (25.33), i.e.,

∂2B̃y(ξ, s)
∂ξ2

= sB̃y(ξ, s). (25.36)

The general solution of Eq. (25.36) is

B̃y(ξ, s) = C1e−
√
sξ + C2e

√
sξ. (25.37)

The boundary conditions

B̃y(0, s) = B̃y(1, s) = f̃(s) (25.38)

defineC1 andC2, see Appendix 38, so that

B̃y(ξ, s) = f̃(s)
sinh

(√
s(1− ξ)

)
+ sinh

(√
sξ
)

sinh
√
s

. (25.39)

Now the Laplace transform (if it exists) of an arbitrary excitation functionL(f(τ)) = f̃(s) can be
inserted and the result can be inversed to the time domain.

25.3.1 Jump discontinuity of the exciting field

We apply to the plate surface a magnetic field with the function

f(τ) = B1 ε(τ), where ε(τ) =

{
0 for τ < 0,
1 for τ > 0.

(25.40)

Its Laplace transform is

f̃(s) = B1
1
s
. (25.41)

The inverse Laplace transformation can be performed by summing up all residuals of Eq. (25.39) with
Eq. (25.41) multiplied byesτ

By(ξ, τ) =
∑

Res
(
B̃y(ξ, s) esτ

)
. (25.42)

The result, calculated in Section 38.1 of the Appendixes, reads

By(ξ, τ) = B1

(
1 +

∞∑
n=1

2
nπ

(−1)n
(
sinnπξ + sinnπ(1− ξ)

)
e−(nπ)2τ

)
. (25.43)

Fig. 25.3 (left) shows the distribution of the magnetic induction inside the plate. Note how the highly
conductive copper plate first shields the inside from the applied magnetic field. This is a consequence of
induced eddy currents in the plate due to the changing field on its surface. These currents produce a field
that is opposed to the field outside the plate and, thus, shield the interior. The eddy currents in this case
can be calculated by:

b

µ0
curlB(ξ, τ) = J(ξ, τ) (25.44)

from which follows

Jz(ξ, τ) =
b

µ0
∂ξBy(ξ, τ). (25.45)

The results are displayed in Fig. 25.3 (right).
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Fig. 25.3: Variation of the magnetic flux densityBy (left) and the eddy current densityJz in the left half of the plate (right)

overξ at 0.1 ms, 1 ms, 5 ms, 12.5 ms, 20 ms, 40 ms and 100 ms. The material is pure copper withκ = 14.487 · 108 S/m and

µ ≈ 1. The plate is of thicknessb = 1 cm.

25.3.2 Linear ramp of the exciting field

Applying a field ramp to the copper plate yields a similar effect depending on the slope of the ramp. For
the calculation we start again from Eq. (25.39), now with the excitation function given by

f(τ) = kB1Td τ (25.46)

with its Laplace transform

f̃(s) = kB1Td
1
s2
, (25.47)

wherekB1 = ∂tB1(t) is the ramp rate. We can proceed in the same way as in Section 25.3.1 and obtain,
as shown in Appendix 38.2, the result

By(ξ, τ) = kB1Td

(
τ +

1
2
(ξ − 1)ξ −

∞∑
n=1

2
(nπ)3

(−1)n
(
sinnπξ + sinnπ(1− ξ)

)
e−(nπ)2τ

)
. (25.48)

Three kinds of ramps have been examined for a plate with a thickness ofb = 1 cm:

1. A linear ramp of the dipole field from injection level with a maximum slope of -7 mT/s. Fig. 25.4
(left) shows the field distribution in the plate att = 100 s.

2. A linear ramp, starting at -8.33 T, with the maximum slope of 31.77 T/s (as encountered in a
quenching magnet), evaluated at 0.262 s, when the field on the plate surface reaches zero.

3. A linear ramp, starting at -8.33 T, with the maximum slope of 0.0833 T/s as encountered in a de-
excited magnet after a quench incident in one of the neighboring magnets. Evaluation time is 99
s.

In Fig. 25.4 (right) the cases 2 and 3 are compared. It can be seen that a slower ramp rate results in a
more homogeneous penetration of the magnetic field inside the plate during the ramp. Fig. 25.5 shows
the relative magnetic flux density and the current density at different times after the start of the ramp
specified in 1. The current density approaches a linear distribution as the time increases. Once the linear
distribution is reached, the shape of the absolute flux-density distribution does not vary anymore. All
over the cross-section the flux density increases by the ramp ratekB1 . This is due to the completion of
diffusion processes.
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Fig. 25.4: Plate (b = 1 cm) in a dipole field. Left: A linear ramp with∂tB1 = kB1 = −7 mT/s att = 100 s. Right: A linear

approximation of a quench and a de-excitation as described in Eqns. 2 and 3. The material is pure copper withκ = 14.487 ·108

S/m andµr ≈ 1.

To estimate the end of the diffusion processes, another characteristic entityζ is introduced. It
plays a similar role in the ramp process as does the penetration depthδ for sinusoidal excitation. Using
the frequency of the first harmonic of the Fourier transform of the periodic signal shown in Fig. 25.6 we
haveω1 = 2π/T1 with T1 = 2T . The half periodT of this signal equals the durationt of the excitation
ramp. For each instance after the ramp’s start we can thus evaluate a parameterζ(t) using Eq. (25.27),
i.e.,

ζ(t) =
√

2
ω1κµ0

=

√
2T
πκµ0

=
√

2t
πκµ0

. (25.49)

We can thus calculate the time at which the diffusion process is completed in half of the plate,ζ(t) > b/2,

t >

(
b

2

)2 πκµ0

2
= 71.5 ms, (25.50)

which corresponds to a moment when the current density almost reaches its final linear distribution, see
Fig. 25.5 (right).

After completion of the diffusion process, we can approximate the current and field distribution
by merly applying Faraday’s law of induction. Forζ(t) � b/2 we obtain∂tBy(x, t) = kB1 for all x,
i.e., the field inside the plate changes witht with the same ratekB1 over the entire cross-section. The

Fig. 25.5: Plate (b = 1 cm) in a homogeneous bipolar ramping field with∂tB1 = kB1 = −7 mT/s, Left: Relative magnetic

flux density at t = 40 ms and t = 2 ms. Right: Current density also at t = 2 ms, 20 ms, 71.5 ms and 10 s. The material is pure

copper withκ = 14.487 · 108 S/m andµr ≈ 1.
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diffusion equation (25.20) then reduces to

∂2By(x, t)
∂x2

= κµ0kB1 , (25.51)

which can be solved by integrating twice

By(x, t) = κµ0kB1x
2 + p(t)x+ q(t), (25.52)

with p(t) andq(t) the integration terms. Faraday’s law of induction yields

∂xJz(x, t) = κ∂tBy(x, t) = κ kB1 (25.53)

and we obtain by integration

Jz(x) = κ(x kB1 + c(t)). (25.54)

Settingc(t) to−kB1 b/2 to assure that the total induced current over the cross-section is zero, the result-
ing induced current density reads

Jz(x) = κ kB1(x−
b

2
), (25.55)

andJz(0) = 5.07 A/cm2 for the case shown in Fig. 25.5. The magnetic field is obtained by Ampère’s
law that reads for the one-dimensional case

1
µ0
∂xBy(x, t) = Jz(x, t). (25.56)

By integration we obtain

By(x, t) = κµ0kB1

(
x2

2
− xb

2

)
+ q(t). (25.57)

The coefficientsp(t) andq(t) are determined by the boundary conditions (25.34):

p(t) = −κµ0kB1

b

2
and q(t) = kB1 t. (25.58)

After completion of the diffusion process (ζ(t) � b/2) the approximative equation (25.57) yields the
same result as the calculation considering the diffusion, Eq. (25.52). Both results corresponds to the first
term in Eq. (25.48), as the limiting value for the sum is zero fort→∞.

Fig. 25.6: Periodic ramp for Fourier transformation.
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25.3.3 Cos(ωt) excitation

Finally we will apply a sinusoidal field with a frequencyf = ω/2π. We proceed in the same way as
above. Withωt = Ωτ , i.e.,

Ω = ωκµ0b
2 (25.59)

we obtain

f(τ) = B̂1 cos Ωτ (25.60)

with its Laplace transform

f̃(s) = B̂1
s

s2 + Ω2
. (25.61)

Inverse transformation, as carried out in Section 38.3 of the Appendixes, results in

By(ξ, τ) = B̂1 Re

e−jΩτ
sinh

(
bk
(
1− ξ

))
+ sinh

(
bkξ
)

sinh bk


+B̂1

∞∑
n=1

2(nπ)3(
(nπ)4 + Ω2

)(−1)n
(
sinnπξ + sinnπ(1− ξ)

)
e−(nπ)2τ , (25.62)

with k defined in Eq. (25.26). This equation is evaluated in Fig. 25.7 for frequencies varying between
1.5 Hz and 1.5 kHz. Especially at 15 and 150 Hz it is clearly visible how field diffusion causes a phase
shift and an attenuation inside the plate. In caseδ � b/2, the field is entirely shielded from the inside
of the conducting plate by the induced eddy currents. Ifδ � b/2, eddy currents are confined to a layer
of thicknessδ which is the penetration depth, see Section 25.2. With the copper properties defined in
Section 25.3,δ equals 0.186 mm at 1.5 kHz and 1 mm at 150 Hz.

25.3.4 Scaling Law

Numerical calculations will be difficult to perform for the 50µm thin copper layer of the LHC beam
screen. It is thus desirable to find a way that allows the numerical evaluation of eddy currents at a larger
scale.

If we employ the reduced space coordinateξ, as defined in Eq. (25.32), then the diffusion equa-
tion (25.20) reads

∂2By(ξ, t)
∂ξ2

= Td
∂By(ξ, t)

∂t
, (25.63)

with the characteristic time constant

Td = κµ0b
2, (25.64)

whereb is the thickness of the plate. We require the time constantTd not to change with an increase in
the plate thickness by1/ν (ν = b/b̄, b̄ > b). It is obvious from Eq. (25.64) that the geometrical scaling
would result in an increase of the time constant by1/ν2. In order to obtain similar diffusion processes
the conductivity has to be scaled byν2

κ̄ = κν2. (25.65)
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Fig. 25.7:By inside a thin plate excited by acos ωt field at its surface. Top left: 1.5 Hz. Top right: 15 Hz. Bottom left: 150

Hz. Bottom right: 1500 Hz. The material is pure copper withκ = 14.487 · 108 S/m andµr ≈ 1.

In this case

T̄d = Td. (25.66)

The second characteristic constant, the penetration depthδ, transforms with

δ̄ =
√

2
ωκ̄µ

=
√

2
ωκν2µ

=
1
ν
δ. (25.67)

Example: Consider the plate of Fig. 25.1 (right) withb = 50µm,µr ≈ 1 andκ = 14.487·108 S/m.
A plate of b̄ = 5 mm would be more appropriate for FEM calculations; so we calculateκ̄ to 14.487 · 104

S/m and obtain the identical results at t = 10 ns after a jump shown in Fig. 25.8. Note that the current
density is scaled by the plate thickness such that the total currents of the original and the scaled plate are
identical. �

For FEM calculations we conclude that a scaling transformation of a simple (one-dimensional) conduc-
tive domain in needs requires a scaling of the electric conductivityκ by ν2.

25.4 Conductive cylinder in transversal field

Consider the configuration shown in Fig. 25.9 (left). We will investigate eddy-current induced field errors
in the aperture and resistive losses in the cylinder walls. We denoter the radius of the field point andrcc
the mean radius of the cylinder.

We expose the cylinder to a ramping field withB(t) = By(t) ey and∂tBy(t) = ∂tB1(t) = kB1 =
-7 mT/s. In a distance far greater thanrcc the magnetic flux density reads in cylindrical coordinates

B(r, ϕ, t) = kB1 t (sinϕ er + cosϕ eϕ). (25.68)

With Eq. (25.1) we obtain for the radial flux density component in the two-dimensional case

1
r

∂Az
∂ϕ

= kB1t sinϕ. (25.69)
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Fig. 25.8: Field and current density in the cross-section of a plate at t = 10 ns after the jump of a homogeneous fieldBy from 0

to B1. Up: Plate ofb = 50µm, µr ≈ 1, κ = 14.487 · 108 S/m, Down: Plate of̄b = 5 mm,κ̄ = 14.487 · 104 S/m.

Thez-component of the magnetic vector-potential is thus

Az = A∞ = −kB1 tr cosϕ+ c(t). (25.70)

We setc(t) such that the total induced current
∫
a Jz da (whereJz = −κ∂tAz) vanishes in the conductive

domain, see Eq. (25.8).

We will assume the cylinder to be infinitely thin. The induced currents can then be treated as
surface currents by introducing the surface conductivityκs

κs = κd. (25.71)

We denoteAi, Ao andA∞ the vector potentials inside the conductive domain, outside and at a large
distance from the cylinder. As scalars they denote thez-component of the potential. The field problem
then reads

∇2Ai = 0 on Ωi, (25.72)

∇2Ao = 0 on Ωo, (25.73)

lim
r→∞

Ao(r) = A∞(r) on Ωo, (25.74)

n×
(

1
µ0

curlAo

)
− n×

(
1
µ0

curlAi

)
= K on ∂Ω, (25.75)

Ao −Ai = 0 on ∂Ω, (25.76)

Ai = 0, Ao = A∞ at t = 0. (25.77)

The interface condition (25.75) can be rewritten

∂rAo − ∂rAi = µ0κ d∂tAz on ∂Ω. (25.78)

The vector potential is continuous at the interface of the conductive and the air domain. The right-hand
side of Eq. (25.78) can therefore be calculated from eitherAi orAo.

Using the general solution of the Laplace equation in cylinder coordinates we write for the vector
potential outside the cylinder

Ao = −kB1 tr cosϕ+D(t)
rcc
r

cosϕ, (25.79)
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Fig. 25.9: Left: Conductive cylinder in a dynamic homogeneous transversal field. Right: On the geometry of the beam screen

liner.

where condition (25.74) has been considered. The potential inside the cylinder requires

Ai = C(t)
r

rcc
cosϕ. (25.80)

Conditions (25.75) and (25.76) lead to the first-order differential equation

C(t) +
1
2
µ0κsrcc∂tC(t) = −kB1trcc (25.81)

and to

D(t) = C(t) + kB1ta. (25.82)

We define a time constantTc

Tc =
1
2
µ0κsrcc =

1
2
µ0κdrcc. (25.83)

With condition (25.77) the solution of Eq. (25.81) is defined and we obtain

C(t) = −kB1rcc

(
t− Tc

(
1− e−

t
Tc

))
, (25.84)

D(t) = kB1rccTc

(
1− e−

t
Tc

)
. (25.85)

The resulting vector potentials read

Ai = −kB1r cosϕ

(
t− Tc

(
1− e−

t
Tc

))
, (25.86)

Ao = −kB1r cosϕ

(
t− Tc

(
1− e−

t
Tc

)(rcc
r

)2
)
. (25.87)

The magnetic flux density is calculated with Eq. (25.1)

Bi = kB1 sinϕ

(
t− Tc

(
1− e−

t
Tc

))
, (25.88)

Bo = kB1 sinϕ

(
t− Tc

(
1− e−

t
Tc

)(rcc
r

)2
)
, (25.89)
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Fig. 25.10: The hollow conductive cylinder in a ramping field. Dashed line: Excitation field, solid line: Field inside the

aperture.

whereBi andBo denote the radial components of the flux densities inside and outside of the cylinder.

The results are plotted in Fig. 25.10. It can be seen that the conductive hollow cylinder causes a
time dilatation of the ramp excitation byTc after the completion of the diffusion process.

25.5 Field errors from the LHC cold bore

The field errors caused by a conductive cylinder, e.g., the LHC cold bore, exposed to a time transient
field is given by

B′ = Bi −B∞ = kB1 sinϕ

(
−Tc

(
1− e−

t
Tc

))
, (25.90)

which, for t� Tc, constitutes a damping in the first order harmonic of the magnetic flux density of

B′
1 = −TckB1 . (25.91)

A cylindrical conductive structure in a homogeneous transversal field only affects the first order harmonic
of the radial component.

The cold bore is made of stainless steel. Due to the impurities of this material itsRRR value
is close to 1. At 1.9 K its conductivityκss is about104 times lower thanκcu of copper. Withκss =
144 870 S/m, kB1 = −7 mT/s, d = 1.5 mm andrcc = 25.75 mm we obtain a field error in theB1

component, inside the aperture, of 2.4610−8 T. This weakening of the main field is negligible on the
whole range of the field ramp.

25.6 Joule losses in the cold bore

The Joule losses per unit length of the hollow cylinder can be calculated by

P ′ =
∫
a
J ·Eda =

∫
∂a

K ·Eds, (25.92)

with K = κsE = −κs∂tA. For the hollow cylinder in a ramping homogeneous transversal field, see
Fig. 25.9, Eq. (25.92) reads

P ′ =
∫ 2π

0
κs k2

B1
r2cc cos2 Θ rcc dΘ = πκs k2

B1
r3cc. (25.93)

With the same material properties as above, Joule losses per unit length of the cold bore calculate to
0.571µW/m.
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25.7 The beam screen liner

The 50µm copper layer on the inner surface of the beam screen tube is subsequently denoted thebeam
screen liner. The pumping slots are neglected. We will assume that the field generated by the induced
eddy-currents is negligible outside the screen. Thus the field inside the aperture is well approximated for
wall thicknessesd far smaller than the dimension of the aperture, e.g.,d � rcc, h, see Fig.?? (right).
The eddy currents in the liner will be treated as surface currents. We thus define a surface conductivity
κs by

κs = κd, (25.94)

and obtain induced surface currents on the staight sections:

Kz = xκskB1 (25.95)

and on the arc sections

Kz = κs kB1h cot Θ for ψ < Θ < π − ψ (25.96)

Kz = κskB1rcc cos Θ for π − ψ < Θ < π + ψ. (25.97)

25.7.1 Field errors generated by the beam screen

As the geometry of the beam screen is not circular, the eddy current distribution will deviate from an
idealcos Θ current distribution. Therefore all (allowed) higher order multipoles will be excited.

From Biot-Savart’s law we derive for the two-dimensional case

A′z =
∫
a
−µ0Jz(rc,Θ)

2π
ln
(

R

Rref

)
da, (25.98)

with R being the distance between the field pointr = (r, ϕ) and the source pointr ′ = (rc,Θ), and with
an arbitrary reference radiusRref . A′z represents the additional vector potential due to the induced eddy
currents in the conducting domain. For the calculation of the magnetic field inside the aperture the sum
of Az andA′z must be considered. Eq. (25.98) can be rewritten as

A′z =
∫
a
−µ0Jz(rc,Θ)

2π

(
ln
(

rc
Rref

)
−

∞∑
n=1

1
n

(
r

rc

)n
cos
(
n(ϕ−Θ)

))
da. (25.99)

The radial component of the magnetic flux density due to eddy currents is then, see Section 14.1,

B′
n =

∫
a
−µ0Jz(rc,Θ)

2π
rn−1
0

rnc
cosnΘda, (25.100)

with the reference radiusr0 for the calculation of the relative multipole components. For surface currents
Eq. (25.100) yields

B′
n =

∫
∂a
−µ0Kz(rc,Θ)

2π
rn−1
0

rnc
cosnΘds. (25.101)

Note, that this result also comprises the hollow cylinder from the previous section with acos Θ current
distribution on the conducting domain. We will treat the straight sections first. We substitute

x = h cot Θ, rc =
h

sinΘ
for ψ < Θ < π − ψ,

x = −h cot Θ, rc = − h

sinΘ
for π + ψ < Θ < 2π − ψ, (25.102)
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n B′
n,str [µT] B′

n,arc [µT] B′
n [µT]

1 0.831 6.5991 7.4422

2 0.0 0.0 0.0

3 −1.1361 0.9016 −0.2346

4 0.0 0.0 0.0

5 0.5625 −0.3274 0.2351

6 0.0 0.0 0.0

7 −0.0973 −0.0067 −0.1040

Table 25.2: Absolute values of field errors due to eddy currents in the LHC beam screen liner atkB1 = -7 mT/s andr0 = 17

mm.

and we can write for the effects of both straight sections

B′
n,str = −µ0κs kB1r

n−1
0

2πhn−2(∫ π−ψ

ψ
cosnΘ cos Θ (sinΘ)n−3 dΘ −

∫ 2π−ψ

π+ψ
(−1)n cosnΘ cos Θ (sinΘ)n−3 dΘ

)
. (25.103)

The two integrals yield the same contribution and can be solved by means of theWolfram Research -
Mathematica 4.1program, which applies a Gauss-Konrod quadrature to one-dimensional problems.

For the arc sections, Eq. (25.101) yields

B′
n,arc(r0) = −µ0κs kB1r

n−1
0

2πrn−2
cc(∫ ψ

−ψ
cosnΘcos ΘdΘ +

∫ π+ψ

π−ψ
cosnΘcos ΘdΘ

)
. (25.104)

Forh = 18.45 mm,rcc = 23.25 mm,ψ = 52.52◦, d = 50 µm, κ = 14.487 · 108 S/m,kB1 = −7 mT/s
we obtain the results shown in Table 25.2 forB′

n = B′
n,str +B′

n,arc at r0 = 17 mm.

Due to the up-down symmetry, no skew components are excited. The left-right symmetry of the
beam screen results in the absence of even normal components. The most important field error is again
the damping of the dipole component, mainly due to the arc sections. The higher order components are
dominated by the straight sections. The field errors induced by the stainless steel structure of the beam
screen (d = 1 mm,κ = 14.487 · 104 S/m) are smaller by an order of102 − 103.

n
b′n at B1 = −1T,

kB1 = −2.4mT/s

b′n at B1 = −4T,

kB1 = −7 mT/s

b′n at B1 = −8T,

kB1 = −7mT/s

1 −0.025516 −0.018605 −0.009303

2 0.0 0.0 0.0

3 0.000804 0.000586 0.000293

4 0.0 0.0 0.0

5 −0.000806 −0.000588 −0.000294

6 0.0 0.0 0.0

7 0.000356 0.000259 0.000129

Table 25.3: Relative field errors due to eddy currents in the beam screen at 3 points during the ramping up of the LHC dipole.
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25.7.2 Joule losses in the beam screen

As in Section 25.6, we calculate the Joule losses per unit length of the beam screen by integratingK ·E
over the cross-section. Using Eqns. (25.95) and (25.96) we obtain

P ′ = 2
∫ b

2

− b
2

κs k2
B1
x2 dx+ 2

∫ ψ

−ψ
κs k2

B1
r2cc cos2 Θ rcc dΘ, (25.105)

and finally, withψ expressed in radian,

P ′ = κs k2
B1

(
b3

6
+ r3cc(2ψ + sin 2ψ)

)
. (25.106)

For the same material properties as above andb = 36.9 mm,P ′ is 131.146µW/m. This is rather low
compared to estimated total heat load of 130 mW/m on the beam screen in each aperture.

25.8 Scaling law for hollow configurations

In Section 25.3.4 we observed that scaling the geometry of a conductive plate by1/ν and the conductivity
by κ̄/κ = ν2 = (b/b̄)2 yields similar field distributions inside the aperture. The current density then
scales withν, accounting for identical total currents over the cross-section. This result can be applied to
numerical calculations of domains that require scaling of dimensions due to high aspect ratios, e.g. in
the LHC beam screen. It is thus important to understand how the scaling law can be applied to structures
such as the beam screen.

Consider again the time constant

Tc = µ0κdrcc. (25.107)

that defines the attenuation of the field inside the cylinder. Thus, a transformation of the wall thickness
d only, assuminḡd� rcc, has to be balanced by a linear down-scaling of the electric conductivityκ. A
transformation of the entire structure (size and thickness), however, requires quadratical scaling ofκ.

For FEM calculations we thus conclude that in order to assure similar effects on the field quality
inside the aperture of a hollow configuration of increased wall thickness, we need to linearly down-scale
the electric conductivityκ.

The same result can be derived from a different point of view: Equivalent impacts of a scaled and
a non-scaled structure on the field quality, at a distance from the field pointrcc andr̄cc far greater than
the characteristic dimension of the structure itself, can be achieved by assuring

rcc

∫
a
J(rc,Θ) eJ da != r̄cc

∫
ā
J̄(rc,Θ) eJ̄ dā, (25.108)

or, for thin-walled hollow structures,

rccK(Θ) eK
!= r̄ccK̄(Θ) eK̄ . (25.109)



Chapter 26

BEM-FEM Coupling for Time Transient
Field Problems

In this chapter we will treat the numerical formulation of time transient field problems. The BEM domain
formulation does not change since, by definition, the BEM domain does not contains conducting material,
except for the cables themselves. Induction and diffusion problems in the superconducting cables (so-
called inter-strand and inter-filament coupling currents) will be treated in a future edition of this book.

26.1 The A-ϕ Formulation of the FEM problem

With Eqns. (25.8), (25.9) and the source free current density,div J = 0 (−∂tρ = 0), in the FEM domain,
we obtain the formulation of the problem in two dimensions (div A = 0)

∇2A− κµ0
∂A
∂t

− κµ0 gradϕ = −µ0 curlM, (26.1)

div
(

κ gradϕ+ κ
∂A
∂t

)
= 0, (26.2)

with the boundary conditions

1
µ0µr

( curlA)× n = 0 on ΓH, (26.3)

A× n = 0 on ΓB, (26.4)(
1
µ0

curlA−M
)
× ni +

(
1
µ0

curlA
)
× na = 0 on Γai, (26.5)

Ai −Aa = 0 on Γai, (26.6)(
κ gradϕ+ κ

∂A
∂t

)
· ni = 0 on Γai (26.7)

and

ϕ(x0) = ϕ0 (26.8)

at an arbitrary pointx0 in Ωi.

26.1.1 Weighted residual

Applying the weighted residual method yields∫
Ωi

(
∇2A− κµ0

∂A
∂t

− grad κµ0ϕ

)
·w dΩi = −

∫
Ωi

µ0 ( curlM) ·w dΩi, (26.9)
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and ∫
Ωi

div
(

κ gradϕ+ κ
∂A
∂t

)
·w dΩi = 0. (26.10)

26.1.2 Weak formulation

Green’s first theorem∫
Ωi

(
grad (A · ez) · grad (w · ez) + κ

(
gradϕ+

∂A
∂t

)
· ω

)
dΩi

+
∫

Γai

∂Aa

∂na
·w dΓai︸ ︷︷ ︸

coupling integral

= µ0

∫
Ωi

M · curlw dΩi, (26.11)

and ∫
Ωi

κ
(

gradϕ+
∂A
∂t

)
· grad (w · ez) dΩi = 0. (26.12)

26.1.3 Galerkin method - matrix assembly

Discretizing the FEM domain with nodal functionsNGn(x) gives

A = A(x, t) =
N∑
n=1

NGn(x)A(n)(t), (26.13)

ϕ = ϕ(x, t) =
N∑
n=1

NGn(x)ϕ(n)(t). (26.14)

With the Galerkin Method we set the weighting functions

wl(x) = NGl(x)ez, (26.15)

and rewrite Eqns. (26.11) and (26.12) with Eq. (26.15)

J∑
j=1

1
µ0

∫
Ωi,j

(
grad

(
N∑
n=1

NFEM
Gn ez ·A(n)

)
· gradNFEM

Gl

+κ

(
grad

N∑
n=1

NFEM
Gn ϕ(n) +

∂

∂t

N∑
n=1

NFEM
Gn A(n)

)
·NFEM

Gl ez

)
dΩi,j

+
J∑
j=1

1
µ0

∫
Γai,j

(
m∑
n=1

NFEM
Gn Q(n)

a

)
·NFEM

Gl ez dΓai,j

=
J∑
j=1

∫
Ωi,j

(
Mx(B)∂yNFEM

Gl −My(B)∂xNFEM
Gl

)
dΩi,j , (26.16)

J∑
j=1

∫
Ωi,j

κ

(
grad

(
N∑
n=1

NFEM
Gn ϕ(n)

)
+
∂

∂t

(
N∑
n=1

NFEM
Gn A(n)

))
· gradNFEM

Gl dΩi,j = 0, (26.17)

for l = 1, . . . , N . Eqns. (26.16) and (26.17) can be expressed in matrix form as

[K]
{
A,ϕ

}
+ [C]

{
Ȧ, ϕ̇

}
+ [T ]

{
Qa, 0

}
= {F}, (26.18)
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where we adopted the notation in [69], i.e., the vectors
{
A,ϕ

}
,
{
Ȧ, ϕ̇

}
,
{
Qa, 0

}
and{F} have 2N

lines and read:

{
A,ϕ

}
=



A
(1)
z

ϕ(1)

...

A
(N)
z

ϕ(N)


,

{
Qa, 0

}
=



Q
(1)
a

0
...

Q
(N)
a

0


, (26.19)

{
Ȧ, ϕ̇

}
=



Ȧ
(1)
z

0
...

Ȧ
(N)
z

0


, {F} =



F (1)(M)
0
...

F (N)(M)
0


. (26.20)

The stiffness matrix[K] for N nodes reads

[K] =


K1,1 . . . K1,N

...
...

...

KN,1 . . . KN,N

 , (26.21)

where the elementsKl,n are2× 2 matrices of the form

Kl,n =

(
KI KII

KIII KIV

)
. (26.22)

The coefficientsKI −KIV read

KI =
J∑
j=1

1
µ0

∫
Ωi,j

gradNFEM
Gn · gradNFEM

Gl , (26.23)

KII =
J∑
j=1

∫
Ωi,j

κ gradNFEM
Gn ·

(
NFEM
Gl ez

)
dΩi,j , (26.24)

KIII = 0, (26.25)

KIV =
J∑
j=1

∫
Ωi,j

κ gradNFEM
Gn · gradNFEM

Gl dΩi,j . (26.26)

(26.27)

The matrix[C] is of the same type as[K]. The elementsCI − CIV of its 2× 2 elementsCl,n read

CI = κ
J∑
j=1

∫
Ωi,j

NFEM
Gn ez ·NFEM

Gl ez dΩi,j , (26.28)

CII = 0, (26.29)

CIII = κ
J∑
j=1

∫
Ωi,j

NFEM
Gn ez · gradNFEM

Gl dΩi,j , (26.30)

CIV = 0. (26.31)
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Also the matrix[T ] is of the2N × 2N form shown in Eq. (26.21). Its submatrix coefficientsTI − TIV

are

TI=
J∑
j=1

1
µ0

∫
Γai,j

NFEM
Gn ez ·NFEM

Gl ez dΓai,j , (26.32)

TII=TIII = TIV = 0. (26.33)

26.1.4 Coupling the FEM and the BEM domains

We can now combine the FEM and the BEM domain in a non-linear equation system, using
{
Qa, 0

}
as

the coupling term. We modify vectors and matrices in the BEM equationin order to obtain2N × 2N
matrices and vectors with2N lines. This is achieved by setting every second line and every second row
(in matrices) to zero. The final equation to be solved then reads(

[K[T [G−1[H
) {
A,ϕ

}
+ [C

{
Ȧ, ϕ̇

}
= [F (M)− [T [G−1

{
As, 0

}
. (26.34)

26.2 Iteration - time stepping

Eq. (26.34) is solved iteratively with two nested iterations; one for the non-linear material properties and
a second one for the approximation of the time evolution of the potentials. The latter, employing the
Euler method1, will be described: With

˜[K] = [K][T ][G]−1, (26.35)
˜[F ] = [F ](M)− [T ][G]−1

{
As, 0

}
(26.36)

we can rewrite Eq. (26.34)

˜[K]
{
A(t), ϕ(t)

}
+ [C]

{
Ȧ(t), ϕ̇(t)

}
= ˜[F (t)]. (26.37)

The basic idea to solve this system is to replace the differential quotient
{
Ȧ(t), ϕ̇(t)

}
by the difference

quotient, e.g., for theA components we write

Ȧ(t+ α∆t) =
A(t+ ∆t)−A(t)

∆t
. (26.38)

Forα = 0 we have theexplicit- for α = 1 the implicit- and forα = 1/2 thesemi-implicitEuler method.
We use the following linear interpolation

f(t+ α∆t) = αf(t+ ∆t) + (1− α)f(t) (26.39)

for
{
A(t), ϕ(t)

}
and ˜[F (t)]. With{

∆A,∆ϕ
}

=
{
A(t+ ∆t)−A(t), ϕ(t+ ∆t)− ϕ(t)

}
(26.40)

we obtain{
∆A,∆ϕ

}
= ∆t

(
[C] + α∆t ˜[K]

)−1
(
α ˜[F ](t+ ∆t) + (1− α) ˜[F ](t)− ˜[K]

{
A(t), ϕ(t)

})
.(26.41)

Forα 6= 0 the value of ˜[F ](t+ ∆t) must be either estimated or determined by iteration. With{
A(t+ ∆t), ϕ(t+ ∆t)

}
=
{
A(t), ϕ(t)

}
+
{
∆A,∆ϕ

}
(26.42)

we can finally determine the vector potential for the next time step [69].

The Bosch-EDYSON program uses the implicit Euler method with iteration.

1Leonhard Euler 1707-1783
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Fig. 26.1: Conductive cylinder (d = 0.5 cm,ρcc = 3 cm) in a homogeneous bipolar ramping field withkB1 = 31.77 T/s, left:

magnetic flux density over the cross-section atBy = 0 atρ � ρcc, right: current density at the same moment. The material is

pure copper withκ = 14.487 · 108 S/m andµr ≈ 1.

26.3 Results

26.3.1 Conductive hollow cylinder in a ramping transversal field

The first example of a ROXIE/EDYSON calculation is the conductive hollow cylinder, analytically
treated in Section 25.4. We will investigate the correctness of the scaling law for hollow structures
discussed in Section 25.8. The impact on the field harmonics inside the aperture of the cylinder will be
determined and compared with the analytical results.

Fig. 26.1 shows a hollow cylinder with aρcc/d ratio of 6. This value certainly exceeds the required
ρcc/d � 1 justifying the assumptions of Section 25.4. The example nevertheless yields an insight into
field and current distributions inside conductive hollow cylinders in a ramping transversal field. Fig. 26.2
shows a cylinder with the wall thickness scaled by 0.5. According to the scaling relation for hollow
structures the conductivitȳκ was set to2κ = 28.974 · 108 S/m which gives similar results despite the
smallρcc/d ratio.

The impact on the field harmonics is given in Table 26.1. The time of evaluation ist ≈ 7Tc with
Tc being the cylinder time-constant defined in Eq. (25.83).

Three conclusions can be drawn from the results of Table 26.1:

• The scaling transformation leaves the main component almost unchanged.

Fig. 26.2: Conductive cylinder (̄d = 0.25 cm,ρcc = 3 cm) in a homogeneous bipolar ramping field withkB1 = 31.77 T/s, left:

magnetic flux density over the cross-section atBy = 0 at ρ � ρcc, right: current density at the same moment. The material

properties are:̄κ = 28.974 · 108 S/m andµr ≈ 1.
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ROXIE/EDYSON Analytical

n B′
n [T] for

d = 5mm, ρcc = 30mm

κ = 14.487 · 108 S/m

B′
n [T] for

d̄ = 2.5mm, ρcc = 30mm

κ̄ = 28.974 · 108 S/m

Bn [T]

1 −3.83 −3.82 −4.34

2 0.0 0.0 0.0

3 3.83 · 10−7 7.76 · 10−7 0.0

4 0.0 0.0 0.0

5 6.89 · 10−8 2.03 · 10−7 0.0

6 0.0 0.0 0.0

7 −5.75 · 10−8 −1.53 · 10−8 0.0

Table 26.1: Field harmonics inside different conductive cylinders at a ramp rate ofkB1 = 31.77 T/s. The analytical calculation

yields identical results for both cases.

• The analytical approximation of infinitely thin walls is no longer applicable (∆B1 = 12%).
• By the numerical calculation uneven normal field componentsn > 1 emerge that are of the order

of 10−7 T. These numerical errors have, however, to be viewed in context of theB′
1 field error, and

are indeed negligable.

A further ROXIE/EDYSON calculation of a hollow cylinder withd = 0.05 mm, ρcc = 100 mm, κ =
14.487 · 108 S/m andkB1 = 31.77 T/s yields a difference between numerical and analytical calculation
of only 2%, see Table 26.2. With aρcc/d ratio of 2000, the analytical surface-current approximation
gives more accurate results.

ROXIE/EDYSON Analytical

B′
1 [T] B′

1 [T]

−0.142 −0.145

Table 26.2: Main component of the magnetic field inside a hollow conductive cylinder withd = 0.05 mm, ρcc = 100 mm

yields,κ = 14.487 · 108 S/m andkB1 = 31.77 T/s.

26.3.2 Beam screen liner

The beam-screen liner has been analytically treated in Section 25.7. In Fig. 26.3 we can see a numerical
evaluation of the liner with a wall thickness 20 times higher than the actual value of50µm. In return, the
conductivity has been set tōκ = κ/20. The liner has been put into a linearly ramping transversal field
with a ramp rate of -7 mT/s.

The most critical result of the beam-screen-liner calculation is its impact on the field quality during
the ramping up of the magnets. Analytical results were presented in Table 25.2. We can now compare
these results to a ROXIE/EDYSON calculation, see Table 26.3. What we observe is that the numerical
results match very well the analytical approximation. To obtain results with sufficient accuracy, the abort
condition of the time-stepping iteration had to be refined. We further see that the calculations for a
transformed configuration according to the scaling laws yields rather precise results. Finally we can state
that a broadening of the beam-screen liner tod = 100µm, which is currently being discussed, does not
yield any risc in terms of field quality. The eddy-current induced field errors during the ramping up of a
dipole magnet would remain negligible.
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Fig. 26.3: Closed structur similar to the beam-screen liner with a wall-thicknessd of 1 mm, κ = 0.724 · 108 S/m,kB1 =

−7 mT/s. The field atρ � ρcc is zero.

ROXIE/EDYSON

n B′
n [µT] for

d = 50 µm,

κ = 14.487 · 108 S/m

B′
n [µT] for

d = 100µm,

κ = 14.487 · 108 S/m

B′
n [µT] for

d̄ = 1mm,

κ̄ = 0.724 · 108 S/m

1 7.386 14.769 7.382

2 0.0 0.0 0.0

3 −0.184 −0.365 −0.183

4 0.0 0.0 0.0

5 0.143 0.286 0.143

6 0.0 0.0 0.0

7 −0.049 −0.098 −0.049

Analytical

n B′
n [µT] for

d = 50 µm,

κ = 14.487 · 108 S/m

B′
n [µT] for

d = 100 µm,

κ = 14.487 · 108 S/m

B′
n [µT] for

d̄ = 1mm,

κ̄ = 0.724 · 108 S/m

1 7.442 14.884 7.442

2 0.0 0.0 0.0

3 −0.183 −0.365 −0.183

4 0.0 0.0 0.0

5 0.143 0.285 0.143

6 0.0 0.0 0.0

7 −0.049 −0.098 −0.049

Table 26.3: Field-error harmonics inside the beam-screen liner during a ramp ofkB1 = −7 mT/s for different wall thicknesses

and conductivities. Top: Numerical calculation with ROXIE/EDYSON. Bottom: Analytical calculation, see Section 25.7.



Chapter 27

Superconductor Magnetization

In 1933 W. Meißner and R. Ochsenfeld1 discovered that superconductors (when cooled below their
critical temperatureTc) exclude an applied magnetic field below a critical valueBc from their interior,
i.e., they show a perfectdiamagneticbehavior. In type I superconductors, e.g. lead, mercury, aluminum,
shielding currents flow in a very thin layer on the surface of the conductor. The thicknessλ of this layer is
called the penetration depth and is typically in the range of some tens of nano-meters. The diamagnetism
cannot be explained by the classical Maxwell theory as a perfect conductor is conserving the flux rather
than expelling it2. In 1935 F. and H. London3 developed theclassical model of superconductivity, which
incorporates the zero resistance and the perfect diamagnetism into the electromagnetic relations.

In the 1950s Ginsburg and Landau4 formulated a phenomenological theory that explains the in-
creased critical magnetic field of alloys like niobium-titanium (type II superconductors) where the field
can penetrate into the superconductor above a valueBc1, the lower critical induction, and where the
screening currents remain smaller than in case of the type I superconductors. High temperature su-
perconductors are also type II superconductors. The flux inside the superconductor is concentrated in
flux-tubes arranged in a regular lattice. If these flux-tubes are free to move in the material (so-called flux
jumping), the transport current in the superconductor is limited, as movements due to the Lorentz force
acting on the flux-tubes induce electric fields and therefore produce a resistive effect. This phenomenon
is calledflux flow resistance. In addition, a regular lattice of flux tubes is contradictory to a transport
current as in this casecurlB would be zero. In order to allow a gradient in the density of flux tubes,
they have to be pinned to certain locations.

In NbTi conductors, the normal conducting deposits of a titanium-rich phase serve aspinning
centersfor the flux tubes, see Fig. 27.1. The pinning of flux tubes is instrumental in achieving high
critical current densities. Superconductors with strong pinning are calledhard superconductors and are
the materials used in high-field magnets. However, the strong pinning that makes superconductors useful
in high field magnets is responsible for magnetic hysteresis and thus for field dependent multipole errors.

The pinning centers prevent flux flow in hard superconductors. However, when the flux tubes
depin by thermal activation or because a current exceeds some critical value, their motion toward the
lower field regions induces an electric field. This so-called flux creep effect results in highly nonlinear
E(J) curve shown in Fig. 27.2.

E = Ec

(
|J |
Jc

)n−1 J
Jc
. (27.1)

Near the critical current densityJc, the flux creep effect gives rise to an electric field (and thus a so-called
flux flow resistance) which varies exponentially withn called thequality factoror resistive transition

1Robert Ochsenfeld (1901-1993).
2Perfect diamagnetism requires vanishing resistivity, whereas the converse is not true
3Fritz London (1900-1954), Heinz London.
4Lew Landau (1908-1968).
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Conventional APC

200 nm
Equilibrium flux line spacing at   2    3       5         8 tesla

Fig. 27.1: Pinning centers in hard superconductors (NbTi). Left: White parts is so-calledα titanium. On the right hand side

artificial pinning centers are created through pure niobium (black). Courtesy D. Larbalestier

index, which is as large as 50 for good multifilamentary NbTi wires. Measurements for LHC strands
give a field dependentn=42 at 10 T andn=48 at 8 T. The critical current density is usually defined as
the point where the electrical field is below 1µV/cm. In case of the wires for the LHC main magnets,
Jc(5T, 4.2K) = 3·109A/m2. The nonlinear resistivityρ = E

J can be calculated from Eq. (27.1) as

ρ =
E

1
n
c

Jc
|E|

n−1
n . (27.2)

As the resistivity of hard superconductors is almost a step function, thecritical state model(CSM) pos-
tulates that the current density in the superconductor is either zero or equals the critical current density.
The CSM model as the basis for the calculations of field errors in superconducting magnets is explained
in the next section. For the calculation of these field errors a couple of ingredients are necessary which
will be described in this chapter.

• A phenomenological (macroscopical) model for filament magnetization including hysteresis mod-
elling for the consideration of different excitation cycles. Whereas these cycles are well defined
for the main magnets, the corrector magnets will be powered in such a way as to compensate
field errors resulting from different sources (decay and snapback, iron saturation etc.). The semi-
analytical models are able to take into consideration the field dependence of the critical current den-
sity. The simple (one-dimensional) hysteresis model assumes varying field intensity not changing
its direction whereas the two-dimensional model considers arbitrary changes of the field direction
in the transverse plane (so-called vector hysteresis).

• The combination of these models (on the strand level) with methods of numerical field computa-
tion, for the consideration of iron saturation effects. For magnets such as the main dipole, where
the inner radius of the iron yoke is large with respect to the coil outer radius, saturation effects are
low and therefore the imaging method can be used for the calculation of the persistent current ef-
fects as they occur mainly at the lower field level. However, some of the corrector magnets have the
iron yoke very close to the coils and therefore saturation starts at an earlier stage. In Section 27.10
the part compensation of persistent current effects by means of a magnetic coil protection sheet
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J / J c

E / E c
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n = 1

n = 5 n = 5 0 C S M

Fig. 27.2: Near the critical current densityJc, the flux creep effect gives rise to an electric field (and thus a so-called flux flow

resistance) which varies exponentially withn called the quality factor or resistive transition index, which is as large as 50 for

good multifilamentary NbTi wires. Measurements for LHC strands give a field dependentn=42 at 10 T andn=48 at 8 T. Ohms

law (n = 1) and the critical state model (n →∞) are special cases. The critical current density is usually defined as the point

where the electrical field is below 1µV/cm. In case of the wires for the LHC main magnetsJc(5T, 4.2K) = 3·109A/m2.

or magnetic strips inside the conductors is discussed. The calculation of these part compensation
schemes requires the use of numerical field calculation even at very low field levels.

• An iteration scheme is needed to calculate the feed-back of the magnetization on the field distri-
bution within the coil. This is important at very low field levels where the global shielding effect
is relatively large and changes the local distribution of the magnetic field.

27.1 The Critical State Model

According to the critical state model (CSM), Bean [15], a hard superconductor tries to expel a varying
external field by generating a bipolar current distribution of the critical densityJc, which depends on the
local field level and the temperature. This macroscopical model takes into account that the maximum
current density in the conductor is directly related to the maximum pinning force. The limitations of
the CSM stem from ignoring the Meißner phase, the idealization of the electrical field versus current
E(J) relation as a step function and from the fact that the explicit solution of the Maxwell equations
are only possible for simple shapes of the superconductor. In particular it cannot explain the logarithmic
time dependence that is observed in the magnetization effects. Although the critical current density
decreases with field in all real superconductors, the original Bean model assumes a field-independent
critical current density to simplify the mathematical treatment of the magnetization problem. Fig. 27.3
shows the field and current density distribution in a superconducting slab (infinitely long iny andz-
direction).

An external field applied parallelHext to the slab (which is supposed to be previously unexposed
to a magnetic field and which is therefore said to be in thevirgin state) creates a field inside the slab
according to Ampère’s law

curlH =
∂Hy

∂x
ez = Jzez = Jc. (27.3)

The slope of the field inside the slab is therefore equal toJc, positive whereJc is positive (directed out
of the paper plane) and negative whereJc is negative.

Let now q be the relative penetration parameter which is zero at the surface of the filament and
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equals one in the center. For a given external fieldBextey the field inside the slab is then given by

By = Bext − t = Bext − µ0Jc
d

2
q. (27.4)

We denote the relative penetration depth asq∗ and define it as the value ofq at which the interior field
has droped to zero.

q∗ =
Bext

µ0Jc

2
d
, (27.5)

whered is the thickness of the slab. Atq∗ = 1 or

Bp = µ0Jc
d

2
, (27.6)

the entire slab is in the critical state andBp is called the penetration field, see Fig. 27.3 (c).

The CSM was experimentally confirmed by Coffey [50] who mapped the field distribution in a
test sample (with a little gap) of hard superconductor (NbTi) using a Hall probe. The field maps are
presented in Fig. 27.4. It can be seen that the magnetic field gradient is constant, indicating a constant
current density throughout the sample which is, however, dependent on the field level. The occurance of
flux jumps (breakdown of the pinning forces accompanied by a temperature rise) and the occurance of
flux creep at higher fields is visible in the field maps.

For the calculation of the resulting magnetization we consider a current loop of unit length with
the cross-section area elements carrying critical current density and obtain

M =
∫ d

2

d
2
(1−q∗)

−Jc 2x
d

dx = −Jc
d

4
[1− (1− q∗)2] (27.7)
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Fig. 27.3: The Bean model for an infinitely long slab of superconductor. Notice the field independent current density in the

slab and consequently the same slope of the penetrating (trapped) field. (c) is the state of full penetration, (f) shows the wipe

out property.
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Fig. 27.4: Distribution of the magnetic field in a niobium titanium sample (taken from Coffey, 1966, [50]). The field was

ramped at about 0.3 T/min between the field mappings. Note the flux jumps with deeper penetration of the field before the flux

jump, and the flux flow after the last two jumps. The different field gradients indicate the field dependece of the critical current

density which was not considered in the original model.

and consequently for full penetrationq∗ = 1:

Mp = −Jc
d

4
. (27.8)

Fig. 27.5 shows the normalized hysteresis loopM(B) obtained by applying the CSM to the supercon-
ducting slab with field independent critical current density.

27.2 The Wilson model

The slab model has been modified for cylindrical filaments by Wilson [231], c.f. Fig. 27.6. Recall
(Section 14.4.1) that acos Θ type current distribution creates an ideal dipole field inside a cylinder.
Following Wilson [231] and Mess [139], acos Θ like current distribution is approximated by a shell with
an elliptic inner boundary, see Fig. 27.6, and a constant current density inside the shell. This boundary
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Fig. 27.5: Normalized hysteresis loopM(B) obtained by applying the CSM to the superconducting slab with field independent

critical current density.
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Fig. 27.6: The Bean model as modified by Wilson for cylindrical conductors. Notice the scaling of the critical current density

with the strength of the external fieldBext. To simplify the mathematical treatment, the current density is assumed to be

constant within the cylinder but dependent on the external field, resulting in different slopes for the penetrating and trapped

field inside the filament.

has the half axisa equivalent to the filament radius and the minor half axisb, see Fig. 27.6 (a). The
contribution of two area elementsdxdy at the locations(x, y) and(−x, y) to the shielding field in the
center of the filament is

dB = −2
µ0Jc

2π
√
x2 + y2

cos Θdxdy (27.9)

with cos Θ = x/
√
x2 + y2 we get

B = −µ0Jc

π

∫ a

−a

[∫ v(y)

u(y)

x

x2 + y2
dx

]
dy (27.10)

with

u(y) = b

√
1− y2

a2
=
b

a

√
a2 − y2 (27.11)

resulting from the equation of the ellipse and

v(y) =
√
a2 − y2 (27.12)

resulting from the equation of the circle. Integration yields:

B = −2µ0Jca

π

1− b

a

arcsin
√

1− b2

a2√
1− b2

a2

 . (27.13)
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The maximum field that can be shielded from the center of the filament is called thepenetration fieldBp,
where the current distribution resembles two half cylinders (minor half axis of the ellipseb = 0), see Fig.
27.6 (c).

Bp =
µ0Jcd

π
, (27.14)

with the filament diameterd.

For the calculation of the resulting magnetic momentm the above exercise can be repeated con-
sidering again the area elements and the magnetic moment generated by the resulting current loop:

dm = −Jc 2x l dxdy (27.15)

and therefore

m = −2Jcl

∫ a

−a

[∫ v(y)

u(y)
xdx

]
dy = −4

3
Jc(1−

b2

a2
)a3l (27.16)

The magnetization is

M =
m

πa2l
= − 4

3π
Jc(1−

b2

a2
)a (27.17)

The magnetization of astrand containing only fully penetrated filaments is

Mp = −λ 2
3π
Jcd (27.18)

and has the same direction as the applied field (M = MB/|B|) which varies over the cross-section of
the magnet winding. Withλ = 0.29 (the filling factor for the filamentary superconductor) and a filament
diameterd = 7µm, the magnetic polarizationµ0M is about 10 mT at 0.53 T injection field level, with
the critical current density of NbTi of 19000 A/mm2.

A first refinement of the model for the critical current density depending on the magnetic field
has been done by Kim and others by equating the Lorentz forceJc ×B to the pinning force [113] thus
obtaining the relation

Jc(B) =
J0B0

B +B0
(27.19)

whereJ0 is the critical current density at zero field andB0 is the magnetic field at which the critical
current density has decreased by the factor of two. For NbTi at 1.8 K,B0 ≈ 0.29 T and for NbTi at4.5 K,
B0 is between 0.7 and 1T. The critical current density at zero field is difficult to be measured because
of the wire’s self field. It can, however, be extrapolated from critical current density measurements at
higher field and is in the order of15 kA·mm−2 for NbTi at 1.8 K. For the Bean-Wilson model

Mp(Bext) = −λ 2
3π
Jc(Bext)d = −λ 2

3π
J0B0

Bext +B0
d (27.20)

When the field is raised above the penetration field level, the shielding current distribution is maintained
but with field penetrating into the filament and thereforeMp decreases proportionally to the critical
current density. As a high current density is desirable, one way of reducing the superconducter mag-
netization is to reduce the filament diameter to the smallest technically feasible value. Fig 2.4 shows a
micrography of multi-filamentary strand for the inner layer dipole cable with diameter of 1.065 mm and
8900 filaments of 7µm in diameter. Another possibility is to inject the beam at a higher energy. The
energy swing, i.e., the ratio between nominal and injection beam energy (and thus between nominal and
injection dipole field level) is 15.5 for the LHC. It is lower than in HERA (23) but it is higher than in the
Tevatron (6.5) and RHIC (8.6) accelerators.

Although the magnetization at higher excitational field levels is well reconstructed with the above
model, see Fig. 27.7, the model still fails to explain the peak shifting of the magnetization at very low
field values.
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Fig. 27.7: Measured (blue) and calculated (red) hysteresis of a LHC strand subjected to a varying field with patterns of the

persistent currents according to the CSM (Bean/Wilson/Kim) to cylindrical filaments with varying current density. It can be

seen that the Wilson/Kim model fails to explain the “peak shifting” of the maximal magnetization at low field values.

27.3 Magnetization model with varying current density

The Wilson model has been modified, to allow for varying current densitiesinside the filament. The
filament is described as a set of nested intersecting ellipses with varying current density. Each layer
produces a dipole screening field and thus increases the critical current density in the nested layers.

27.3.1 Geometry of nested intersecting ellipses and circles

Fig. 27.8 shows on the left the geometry of nested intersecting circles. For illustration the number of
intersecting circles isn = 3. On the right the geometry of nested intersecting ellipses withn = 5 is
displayed. The thicknessc of the current carrying shell is then constant for all circles

c =
U

n
(27.21)

and the radius of thei-th circle is

ai = U − (2i− 1)
c

2
. (27.22)

In case of intersection ellipses the minor half-axis can be calculated bybi = ai
V
U .

27.3.2 Screening field of the nested intersecting ellipses

From Section 16.13.3 we know that the shielding field (denoted t) of two intersecting ellipses is constant
in the aperture and can be calculated to

t = µ0Jcc
V

U + V
, (27.23)

whereU andV are the half-axes of the ellipses and c is the displacement between them (which is identical
with the thickness of the current layer on thex-axis). Easier relations result for the intersecting circles
of radiusr where the shielding field is given by

t = 0.5µ0 Jc c r . (27.24)
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Fig. 27.8: Left: Geometry of nested intersecting circles. For illustrationn = 3. Right: Geometry of nested intersecting ellipses

(n = 5). In the semi-analytical modeln →∞.

27.3.3 Critical surface parametrization

The dependence of the critical current density of NbTi on the modulus of the magnetic inductionB = |B|
is given by the following fit [39] based on [128]

Jc(B, T ) =
J ref

c C0B
α−1

(Bc2)α

(
1− B

Bc2

)β (
1−

(
T

Tc0

)1.7
)γ

. (27.25)

with

Bc2 = Bc20

(
1−

(
T

Tc0

)1.7
)
. (27.26)

The fit parameters for the LHC main magnet cables are a critical current density ofJ ref
c = 3·109 A/m2

at 4.2 K and5 T, a normalization constantC0 = 27.04 T and the fit parametersα = 0.57, β = 0.9 and
γ = 2.32. The upper critical field isBc20 = 14.5 T and the critical temperature isTc0 = 9.2 K which
are taken as typical material parameters and are not altered in the fit process. The standard deviation of
the fit is approximately 5%, [39].

The shape of the fit curves as a function ofC0, α andβ is given Fig. 27.9.
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Fig. 27.9:Jc(B) dependence as a function of the fit parametersC0 (left), α (middle) andβ (right).
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For small magnetic inductions, where the persistent currents influence the field quality most,
Eq. (27.25) strives for infinity withBα−1 = B−0.43 ≈ 1/

√
B for B → 0. For the computation of

the induction inside the filament, Eq. (27.25) is approximated around the actual value of the applied field
Bext = |Bext| with the following function (T is constant):

Jc(B) ∼ Jc(Bext)
√
Bext√
B

≡ F(Bext)√
B

. (27.27)

27.4 Scalar hysteresis model

Let nowq be the relative penetration parameter which is zero at the surface of the filament and equals
one in the center. The uniform dipole field produced by two intersecting circles with opposite current
densities shifted by the relative distance∆q = q2 − q1 can then be expressed as

|∆t| = µ0r

2

∫ q2

q1

Jc(B(q)) dq, (27.28)

where∆t is the shielding field,r is the filament radius andq1, q2 are the relative penetration parameters
that limit the shielding current layer. Such pairs of circles are nested inside concentric circles. This
equation will now be used to find a differential equation for the differential shieldingdt (dq). We get:

dB(q) = ξµ0 H Jc(B(q)) dq =
ξµ0 HF(Bext) dq√

B(q)
, (27.29)

wherer is the filament radius. The geometry factorH = r/2 corresponds to the ideal screening field of
two intersecting circles. As a refinementH = r(2−2 ln 2) = 0.614r, correcting for the little spaces that
are left when a round filament is filled with a series of intersecting circles (see Fig. 27.8). The parameter
ξ equals−1 in case of ramping up andξ = 1 for ramping down. In the first case, the orientation of the
magnetic moment of the screening current is opposite to the orientation of the outside fieldBext andB
decreases inside the filament.

Eq. (27.29) is a differential equation forB(q), considering the dependence ofJc onB(q), that can
be solved with the known boundary conditionB(q = 0) = Bext in a closed analytical form:

B(q) =
(
B

3/2
ext +

3
2
ξ HF(Bext)µ0 q

)2/3

. (27.30)
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Fig. 27.10: Magnetic inductionB(q) as a function of the penetration depthq (continuous line). The dashed line denotes the

current densityJc(q). The dotted line shows the magnetic induction for a calculation assuming a constant current density.
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Fig. 27.11: Magnetization model with nested intersection ellipses with current density depending on the field distribution within

the filament.

Fig. 27.10 showsB(q) according to Eq. (27.30) and the dependence of the critical current density
Jc(B(q)) on the penetration depthq. The dotted line shows the magnetic induction for a constant current
densityJc(Bext) and demonstrates the importance of using Eq. (27.30) instead. The magnetic induction
at q = 0 equals the external fieldBext. The shown field distribution is a fully penetrated state, on the
shielding branch reached after increasing the external field from negative field values toBext = 0.08 T
(ξ = −1). As is shown in Fig. 27.10, this results in a decreasing fieldB(q) along the penetration depth
which produces an increase ofJc(B(q)) alongq. At B(q) = 0, the critical current density reaches its
maximum value. There the strong increase ofJc produces a sharp decline ofB(q). The variation of
Jc(q) shows the importance of expressingJc as a function ofq rather than assuming a constant value.

From the analytic expression for the magnetic inductionB(q) inside the filament, the magnetiza-
tion due to the radial layer of currentJc(q) between the penetrationsqi andqi+1 is derived. Individual
layer magnetizations are needed to describe the hysteresis after changes of the ramp direction. Such a
change (dBext/dt changes sign) will produce a new layer of screening currents with opposite polarity (ξ
switches sign), see Fig. 27.11. For small changes thenewcurrent layer will penetrate the filament only
from q1 = 0 to q2 ≤ 1 while the currents inside persist. Higher fields result in a total wipe-out of inner
layers, Fig. 27.11 (f). The values forqi are calculated using Eq. (27.30). For minor excitation loops, the
magnetization is obtained as the superposition ofn different layers,

M =
n∑
i=1

Mi =
n∑
i=1

qi+1∫
qi

mi(q) dq . (27.31)

In Eq. (27.31)Mi denotes the modulus of the magnetizationMi for the i-th shielding current layer; it
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has negative values if the orientation is opposite to the external field.m(q)5 is themagnetization line
densityas a function ofq and yields the magnetizationM when integrated.

Mi =
4rξ
π

qi+1∫
qi

Jc(B(q))(1− q)2 dq =
4rξ F
µ0π

qi+1∫
qi

(1− q)2√
B(q)

dq. (27.32)

Eq. (27.32) can be solved analytically and together with Eq. (27.30) yields a closed expression for the
filament magnetization:

Mi =
4rB(q)

5πF2µ2
0H3

[
B3

ext + ξHFµ0

((
5− 4q +

5
4
q2
)
ξHFµ0 − (q − 4)B3/2

ext

)]∣∣∣∣q=qi+1

q=qi

(27.33)

27.4.1 Peak-shifting in the hysteresis curve

From the expressions for the magnetic inductionB(q), Eq. (27.30), and the magnetizationM , Eqns.
(27.32) and (27.31), both parameters can be computed as a function of the penetration depthq. Fig. 27.12
(upper plot left), shows the values for increasing external fieldsBext (ξ = −1) for the virgin curve
with one layer of shielding currents extending fromq1 = 0 to q2(Bext). Depending onBext, the field
decreases until a certain penetration depth is reached at which a complete screening of the external field
is obtained. The remaining part of the filament stays field free. In the lower plot the magnetization line
densitym(q) of a layerdq is presented. The value ofM can be obtained by integrating the presented
curves.

Fig. 27.12 (upper right) illustrates the same quantities as on the left hand side, but for a filament
that has already been exposed to a negative external field and hence is fully penetrated. Since the shield-
ing currents inside the superconductor persist, there is a remaining negative fieldB(q) in the center of
the filament, whereas in the case of the virgin curve the field remains zero forq > q2(Bext). The lower
plot in Fig. 27.12 (right) also explains why the maximum magnetization does not occur atBext = 0. The
magnetization is given by the integrated areaM under them(q) curve, which is biggest for small values
of Bext 6= 0. This characteristic behaviour has already been observed in measurements (see Fig. 27.13),
and is in good agreement with the calculations.

27.4.2 Calculation ofBp1
LetBp1 denote the external magnetic induction at the point where the modulus of the filament magneti-
zation passes through its first maximum during the ramp up on the virgin curve (see Fig. 27.13). Since
the magnetization has been calculated in a closed analytical form, ref. Eq. (27.33), we can derive the
maximum magnetization on the virgin curve by solvingdM(Bext)/dBext = 0. For the virgin curve the
magnetization currents are concentrated on only one layer,n = 1, which penetrates fromq1 = 0 to

q2 = 2B3/2
ext /(HF(Bext)µ0) , (27.34)

obtained by requestingB(q2) = 0. ForBext = Bp1 we find thatF ′(Bext) ∼= 0 and hence we obtain

Bp1 ∼= (HF(Bp1) µ0)2/3
(15− 5

√
5)1/3

2
, (27.35)

q2 ∼=

√
5
6
− 5

√
5

18
∼= 0.46 . (27.36)

The recursive Eq. (27.35) yields a good estimate forBp1 after a few iterations. It can be seen from
Eq. (27.36) that the maximum of the magnetization occurs at a penetration depth ofq2 ∼= 0.46 rather
than at full penetration. This is illustrated by the lower plot of Fig. 27.12 (right) where the shaded area
is maximal forq → 0.46 (solid line). Note, that the value ofq2 is independent of the critical current
fit, provideddF(Bext)/dBext

∼= 0, i.e., the critical current density is proportional to1/
√
Bext, for

Bext → 0, see Eq. (27.27).
5Not to be confused with the magnetic momentm.
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Fig. 27.12: Left (top and bottom): Magnetic inductionµ0B(q) and the magnetization line densityµ0m(q) as a function of

the penetration depthq for the virgin curve. Right (top and bottom): Variation of the magnetic inductionµ0B(q) and the

magnetization line densityµ0m(q) as a function of the penetration depthq for a filament already been exposed to a magnetic

field before (non-virgin curve).

27.4.3 Hysteresis loop for a multi-filamentary strand

Fig. 27.13 presents computations of the filament magnetization according to Eq. (27.33) scaled with the
strand filling factor

λ =
1

1 + aCu
af

(27.37)

yielding an avarage magnetization per unit volume of wire (assuming that all filaments within the strand
are in the same magnetic state). The quotientaCu

af
is the ratio between the cross-sectional area of the

(copper) matrix outside the filaments and the filament cross-section including in inner core in case of
hollow Nb3Sn filaments; the copper- to non-copper ratio so to speak. In case ofNbTi filaments this
quotient is identical to the copper to superconductor area ratioaCu

aSc
, which is 1.6 for the inner layer

dipole cable, 1.9 for the outer layer main dipole and main quadrupole cable, and 1.25 for the MQY. The
virgin curve and several hysteresis loops are displayed. It is also possible to first calculate the magnetic
moment for each filament and then multiply with the number of filaments in the strand. The number of
solid filaments in the strands can be calculated with the copper to superconductor area ratio to

Nf =
1

1 + aCu
aSc

r2s
r2f
, (27.38)

wherers andrf denote the strand and the filament radii, respectively. For hollow filaments we get

Nf =
1

1 + aM
aF

r2s
(r2fo − r2fi)

, (27.39)
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Fig. 27.13: Computed magnetization curve for a multifilamentary strand with filaments of radiusr = 3.5 µm, a filling factor

of λ = 1/2.95, and operation temperature ofT = 1.9 K) compared with strand measurements [237].

whererfo indicates the outer radius andrfi the inner radius of the filament. The calculated and the
measured strand magnetizations for the LHC strands are in good agreement apart from the region where
the excitation fieldB is close to zero, where the difference between the magnetizations of one filament
and an entire strand becomes significant (and the assumption that all the filaments within one strand are
in the same magnetic state is no more valid). Since the external field at each filament varies slightly due
to the position in the strand’s cross-section, the spread of the strand magnization is increased.

27.4.4 Strand magnetization in the LHC main dipole coil

The external field, seen by individual filaments, depends on their position in the coil geometry. Filaments
in the outer layer of the coil (close to the mid-plane) are exposed to low fields, indicated by the dark blue
regions in Fig. 27.14 (left). The modulus of the superconducting filament magnetization in the coil cross-
section is shown in Fig. 27.14 (right). Even at nominal field there are strands whose filaments are still
not fully penetrated.
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27.5 Polarity convention for the persistent currents

As persistent currents are a diamagnetic phenomenon, a negative magnetization is defined as opposing
the excitational field. Ramping the magnet on the virgin curve thus induces persistent currents which
generate a screening field that points upward in in the internal aperture (Aperture 2) of the LHC dipoles.
Recall that in the two-in-one dipoles of the LHC a positive field points downwards in the internal aperture
of the magnet. The negative branch of the hysteresis loop is therefore called the shielding branch. The
positive branch is called the trapping branch as in this case the persistent currents always enhance the
coild field. In case of the one-dimensional model, the direction ofM is calculated from the direction of
B. If current andB are negative, then a positive magnetization is opposing the magnetic induction. If
current andB are positive, then a positive magnetization points into the same direction as the excitational
field.

27.6 Field errors due to the filament magnetization

The magnetic moment per unit length of a strand with cross-sectiona, m/l = aM can be represented
by a small dipole of line-currents with the intensity−Is andIs spaced by a distanceS apart and located
perpendicular to the field direction. The magnetic moment of such a single dipolem/l = Is ·S must
equal the magnetic moment arising from persistent currents, i.e.,

Is =
Msa

S
=
λMfa

S
(27.40)

whereS can be chosen as the strand diameter.Ms is the avarage strand magnetization andMf denotes
the filament magnetization. For a strand surface of approximatelya = 0.5 mm2 we get about 5 A, which
compares to about 20 A of transport current in each strand at injection field level.

A more elegant method is to calculate the vector potential at a positionr from a magnetic moment
at pointr ′, see Fig. 27.15, using the identity

Az(r) =
µ0m
2π

× grad r ′ ln
(
|r− r ′|
Rref

)
(27.41)

for two-dimensional problems. With Eq. (13.32) and Eq. (14.7) we get

ln
(
|r− r ′|
Rref

)
= ln

(
ri
Rref

)
−

∞∑
n=1

1
n

(
r0
ri

)n cos(n(ϕ− ϑ)) , (27.42)

and with the gradient in two-dimensional cylindrical coordinates

∇ =
∂

∂ri
er ′ +

1
ri

∂

∂ϑ
eϑ (27.43)

|r− r ′|
m

r ′ = (ri, Θ)

r = (r0, ϕ)

ϕ
Θ

Az

y

z x

Fig. 27.15: Coordinate system for the calculation of the potential of a magnetic moment.
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it results in

grad r ′ ln
(
|r− r ′|
Rref

)
=

=
1
ri

[(
1 +

∞∑
n=1

(
r0
ri

)n cos(n(ϕ− ϑ))

)
er ′ +

∞∑
n=1

(
r0
ri

)n sin(n(ϕ− ϑ))eϑ

]
.(27.44)

Introducing this result in Eq. (27.41) and calculating the cross-product yields

Az =
µ0

2πri
ez

[
mr ′

∞∑
n=1

(
r0
ri

)n sin(n(ϕ− ϑ))−mϑ(1 +
∞∑
n=1

(
r0
ri

)n cos(n(ϕ− ϑ)))

]
. (27.45)

With Br(r0, ϕ) = 1
r0
∂Az
∂ϕ and

sin(nϕ− nϑ) = sinnϕ cosnϑ− cosnϕ sinnϑ , (27.46)

cos(nϕ− nϑ) = cosnϕ cosnϑ+ sinnϕ sinnϑ , (27.47)

it follows that

Br(r0, ϕ) =
µ0

2πr0ri

[
mr ′

∞∑
n=1

(
r0
ri

)n n(cosnϕ cosnϑ+ sinnϕ sinnϑ)

− mϑ

∞∑
n=1

(
r0
ri

)n n(− sinnϕ cosnϑ+ cosnϕ sinnϑ)

]

=
µ0

2πr0ri

[ ∞∑
n=1

n(
r0
ri

)n(mr ′ cosnϑ−mϑ sinnϑ) cosnϕ

+
∞∑
n=1

n(
r0
ri

)n(mr ′ sinnϑ+mϑ cosnϑ) sinnϕ

]
. (27.48)

For the multipole coefficients we finally obtain

An =
µ0

2π
rn−1
0

rn+1
i

n(mr ′ cosnϑ−mϑ sinnϑ) , (27.49)

Bn =
µ0

2π
rn−1
0

rn+1
i

n(mr ′ sinnϑ+mϑ cosnϑ) . (27.50)

The contribution of the strand magnetization to theB3 field component is displayed in Fig. 27.16 (right)
and compared to the contribution of the transport current on the left.

27.7 The M(B)-iteration

To calculate the field errors due to the persistent currents in a magnet, the feed-back of the different
filament magnetizations has to be taken into account by performing an iteration. The need for such an
iteration becomes apparent from the field plots in Fig. 27.18.

The scheme of theM(B)-iteration is shown in Fig. 27.17. For all the excitational levels, the source
fields in the coil and the vector potentials on the BEM-FEM boundary are calculated. The iron magne-
tization and the resulting (reduced) field in the coil region is calculated after the BEM-FEM coupling
problem is solved. The superconducting filament magnetization can then be calculated with the semi-
analytic hysteresis model. In theM(B)-iteration the vector potential on the BEM-FEM boundary is
updated considering the influence of transport and persistent currents. The calculated iron magnetization
then also contains the effect of the “images” of the persistent current.
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Fig. 27.16: Left: Contribution of the strand current to theB3 field component. Right: Contribution of the strand magnetization

to theB3 field component (both at about 1.3 T field level ramped from zero on the virgin curve and at 17 mm reference radius).

In Fig. 27.17,ICOIL denotes the prescribed transport current in the coil,BCOIL is the source field
at thei-th strand position which is calculated from Biot-Savart’s law.AΓ is thez-component of the
vector potential on the BEM-FEM coupling boundary used to computeMIRON. The magnetization is
defined as the magnetic moment per unit volume.BIRON represents the reduced magnetic induction due
to iron magnetization and is computed by solving Kirchhoff integrals. The magnetic induction at the i-th
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Fig. 27.17: Algorithm for the computation of persistent currents with M(B) iteration.



CHAPTER 27. SUPERCONDUCTOR MAGNETIZATION 319

0 10 20 30 40 50 60
-520. -492.-

-492. -465.-

-465. -437.-

-437. -410.-

-410. -383.-

-383. -355.-

-355. -328.-

-328. -301.-

-301. -273.-

-273. -246.-

-246. -218.-

-218. -191.-

-191. -164.-

-164. -136.-

-136. -109.-

-109. -82.1-

-82.1 -54.7-

-54.7 -27.3-

-27.3 0.-

M (A/m)

mm
0 10 20 30 40 50 60

mm

Fig. 27.18: Magnetization in the coil of the LHC main dipole calculated without iteration (left) and with iteration (right).

strand positionBi results from superimposing the source field and the reduced field arising from iron
magnetization. The induced bipolar persistent currents are computed from the superconducting filament
magnetization. They are added to the source currents and iterations with updated source fields are per-
formed until convergence is obtained.MPERS represents the superconducting filament magnetization
which results from the magnetic induction at the i-th strand position (the external field seen by the su-
perconductor).B is the sum of the magnetic induction resulting from the filamentary currents, being
obtained by means of Biot-Savart’s law, and the reduced magnetic induction due to iron magnetization.
The vector potential on the BEM-FEM coupling boundary, which is in the first step calculated from
the source currents only, takes into account the contribution from persistent currents as of the second
iteration step.

27.8 Persistent currents in the LHC dipoles

Table 27.1 gives the field errors for the pre-series dipole magnets. Taken into account are the persistent
current and saturation effects as well as effects from the beam screen and the asymmetric vacuum vessel
of the cryostat. It can be seen that most of the additional field errors due to the magnetization of the
vacuum vessel, cold bore and beam screen are small compared to the geometric and persitent current
field errors. Only after the testing of the pre-series magnets, which also revealed supplier dependent
differences, reproducibility, and manufacturing errors, a fine-tuning of the coil was performed as a final
step prior to the series production of the magnets. Table 27.1 was used as a basis for beam-optics
calculations and the optimization of the LHC machine layout.

27.9 Software implementations

Even with the computing power nowadays available “desktop”, computing time for the calculation of
persistent current effects in superconducting magnets can become limiting, in particular if shape opti-
mization of both coil and iron structures should be combined. Although the model scales the magneti-
zation from the filament level to the each strand of the superconducting coil, the number of strands in
a magnet (all exposed to different field levels) becomes impressive. The number of strands in the LHC
main dipole amounts to 5280 per aperture, and to 3312 strands in the nested MCBX corrector magnet
with decapole and dodecapole insert. Together with anM(B) iteration, the calculation of the hysteresis
width, and a possible shape optimization, this results in a multiple number of calculations for the filament
magnetization.

The software implementation therefore takes into account different levels of sophistication in the
modelling of superconducting magnets, depending on the physical problem at hand:

• Yoke magnetization considered with the imaging method, no iteration: This method works well, as
long as the non-magnetic collars have a large outer diameter and the iron yoke is not too saturated.
It is also required that the injection field level is relatively high resulting in a not too large a global



CHAPTER 27. SUPERCONDUCTOR MAGNETIZATION 320

Both coils in common yoke Add. Add. Add. Add. Sum

+ stainless steel collars Vacuum- Cold-bore + end persist.

µr = 1.0025 Vessel Beamscreen effects currents

inj nom nom inj / nom inj / nom inj inj nom

b2 0.634 −0.950 0.099 − −2.236 −0.003 −1.605 −3.097

b3 4.148 4.659 0.015 −0.424 0.527 −11.03 −6.779 4.948

b4 0.217 0.052 0.005 − −0.035 0.002 0.183 0.023

b5 −0.507 −0.535 0.000 0.386 −0.082 1.19 0.987 −0.232

b6 −0.001 −0.005 0.000 − 0.000 0.000 0.000 −0.005

b7 0.559 0.568 0.000 −0.244 0.027 −0.479 −0.138 0.350

b8 0.000 0.000 0.000 − 0.000 0.000 0.000 0.000

b9 0.102 0.102 0.000 0.147 0.003 0.229 0.559 0.323

b10 0.000 0.000 0.000 − 0.000 0.000 0.000 0.000

b11 0.618 0.622 0.000 −0.145 −0.003 0.035 0.647 0.615

a1 − − 0.422 − 0.752 − 0.752 1.174

a2 − − −0.093 − −0.002 − −0.002 −0.095

a3 − − 0.016 − −0.082 − −0.082 −0.066

a4 − − −0.002 − 0.000 − 0.000 −0.002

a5 − − 0.000 − 0.007 − 0.007 0.007

a6 − − 0.000 − 0.000 − 0.000 0.000

a7 − − 0.000 − 0.017 − 0.017 0.017

a8 − − 0.000 − 0.000 − 0.000 0.000

a9 − − 0.000 − −0.006 − −0.006 −0.006

a10 − − 0.000 − 0.000 − 0.000 0.000

a11 − − 0.000 − 0.002 − 0.002 0.002

Table 27.1: Error table ( two-in-one and saturation dependent effects) in units of10−4 at 17 mm reference radius. The two-in-

one configuration creates additionalb2, b4 etc. effects which also vary as a function of the excitation from injection to nominal

field level.

shielding effect in the coil.
• Yoke considered with the imaging method, iteration of the field solution: This is necessary when

the global shielding effect due to the persistent currents, e.g., at low field levels influences the local
field distribution in the coil.

• Numerical field calculation for the yoke magnetization, no iteration: If the shape of the iron yoke is
too irregular to be represented by a ideal cylindrical shape (to be assumed for the imaging method),
the iron magnetization has to be calculated with the BEM-FEM coupling method.

• Numerical field calculation for the yoke magnetization, linear inner iterations: For each excitation
step a BEM-FEM calculation is carried out and yields the reduced fieldBr due to the iron mag-
netization. As the persistent current effects are in the range of10−3 to 10−4 relative to the main
field, the iron saturation is assumed to be constant for each excitation step andBr is kept constant
during the iteration. The option to be specified in the ROXIE input file is “LITERAT=.FALSE.”.

• Numerical field calculation for the yoke magnetization, nonlinear inner iterations: In this case
BEM-FEM calculations are performed for every iterations step. “LITERAT=.TRUE.”. This is
necessary for the calculation of the part-compensation schemes with saturating shims and (coil-
protection) sheets.

Due to the calculation of the persistent currents in all strands of the magnet coil and theM(B) iteration
some measures for the saving of computation time have been implemented:

• For the highest accuracy the excitational field is calculated at each strand position. The field is then
considered to be constant across the strand cross-section and the calculated filament magnetization
is scaled with the filling factor of the strand. A sparser discretization is of course preferable for
reasons of computation time and gives satisfactory results as long as the global shielding effect is
not too big.
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a
Fig. 27.19: Different schemes for part compensation of persistent current effects with ferromagnetic sheets and rods. Green:

Ferromagnetic coil protection sheet as tested in the dipole short model. Blue: Ferromagnetic sheet in the aperture. Red:

Ferromagnetic strips wound between the two layers of strands in the Rutherford cable. Ferromagnetic rods inserted in the

copper wedges.

• Due to the de-coupling of the excitational field and the field generated by the iron magnetization
in the BEM-FEM coupling method, no symmetry flags are required (nor are they allowed) for the
coil modelling. However, in the linear case, some symmetry flags have been introduced for the
mirror imaging of magnetization vectors in dipole magnets.

If the field errors due to persistent current effects are covered in larger geometrical errors due to magnet
design limitations or coil deformations during the magnet assembly, it might be advantageous to perform
the Fourier analysis only on the field generated by the superconducting filament magnetization for which
the option “LPCONLY” has to be set on .TRUE.

27.10 Part compensation of persistent currents

The hysteresis model was used to calculate a part-compensation of the persistent current induced field
errors by means of ferromagnetic sheets and shims at different locations in the magnet. Since persistent
currents decrease with increasing field, ferromagnetic sheets which saturate at increasing field levels
qualify for persistent current compensations.

27.10.1 Ferromagnetic coil protection sheet

One possible solution, easy to implement and test, has been found for the LHC main dipoles by replac-
ing some of the so-called coil protection sheets (CPS), usually made from austenitic stainless steel by
ferromagnetic sheets. The coil protection sheets are placed around the coils in order to protect the coil,
the ground plane insulation and the quench heaters against damage from the surrounding stainless steel
collar laminations.

The objective was to reduce the variation of theb3 andb5 components versus excitation, while
allowing constant offsets of these harmonics, as they can easily be compensated by a re-optimization
of the coil. A verification of the compensation principle has been carried out at CERN in one of the
short-model dipole magnets. Fig. 27.19 (left) shows the first quadrant of the LHC main dipole coil with
the ferromagnetic part of the coil protection sheet which is mounted between the coil and the collars (see
also Fig. 27.20). The angleα of the magnetic part of the shield has been chosen to 52 degrees, fully
covering the outer layer coil and thus preserving the mechanical construction.
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C o i l  P r o t e c t i o n  S h e e t

Fig. 27.20: LHC main dipole coils in the common stainless steel collar, including the ferromagnetic coil protection sheet.
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Fig. 27.21: Multipoleb3 determined at 17 mm reference radius compared with measurements from the test magnet, with and

without the magnetic coil protection sheet. The objective for posing a ferromagnetic coil protection sheet is to reduce the

variation∆bn of the lower order multipoles in the LHC main dipoles.

Fig. 27.21 shows the measured and calculated results for theb3 multipole variation, when the coil
protection sheet is made from ferromagnetic material. It is important to calculate a complete up-down-
up ramp cycle in order to achieve simulation data comparable to an LHC operation cycle applied on the
magnet test stand.

An improvement in the variation ofb3 conflicts, however, with an increasingb5 multipole variation.
A full coverage of the outer layer coil by a ferromagnetic sheet is not the optimum solution. Therefore
different covering angles of the ferromagnetic sheet were investigated. A covering angle of around46
deg. would be the best choice for a reduction of bothb3 andb5 multipole components, see the dark blue
curve in Fig. 27.22.

27.10.2 Ferromagnetic sheet inside the aperture

Another effective method for part compensation of persistent current multipole field errors is to add a
thin ferromagnetic sheet on the outer radius of the cold bore. Table 27.2 shows the calculated values
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Fig. 27.22: Top: Multipoleb3 versus the magnetic induction as a function of the covering angle of the ferromagnetic part of the

coil protection sheet (CPS) on the superconducting coil. Bottom: Multipoleb5 versus the magnetic induction.

for different thicknesses of such a sheet. Although theb3 component is compensated, the variation ofb5
is increased. Compared with the results from the ferromagnetic coil protection sheet, the ferromagnetic
layer on the cold bore has the advantage that the circular symmetry of the cold bore can be exploited.
In addition, the cold bore is centered with a high precision in the magnet aperture and therefore no
asymmetry is to be expected.

Without sheet With ferromagnetic sheet

40µm thick 50µm thick 60µm thick

∆b2 0.0006 0.034 0.005 0.002

∆b3 5.7207 1.124 0.055 1.187

∆b4 0.0021 0.050 0.018 0.035

∆b5 0.7206 1.337 1.821 2.334

∆b6 0.0004 0.005 0.011 0.011

∆b7 0.2826 0.581 0.788 1.000

Table 27.2: Variation of the multipole field components (from injection to nominal field level) including persistent current

contributions (in units of10−4, calculated at 17 mm reference radius). The values are determined for an LHC dipole magnet

with a cold bore and a ferromagnetic layer of various thicknesses on the outer surface of the cold bore.

27.10.3 Ferromagnetic shims inside the cables

A compensation by means of thin ferromagnetic strips with a thickness of 0.1 mm wound into the Ruther-
ford type cable of the inner layer has also been investigated.

Strips inside the cable (made from stainless steel) have been proposed for the reduction of the
cross-resistance in cables for fast-pulsed synchroton magnets, [108],[233]. The manufacture of cables
with such strips has been demonstrated on the industrial level. The calculated results showed a strong
over-compensation of the persistent current effect, i.e., an increase ofb3 to 37.4 units at injection field
level and to 8.8 units at nominal field level. Inserting ferromagnetic shims inside the cable cross-section
can be interesting forNb3Sn conductors used in high field magnets in the 11-15 T range. Technical
Nb3Sn conductors have a considerably larger filament diameter of about 10-15µm compared to 6-7µm
in NbTi strands and thus create much higher persistent current field errors.



Chapter 28

Vector-Hysteresis Model for Persistent
Currents

In the previous chapter a macroscopic magnetization model for superconducting strands exposed to vari-
ing magnetic flux densities of constant directions has been proposed. We shall call this the scalar (or
one-dimensional) magnetization model.

The advantages of this model are:

• No meshing of the superconducting coil. Numerical treatment would require the meshing of the
coil down to the filament level which is prohibitive in case of multi-filament wires with filament
diameters in theµm range.

• No magnetization measurement needed. The model requires the measuredJc(B) and can be
gauged on measured multipole field errors in magnets by adjusting the fit parameters in the critical
current density fit.

• Easy scaling for different filament diameters or hollow filaments resulting from the powder in tube
process.

• The macroscopic magnetization model does not require hysteresis modelling with Preisach, or
Stoner-Wolfarth methods.

• The magnetization depends only on the extrema of the excitational field. Therefore the field errors
at injection (after a down-ramp from nominal field values to the minimum and a subsequent up-
ramp to injection) can be calculated with only a few excitations steps.

The disadvantages are:

• No modelling of the Meißner currents.
• Idealization of the electrical field versus currentE(J) relation as a step function and consequently

no modelling of time transient effects due to flux creep.
• Only possible for simple shapes (circular or elliptic) of the superconductor.
• Difficult to extend to 3-D problems.

An extension of the model to excitations with arbitrary changes of the field direction (in the plane
transverse to the filament axis) is presented in this chapter. We shall call this subsequently the vector-
hysteresis model.

For a better understanding of the vector magnetization model, let us first recall the situation for a
field change of the form∆B = λBeB whereλ ∈ [−1, 1] andB is the nominal field strength in some
directioneB perpendicular to the axis of a circular superconducting filament, which we shall call a 1-
dimensional field change. This field change induces a shielding-current layer of a relative thicknessq∗

called the relative penetration depth, see Fig. 28.1. It is measured on the scale of the relative penetration
parameterq that is zero on the outside and one in the center of the filament. The currents are directed

324
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as to create a magnetic induction that opposes the applied field change on the conductor surface, thus
shielding the field change from the filament’s core. The thickness of the layer depends on the amplitude of
the applied field sweep, on the filament radius, and on the critical current density in the superconducting
material.

The generation of a shielding field can be modeled by the perfectly uniform dipole field produced
by two intersecting circles with opposite current densities shifted by the relative distance∆q = q2 − q1

|∆t| = µ0r

2

∫ q2

q1

Jc(B(q)) dq, (28.1)

where∆t is the shielding field,r is the filament radius andq1, q2 are the relative penetration parameters
that limit the shielding current layer, [17]. Such pairs of circles are nested inside concentric circles. This
equation will later be used to find a differential equation for the differential shieldingdt. In Fig. 28.1
these nested pairs of circles are represented with finite thickness, notwithstanding the continuous nature
of the mathematical model. Fig. 28.1 (left) shows the cross-section of a filament after a 1-dimensional
change of the external field from0 to Bnew. The nested ellipses each shield a fraction of the outside
field from the inside, thus increasingJc(B) in the inner ellipses, as represented in Fig. 28.1 (left bottom
diagram). The figure also yields a vector representation of the 1-dimensional field change and the corre-
sponding shielding effect. The vectort(q) indicates the shielding magnetic induction as a function of the
penetration from the outside (q = 0), wheret(0) = 0 andB(0) = Bext +0, to the inner boundary of the
shielding layer (q = q∗), whereB(q∗) = Bext + t(q∗) = 0. The magnitude oft(q) depends in a non-
linear way on the applied field change and on the penetration parameterq, ref. to theJc(B(q))-relation
in Eq. (28.5).

The right hand side of Fig. 28.1 shows the situation where a larger field change was applied to
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Fig. 28.1: Circular superconducting filament in a magnetic inductionB of fixed direction, for different penetration states.

The individual graphs contain: (a) A schematic view of the circular filament with inscribed pairs of ellipses. Orange colors

indicate positive currents inz-direction, blue colors indicate negative currents. The color intensity represents the magnitude

of the currents at critical densityJc(B(q), T ); (b) TheBx component of the magnetic induction over the relative penetration

parameterq; (c) TheBy component ofB(q) over q; (d) The vector representation of the shielding problem in theBx/By-

plane;B andT denote the external field vectorB and the shielding field vector at penetrationq∗, t(q∗), respectively; (e) The

shielding currents at critical densityJc(B(q), T ) over the cross-section. Left: Penetration to a relative penetration depth ofq∗.

Right: Full penetration (q∗ = 1).



CHAPTER 28. VECTOR-HYSTERESIS MODEL FOR PERSISTENT CURRENTS 326

q1

B y

0  0

q

j c
q

B x

B y

B x

B o l d B n e w

t n e w
t o l d

y/r

x / r 1
0

0

 010

q *q *

q * q *

B y

y/r

x / r

q10  0

q

j c

10

B y

B x

B o l d

t o l d

q

B x 1
0

0

B n e w t n e w

Fig. 28.2: Sequel to Fig. 28.1 (right). Different 1-dimensional field changes applied to a fully penetrated superconducting

filament. Left: The diminution of the external field causes the creation of a new current layer of relative thicknessq∗ with

opposite current densities. Right: The outer field changes sign, causing the new current layer to completely erase the previous

layer (q∗ = 1). The gray part of thetold vector representstold(q∗), the part of the shielding magnetic induction that has been

replaced by the new shielding layertnew(q∗).

the filament surface. The entire cross-section contains shielding currents of critical density which are,
however, unable to shield the field from the inside. The field has thus fully penetrated the filament
(q∗ = 1). In the vector representation,t points from the induction at the filament surfaceB(q = 0) to
the value of the induction at the center of the filamentB(q = q∗).

Fig. 28.2 (left) shows the case where the magnetic induction outside the filament is ramped up to
Bold (previously denotedBext) and subsequently reduced toBnew. A new layer of shielding currents
is generated, leaving the remaining inner layers untouched. The field change is again shielded from the
filament’s core. The shielding vectortnew(q) is now to oppose the new field change. It further has to
fulfil continuity requirements on the outer (q = 0) and inner boundary of the new current layer (q = q∗):

B(0) = Bnew + tnew(0)︸ ︷︷ ︸
0

= Bnew, (28.2)

B(q∗) = Bnew + tnew(q∗) = Bold + told(q∗). (28.3)

With givenBold, told andBnew, the mathematical problem consists in the determination of a penetration
parameterq∗ and the corresponding shielding vectortnew that satisfies the Eqns. (28.2) and (28.3).

Fig. 28.2 (right) shows a case where a field changes wipes out the previous current layer(s) entirely.
This happens, if the field change is too large (or the field is turned into a direction that does not allow
for an intersection of shielding vectors, see Sec. 28.1). It further shows that the critical current density
reaches its maximum atB(q) = |B(q)| = 0 where the shielding effect is biggest and theB(q) curve has
the steepest inclination.

28.1 Nested ellipse model

The more general case of a magnetic induction that changes its magnitudeanddirection is now discussed.
We shall denote the underlying model therefore as “2-dimensional” or the “vector magnetization model”.
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Departing again from the situation described in Fig. 28.1 (right), a clockwise rotation and diminution of
the magnetic induction is now studied. A new shielding-current layer of relative thicknessq∗ is created
to oppose the change of the induction. Of course, the continuity equations (28.2) and (28.3) have also to
hold for rotational field changes.

Fig. 28.3 (left) illustrates the case. The shielding vectortnew(q∗) points toBold + told(q∗). It
is directed as to shield field changes from the filament’s core in accordance with the continuity equa-
tions (28.2) and (28.3). The magnetic induction in the filament cross-section is, thus, given by

B(q) =

{
Bnew + tnew(q), 0 < q < q∗

Bold + told(q), q∗ < q < 1.
(28.4)

Similar to the case presented in Fig. 28.2 (right), the outer field change shown in Fig. 28.3 (right)
penetrates the entire cross section. Again, the previous shielding-current layer is completely removed
(q∗ = 1). As the effects are computed for succeeding excitational conditions and the computational
results should be independent of the step sizes of these excitations, thetnew vector forq∗ = 1 points to
the arrowhead oftold. This behavior is illustrated in Fig. 28.4.

28.2 Mathematical description of the vector magnetization model

Most magnetization models for superconducting filaments (e.g. [231]) neglect the field-dependence of
the critical current densityJc. This is reasonable only if the excitational field is large compared to the
field generated by the filament magnetization (i.e., all the filaments are fully penetrated). The model
introduced here includes varying current densities inside the filament and calculates the continuous vari-
ation of the magnetic field by means of a differential approach. The following approach was adopted to
derive the mathematical model:

• A differential equation for the variation of the magnetic field is derived, based on the equation for
the perfectly uniform dipole field produced by a pair of intersection circles, compare Eq. (28.1).

• To obtain a solveable differential equation, the fit function for the critical current density is ap-
proximated around the working point.

• A set of differential equations for thex- and ay-components is derived, to describe arbitrary field
changes in the transverse plane.
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Fig. 28.3: Left: Sequel to Fig. 28.1 (right). The outer fieldBnew is decreased and turned byβnew − βold with respect to the

previous excitation stepBold. A new current layer is created with relative thicknessq∗, that shields the field change from the

filament’s core. Right:Bnew is increased and rotated with respect toBold. The field change fully penetrates the cross-section.

In the vector representation, the shielding vectortnew points to the arrowhead of the old shielding vectortold.
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Fig. 28.4: Vector representation of steps of different sizes, following an increase and rotation of the magnetic induction on a

filament’s surface (dashed line). This plot is to illustrate why, after a large step, (c), the shielding vectortnew has to point to

the arrowhead oftold: Increasing the step size, the moment of full penetration of the field (q∗ = 1) is reached in (b). Assume

now that the step size is being infinitesimally increased. In order to avoid any discontinuity of the results due to a choice of step

sizes, the new shielding vector must to point to the arrow head of the old vector. Applying the same reasoning to a larger step,

(c), it can be seen that lettingtnew point to the arrow head oftold is the appropriate approximation of a series of successive

infinitely small steps along the dashed line.

• The shielding induction vectort(q) is introduced to describe the variation of the induction over
the cross-section.

• One differential equation fort(q) = |t(q)| is obtained. Solving the equation yields the inverse
relationq(t).

• With this solution at hand, the penetration parameter of a new shielding current layer can be de-
termined by solving an equation system, given by the continuity requirements in Eqns. (28.2) -
(28.3).

• Given the limits of each current layer and the respectiveJc(B(q)) relation, the magnetization of
the filament can be calculated.

The critical current density as a function of the magnetic inductionB(q) = |B(q)| is derived in Chapter
27.3.3 and follows the relation

Jc(B, T ) ∼ Jc(Bext)
√
Bext√
B(q)

≡ F(Bext)√
B(q)

. (28.5)

around the working pointBext = |Bext|. From the equation for the perfectly uniform dipole field
produced by a pair of intersection circles, compare Eq. (27.28), we can now derive a system of differential
equations for the field change within the filamentdB(q):(

dBx(q)
dBy(q)

)
=
µ0F(Bext)H√

B(q)

(
− cos(α− β)

sin(α− β)

)
dq. (28.6)

The angles are defined in Fig. 28.3. The geometry factorH = 2r(1− ln 2) = 0.614 r, wherer denotes
the filament radius, accounts for the little spaces that are left when a round filament is filled with a series
of intersecting circles inscribed in concentric circles (instead of intersecting ellipses that would avoid
these spaces but which could not be inscribed in concentric circles, see Fig. 28.1 (left) and [3]. By
setting (

Bx(q)
By(q)

)
︸ ︷︷ ︸

B(q)

= Bext

(
cos(β)
sin(β)

)
︸ ︷︷ ︸

Bext

+ t(q)

(
− cos(α− β)

sin(α− β)

)
︸ ︷︷ ︸

t(q)

, (28.7)
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and

|B(q)| =
√
B2

ext − 2Bextt(q) cos(α) + t2(q) (28.8)

we can derive from Eq. (28.6) a differential equation fort(q):

dt 4

√
B2

ext − 2Bextt(q) cos(α) + t2(q) = µ0F(Bext)H dq. (28.9)

Substitutingu(q) = t(q) cosα yields a solution forq(u) and hence the solution forq(t) using the Math-
ematica computer program [239]:

q(Bext, α, t) =
1

3µ0F(Bext)H

[
Bext cos(α)

(
2
√
Bext

+
√
Bext| sin(α)| 2F1

(
1
2
,
3
4
,
3
2
,− cot2 α

))
+ ( t−Bext cosα )

(
2 4

√
B2

ext − 2Bextt cosα+ t2

+
√
Bext| sinα| 2F1

(
1
2
,
3
4
,
3
2
,−(t−Bext cosα)2

sin2 αB2
ext

))]
, (28.10)

where 2F1 denotes the Gauss’ Hypergeometric function. The algorithm for the implementation of2F1

in the program language C is based on [166].

A system of equations can now be established for the problem of finding a relative penetration
depthq∗ that fulfills Eqns. (28.2) and (28.3) or, equivalently, the problem of findingαnew, |tnew(q∗)| =
tnew and|told(q∗)| = told. Obviously it is required that

q(Bnew, αnew, tnew) = q(Bold, αold, told) = q∗. (28.11)

Moreover, the continuity equation (28.3) holds

Bnew

(
cosβnew

sinβnew

)
+ tnew

(
− cos(αnew − βnew)

sin(αnew − βnew)

)

= Bold

(
cosβold

sinβold

)
+ told

(
− cos(αold − βold)

sin(αold − βold)

)
. (28.12)

Given the quantitiesBnew, βnew, αold, Bold, andβold, the system of equations (28.11) and (28.12) can
be solved for the unknownsαnew, tnew andtold by means of a Newton algorithm.

Eventually, to find the distribution of the magnetic induction over the filament cross-section, see
Eq. (28.8), the inverse relation of Eq. (28.10),t(Bext, α, q

∗), is required. It is obtained from the Newton
algorithm, using the recursion

tj+1 = tj − µ0F(Bext)H
q(Bext, α, tj)− q∗

4

√
B2

ext − 2Bexttj cos(α) + t2j

, (28.13)

with j denoting the index of the iteration step.

From Fig. 28.3 it is easy to see thatN field changes on the outside of the filament effect the
creation ofn ≤ N distinct shielding-current layers between the relative penetration parameter valuesqi
andqi+1, 1 ≤ i ≤ n. The indicesi andi+1 correspond to what previously has been subscripted as ’old’
and ’new’.
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Provided the semi-analytic expression for the magnetic inductionB(q) inside the filament, the
magnetization due to a layer of shielding currents of critical densityJc(B(q)) can be derived. The vector
of the entire filament’s magnetizationM equals the geometric sum of the magnetization vectorsMi

generated by the individual current layers,

M =
n∑
i=1

Mi =
n∑
i=1

∫ qi+1

qi

m(q) dq, (28.14)

wherem(q) denotes the magnetization contribution of a shielding current layer of relative thicknessdq
at q.

The direction ofMi follows the direction of the shielding vectorti(q), subsequently denotedeti .
We obtain for the magnetization of one shielding-current layer

Mi =
4r
π

∫ qi+1

qi

Jc(B(q))(1− q)2 eti dq

=
4rF(Bext)

π

∫ qi+1

qi

(1− q)2√
B(q)

eti dq, (28.15)

whereB(q) is given in Eq. (28.8). Generally, Eq. (28.15) is evaluated numerically. An analytical ap-
proximation exists for outer fields being substantially larger than the shielding induction,|(Bext)i| �
|ti(qi+1)| which is used whenever possible in order to accelerate the function evaluation.

28.3 Single filament subjected to arbitrary field changes

The computations in this section are presented for one filament with a radiusr = 3.5 µm atT = 1.9 K.
The result is scaled for a strand with a filling factorλ = 1/2.95 which takes into account the copper
to superconductor ratio of the multi-filament wire. Fig. 28.5 presents computations of 1-dimensional
field changes betweenBext = 0, 2 and−2 T. The model reproduces the typical hysteretic behavior of
superconducting filaments, as shown in Chapter 27.

Note that the so-called virgin curve joins the hysteresis loop in the point where the external field
has fully penetrated the filament cross-section (and which is not the point of maximum magnetization).
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Fig. 28.5: Computed magnetization curve for one filament (r = 3.5 µm, λ = 1/2.95, T = 1.9 K). The current factor is

represented on thex-axis, the corresponding magnetization on they-axis.



CHAPTER 28. VECTOR-HYSTERESIS MODEL FOR PERSISTENT CURRENTS 331

 

Bx
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

B
y

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

 

Mx0µ
-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06

M
y

0µ

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Fig. 28.6: Rotational field excitation of one filament (r = 3.5 µm, λ = 1/2.95, T = 1.9 K). Two complete turns have been

computed. Left: The external field follows a circular, clockwise path that goes through the origin in theBx/By-plane. Right:

The filament’s response in terms of magnetization; A virgin curve and a closed hysteresis slope can be identified.

At every point the magnetization vectorM opposes the applied field change. Consequently the lower
branch of the hysteresis loop (up-ramp) is called the shielding branch and the upper branch (down-ramp)
is called the trapping branch. It can also be seen that the filament magnetization increases as the outer
field tends to zero and decreases for larger outer inductions. This effect is due to theB-dependence of
the critical current densityJc(B, T ).

A similar case for the vector magnetization model is shown in Fig. 28.6. The left hand side diagram
shows a clockwise rotating excitation field that goes through the origin in theBx/By-plane (Bext = 0).
As for the first excitation steps, the filament’s response (shown in the right diagram of Fig. 28.6) is very
similar to the 1-dimensional field change. The magnetization opposes exactly the applied field. As the
outer field further increases in magnitude, the magnetization decrease due to the field dependence of the
critical current density. At full penetration the magnetization curve meets the closed 2-D hysteresis loop.
The maximum of|M| is reached at the completion of each turn in the excitational field, where|Bext| is
zero.

28.4 MCDO spool-piece corrector

Fig. 28.7 shows the field plots of the combined octupole decapole spool-piece corrector (MCDO) for the
LHC.

The MCDO shown in Fig. 1.10 is a single aperture assembly of spool piece correctors consisting
of an octupole magnet (MCO) and a decapole magnet (MCD) concentrically mounted (nested) inside an
aluminium shrinking cylinder. They are installed upstream of the MBA dipole cold-mass. A somewhat
academic excitational cycle is considered (which will serve the purpose of validating the model with
measurements). First the decapole is ramped up to about 0.25 of its nominal field value. Then the
octupole is powered up to its nominal field value (100 A) which creates the asymmetric field in the
magnet. Then the octupole field is ramped up and down between +100 and -100 A. The latter stages are
displayed in Fig. 28.7. This excitation creates a field change in a particular strand which is displayed on
the left hand side of Fig. 28.8 together with the resulting magnetization on the right.

Fig. 28.9 shows theB3 andB7 field component for the MCDO magnet with the ramp cycle de-
scribed as above. The field components are the Fourier series components (in tesla) of the radial field
component at a reference radiusr0 of 17 mm from which the field inside the aperture. Note that, for
symmetry reasons, the numerical calculation of the MCDO magnet’s field without the persistent current
effects does not yield anyB3 orB7.
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Fig. 28.7: Field plots for the different excitations of the combined decapole octupole corrector magnet. First the decapole (outer

layer coil) is ramped up to about 0.25 of its nominal field value. Then the octupole (inner layer coil) is powered up to its nominal

field value (100 A) which results in the assymmetric field in the magnet as displayed on the left hand side. Subsequently the

octupole field is ramped up and down between +100 and -100 A. This is a somewhat academic excitational cycle but it will

serve the purpose of validating the model with measurements.
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terms of magnetization. The filament in question is situated at the “two o’clock” position in the outer coil (decapole), compare

Fig. 28.7

28.5 MCBX orbit corrector

As an example we will present in this chapter the persistent current calculations for the MCBX orbit
corrector magnet for the inner triplets of the LHC. It features two nested dipole coils of different aperture
and orientation. The outer coil is a horizontal orbit corrector (vertical field said to be positive when
pointing in upward direction, therefore called MCBXV) and the inner coil is skew (turned by 90 deg
clockwise) dipole with the field pointing in horizontal direction, MCBXH (vertical orbit corrector). By
powering both coils at the same time any direction of the field can be achieved. The multipole content in
this magnet then clearly depends on the history of its powering.

The current in the outer coil is raised up to 1/10 of the nominal current and then both coils are
powered such that the field is rotating with constant (to first order) magnitude. Due to the low current
and the absolutely round inner shape of the iron yoke, the imaging method is always used.
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Fig. 28.9: Field errors (leftB3 right B7 in tesla at a reference radius of 17 mm) as a function of the excitation step. First the

decapole (outer layer coil) is ramped up to about 0.25 of its nominal field value (step 10). Then the octupole (inner layer coil) is

powered up to its nominal field value (100 A, step 20). Subsequently the octupole field is ramped up and down between +100

(step 20, 60, 100) and -100 A (step 40, 80, 120).
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Fig. 28.10: Field errorCn =
√

A2
n + B2

n as a function of the excitational field direction.
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Fig. 28.11: Left: Modulus and direction of the magnetization due to rotating excitational field as seen on the right.
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28.6 Questions

1. What are persistent currents. Give a short description of Bean’s critical state model.

2. Why is it important to use very fine filaments in superconducting accelerator magnets.



Chapter 29

Quench Analysis

The current carrying capacity of superconducting material (which is about a thousand times higher than
in household wiring,10 A/mm2 compared to about10000 A/mm2 for NbTi at 2 K, 1 tesla) is not the only
difference to be considered in the electromagnetic design process of superconducting magnets. Above a
certain limit the superconductor develops a so-called quench and becomes normal conducting. This limit
(the critical current density,Jc) depends on the field level and the temperature as show in Fig. 2.2. The
LHC main dipoles operate at about 90% of this current limit.

Studying the magnet behavior in the event of transition to the resistive state is an important task
during the design phase of superconducting magnets. The aim of these studies is to know whether or not
the magnet is self-protected against resistive transitions, and how it can be protected in case the quenches
threaten the integrity of the magnet. A simulation package called QUABER [175] has been developed
at CERN in order to investigate the behavior of accelerator superconducting magnets in the event of a
quench. This package has been built up in the environment of the commercial network analysis program
SABER [205].

The network solver deals with a set of different thermo-electrical models contained in templates
(simulator subprograms), which model the quench propagation throughout the coils according to the
different mechanisms (heat conduction, induction losses, heater-provoked quenching, etc.). In the defi-
nition of the electrical circuit, the different blocks of the magnet are represented by coupled inductances
and variable quench resistances. In the calculation of both quench resistances and temperature maps, the
simulator takes into account the magnetic field distribution throughout the coils. The distribution of the
magnetic field as well as the mutual and self-inductances are calculated with ROXIE and interfaced into
QUABER.

Neglecting the effect of quench propagation for the cases of long magnets protected by heater
strips mounted on the superconducting coils, a model based on heat energy conservation and the change
of resistivity in the conductors covered by the heaters has been incorporated into ROXIE. This model
will be described in this chapter.

29.1 Heat energy conservation

The basic equation which links the temperature of the conductor with the current flow is the heat energy
conservation equation. Consider a continuous medium of an arbitrary fixed volumeV bounded by a
closed surface∂V . The conservation of heat energy principle states that the rate of increase of heat in
V is equal to the rate of heat conduction across∂V plus the rate of heat generation withinV . Under
adiabatic conditions, i.e., no heat conduction and no cooling we get [231]:

RI(t)2 = C(T )V
dT
dt
, (29.1)

336
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Fig. 29.1: Left: The specific resistivity of copper as a function of temperature and the residual resistivity ratio RRR. Right:

Normalized magneto-resistance of copper at 4.5 K as a function of RRR.

whereC the specific heat capacity of the conductor (mostly referred to as thespecific heat) with [C] = 1
J·kg−1 ·K−1. It follows

ρCu(B(I), T,RRR)
aCu

lmag I(t)2 = C(T ) aT lmag
dT
dt
, (29.2)

whereaCu is the copper cross-section of a conductor,aT the total cross-section of the conductor, and
ρCu(B, T,RRR) is the specific resistivity of the copper defined through the relation

R = ρ l/a (29.3)

wherel is the length anda is the cross-section of the specimen.[ρ] = 1 Ω·m. The magnetic length of the
magnet is denotedlmag. Rearranging Eq. (29.2) yields

dT
dt

=
I(t)2ρCu(B(I), T,RRR)

aCuaTC(T )
. (29.4)

The specific resistivity of copper has a nonlinear dependence on the magnetic field, temperature and the
residual resistivity ratio(i.e., the ratio between copper resistivity at 293 K and at 4.2 K in absence of
magnetic field) denoted as RRR. The specific resistivity of copper as a function of temperature and the
RRR value is plottet in Fig. 29.1 (left).

Suppose the quench starts at timet = 0 with an initial coil temperatureT0. Separation of variables
and integration yields∫ ∞

0
I(t)2dt = aCuaT

∫ Tmax

T0

C(T )
ρCu(B(I), T,RRR)

dT. (29.5)

The term on the left hand side of Eq. (29.5), i.e., the time integral over the square of the current, is usually
expressed in units of106 A2·s and is called MIIT. The MIITs represent the quench load. The term on the
right hand side of Eq. (29.5) represents the quench capacity of a given superconducting cable. From this
equation the map of temperatureT in the coils as a function of time can be evaluated.

It is assumed that a quench starts in the high field region of the outer layer coil at the nominal
current of 11800 A and propagates longitudinally and transversally to the neighboring turns. The initial
longitudinal quench velocity is 15-20m·s−1 in the outer layer, and the transition propagates transversally
with a turn-to-turn delay of 20-25 milli-seconds (values according to experimental measurements). The
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Fig. 29.2: Position of the quench heaters on the LHC dipole coil.

transverse propagation is limited by the insulation and the helium content in the cable. The magnet is
protected by strip heaters covering the full length of 5+8 turns per pole in the outer layer shells. The idea
is to warm up sufficiently large sections of the coil in order to spread out the stored magnetic energy.
The quench heaters are effective after a delay of about 50 milliseconds from the onset of the quench.
Since the magnet is by-passed through a cold diode, the coils will dissipate the full energy stored in the
magnet. The bulk of the magnet acts as a current source for the quenching part of the magnet.

29.2 Current decay and hot-spot temperature

If we neglect the voltage and temperature rise due to the quench propagation, i.e., assume that the re-
sistivity created by the initial quench is too low to produce a significant decrease of the current, then
a 2-D analytical model can be used to calculate the current evolution in the magnet. In this case we
assume that the current evolution is controlled by the resistance of the turns under the strip heaters. As
the heaters cover the entire length of the magnet, the problem can be treated as a 2-D field problem. The
time dependence of the current is given by

dI
dt

=
U

Ld
− I R

Ld
, (29.6)

whereR is the total resistance of all conductors quenched by the strip heaters (plus the resistance of a
dump resistorRd), U is the armature voltage andLd is the differential self inductance of the magnet.
The value of the resistance is given by

R =
N∑
i=1

8lmag
ρCu(B(I), T,RRR)

aCu
u(t− tqi) +Rdu(t− td), (29.7)

where thetqi are the heater delays of the protection system for each of theN conductors,td is the delay
for switching-in the dump resistor, andu(t) is the unitary step function. The factor 8 comes from the
series connections of the turns in the two-in-one magnets. The hot-spot temperature can be evaluated by
solving a set ofN +2 ordinary (first-order) differential equations.T0 is the temperature of the conductor
in which the quench is initiated andTi (i = 1, ..., N ) are the temperatures of the conductors covered by
the quench heaters, see Fig. 29.2.
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dT0

dt
=
I2ρCu(B0(I), T0, RRR)

aCuaTC(T0)
, (29.8)

dTi
dt

=
I2ρCu(Bi(I), Ti, RRR)

aCuaTC(Ti)
u(t− tqi), (i = 1, ..., N), (29.9)

dI
dt

=
U

Ld
− I

Ld

(
N∑
i=1

8l
ρCu(Bi(I), Ti, RRR)

aCu
u(t− tqi) +Rdu(t− td)

)
. (29.10)

Note that the conductivity of the copper depends on the temperature and the local magnetic field in the
coil. The lengthlmag of the magnet cancels if the inductance is given per unit length. The system of
differential equations is solved using the Runge-Kutta1 method.

Fig. 29.3 gives the time evolution of the current, resistivity and temperature for a quench that is
assumed to originate in the pole turn of the outer layer of the coil (conductor 25 in Fig. 29.2). The heater
delay is 60 milliseconds.

A fast decay is desirable to minimize theI2 integral but too short decay times lead to large internal
voltages. This requires the disconnection of the power supply, the by-passing of the current in magnet
strings through diode stacks connected in parallel to the magnets and the switching-in of dump resistors
to increase artificially the resistance in the circuit. The right hand side of Fig. 29.3 shows the results for
a simulation of a case where a dump resistor of 3 mΩ is switched in after 20 milliseconds.

The4th order Runge-Kutta method described in the next section was used for the numerical inte-
gration with a fixed step size of 0.001 sec.

29.3 Numerical integration

Consider the differential equation of the form

y′ = f(t, y) (29.11)

wherey′ = dy
dt . The basic idea of numerical integration (the classical Euler method) is to approximate the

incrementdy by ∆y = h y′ = h f(t0, y0) at a certain point, e.g., the initial value(t0, y0). The step size

1Carle Runge (1856-1927), Martin Kutta (1867-1944).
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Fig. 29.3: Left: Time evolution of the current, resistivity and temperature (normalized) for a quench that is assumed to originate

in the innermost (pole) turn of the outer layer. Heater delay 60 milliseconds. Right: With dump resistor of 3 mΩ switched-in

after 20 milliseconds.
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of the integration is denotedh. A way to improve this method is to calculate the derivative at the point
yn+1 and average it with the derivative atyn before the actual integration step is performed (trapezoid
method). A further refinement, the Runge-Kutta method of4th order, reads:

k1 = h f (tn, yn) , (29.12)

k2 = h f

(
tn +

h

2
, yn +

k1

2

)
, (29.13)

k3 = h f

(
tn +

h

2
, yn +

k2

2

)
, (29.14)

k4 = h f (tn + h , yn + k3) , (29.15)

With

tn+1 = tn + h, (29.16)

it yields

yn+1 = yn +
1
6
(k1 + 2k2 + 2k3 + k4). (29.17)
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Chapter 30

Differential Geometry Applied to Coil End
Design

The 3-D coil geometry incos Θ type magnets is determined by the objectives of minimizing the strain
energy due to the winding procedure, optimizing the multipole content of the integrated field and limiting
the local magnetic field enhancement. The coil end must be carefully designed, as it cannot be mechan-
ically confined as well as the straight section. The coil ends in superconducting magnets have therefore
often been the limiting factor for the quench performance. As the beam pipe must not be obstructed,
the coil is wound on a cylindrical winding mandrel around iso-parametric, saddle-shaped end-spacers
such that the two narrow sides of the cables follow space curves of equal length. This is usually called a
constant-perimetercoil end, shown in Fig. 30.1 next to a race-track coil for comparison. Subroutines for
the optimization of coil ends based on methods of differential geometry have been incorporated into the
ROXIE program. The objectives for the coil end design are as follows:

• Minimization of mechanical stress on the cables due to the winding procedure.
• Minimization of the multipole content of the integrated field along the coil end.
• Limitation of the local peak field enhancement in the coil with respect to the maximum field in the

cross-section.
• Generation of CAD data for the 5-axis CNC machining of the glass-epoxy filler-pieces, so called

end-spacers, which are wound into the coil ends.

        

                

        

                

Fig. 30.1: Race-track coil (left) and iso-perimetric coil (right) as used for superconducting magnets of thecosΘ design. Only

one coil-block of a dipole coil is displayed; connections are not shown. Constant perimeter ends allow a more appropriate shape

of the coil in the cross-section, while keeping the space for the beam pipe.
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Fig. 30.2: Coil end of the LHC main dipole with cuts in thexy- andyz-plane. The numbering convention for the coil blocks is

shown in the cut planes.

As the unstressed cable resembles (at first approximation) a long flat rectangle, one of its flexural rigidi-
ties is much larger than the other. It is easier to bend the cable over its broad side than to bend it over its
narrow side. The latter is therefore called the “hard-way” bend. If we take one of the flexural rigidities
to be infinite, i.e., we do not allow any bend the hard-way, then the curvature of the flat unrolled cable is
zero. Vanishing hard-way bend implies the constant perimeter condition, i.e., the isometry of the outer
and the inner edge of the cable.

In the following we will review the foundations of differential geometry, study the Frenet frame of
space curves as a starting point for the coil end design and then introduce the generalized Frenet-Serret
equations for strips. Local adjustment of the twist parameters can be introduced to match constraints
which stem from the design of the coil cross section and from the aim to wind multiple conductors
without inter-turn spacers to form the coil blocks. The generation of the cable and end-spacer shapes in
the ROXIE program will then be presented with some examples of LHC dipole model magnets and the
MSCB dipole orbit corrector.

30.1 The Frenet frame of space curves

Consider a 3-smooth space curve of velocity one

r : I → R3 : s 7→ r(s) (30.1)

with I = (a, b) ⊂ R, see Section 5.1. In the following, thes-dependency of curvature parameters and
vectors will be omitted in the notation. The normalizeds derivative of the tangent vectorT to the space
curve is called theprinciple normalvectorN.

dT
ds

=
d2r
ds2

=
∣∣∣∣∣∣∣∣dTds

∣∣∣∣∣∣∣∣ N = κN (30.2)

whereκ is called the curvature (andρ = 1/κ is the radius of curvature). The curvature measures the
turning of the unit vectorT. The direction ofdTds at any given point on the space curve is normal to the
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curve at that point. This can be proved as follows:

Proof: SinceT has a constant magnitude,T ·T = constant. Then

d
ds

(T ·T) = T · dT
ds

+
dT
ds

·T = 2T · dT
ds

= 0. (30.3)

�

The plane spanned by the tangent and the principle normal (T andN) to the curve at pointP is called
theosculating plane. The normalN may be assigned to either of the two opposite directions along the
principle normal. In general the curvature is regarded as positive ifN points from the pointP on the
space curve into the concave side of the curve. If we write Eq. (30.2) in the form

N =
1
κ

d2r
ds2

=
1
κ

(
d2x

ds2
ex +

d2y

ds2
ey +

d2z

ds2
ez

)
, (30.4)

then we see that the directional coefficients ofN are 1
κ

d2x
ds2

, 1
κ

d2y
ds2

, etc..

The vector

B = T×N (30.5)

is called thebinormalvector which is orthogonal to the tangent - and the principle normal vector. The
plane perpendicular to the tangent plane (spanned byN andB) is called thenormal plane. Therectifying
plane is the plane throughP spanned byB and T. The relations involving thes derivative of the
fundamental vectorsT, N andB are called the Frenet-Serret1 equations. The unit vectorsT,N,B
form a right-handed orthonormal frame called thetriad or Frenet frame, that moves with the point on
the space curve. The relations between the Frenet frame ats+ ds ands is given by the above mentioned
Frenet-Serret equations:

dT
ds

= κN , (30.6)

dN
ds

= τB− κT , (30.7)

dB
ds

= −τN , (30.8)

1Jean Frenet (1816-1900), Joseph Serret (1819-1885).
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Fig. 30.3: Space curve in Cartesian coordinates and the trihedralT,N,B.
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where the coefficients form a skew-symmetric rotational matrix. This can be see in the matrix notation
(whereT ′ abbreviatesdTds and so forth)T ′

N ′

B ′

 =

 0 κ 0
−κ 0 τ

0 −τ 0


T

N
B

 . (30.9)

Proof:

dB
ds

=
d
ds

(T×N) =
dT
ds

×N + T× dN
ds

= κN×N + T× dN
ds

= T× dN
ds

. (30.10)

As B is a unit vector,dBds is orthogonal toB and lies therefore in the surface spanned byT andN, the
osculating plane. NowdBds is also orthogonal toT, ref. Eq. (30.10), and therefore we have the following
proportionality between the vectors:

dB
ds

= −τN (30.11)

whereτ is called thetorsion of the space curve and measures the arc-rate of turning of the binormal
vector. Furthermore

dN
ds

=
d
ds

(B×T) =
dB
ds

×T + B× dT
ds

= −τN×T + κB×N = τB− κT . (30.12)

�

From Eq. (30.6) we can directly deduce the curves with vanishing curvature. Integrating twice yields:
dT
ds = 0, dr

ds = c1 = const.,r = c1s+ c2 which is the equation of a straight line.

The Darboux2 vector-fieldD along the space curver with velocity one is given by

D = τT + κB. (30.13)

This vector is the axis of rotation of the triad, as described through Eq. (30.9). From the Darboux
vector-field, the triad can be derived from

T ′ = D×T , N ′ = D×N , B ′ = D×B . (30.14)

The form of the Frenet equations for the case of a general parametert (with velocity 6= 1 ) can be deduced
by means of a Gram-Schmidt orthogonalization of the vectorsv(t),a(t) andȧ(t) = da(t)

dt . Then

T =
v(t)
||v(t)||

, N = B×T , B =
v(t)× a(t)
||v(t)× a(t)||

, (30.15)

and

κ =
||v(t)× a(t)||
||v(t)||3

, τ =
(v(t)× a(t)) · ȧ(t)
||v(t)× a(t)||2

. (30.16)

Example: Consider the space curver(Θ) with the parameterΘ on the open interval(0, 2Nπ) shown in
Fig. 30.4 (right)

r(Θ) = R1 cos Θex +R2 sinΘey + (R2 sinΘ tanα+
p

2π
Θ)ez , (30.17)

2Gaston Darboux (1842-1917).
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Fig. 30.4: Left: Helix and Darboux frame. Right: Generalized elliptical helix with tilted turns.

with the ellipse half-axesR1 andR2, tilt angleα and pitchp. The special case

r(Θ) = R cos Θex +R sinΘey +
p

2π
Θez (30.18)

is the circular helix with radiusR and pitchp as shown in Fig. 30.4 (left). Withq = p
2π we have

v = −R1 sinΘex +R2 cos Θey + (R2 tanα cos Θ + q)ez , (30.19)

a = −R1 cos Θex −R2 sinΘey − (R2 tanα sinΘ)ez , (30.20)

da
dΘ

= R1 sinΘex −R2 cos Θey − (R2 tanα cos Θ)ez . (30.21)

Thus

‖ v ‖=
√
R2

1 sin2 Θ +R2
2 cos2 Θ + (R2 tanα cos Θ + q)2 (30.22)

and

v × a =

∣∣∣∣∣∣∣
ex ey ez

−R1 sinΘ R2 cos Θ R2 tanα cos Θ + q

−R1 cos Θ −R2 sinΘ −R2 tanα sinΘ

∣∣∣∣∣∣∣ (30.23)

that is

v × a = R2q sinΘex − (R1R2 tanα+R1q cos Θ)ey +R1R2ez , (30.24)

‖ v × a ‖=
√

(R2q)2 sin2 Θ + (R1R2 tanα+R1q cos Θ)2 + (R1R2)2 . (30.25)

For the special caseα = 0,R1 = R2 = R we thus obtain

κ =
R

R2 + q2
, τ =

2q
R2 + q2

. (30.26)

Now

T =
−R1 sinΘex +R2 cos Θey + (R2 tanα cos Θ + q)ez√

R2
1 sin2 Θ +R2

2 cos2 Θ + (R2 tanα cos Θ + q)2
, (30.27)
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B =
R2q sinΘex − (R1R2 tanα+R1q cos Θ)ey +R1R2ez√
(R2q)2 sin2 Θ + (R1R2 tanα+R1q cos Θ)2 + (R1R2)2

. (30.28)

The normal vector can be calculated as

N = B×T =
1

||v|| ||v × a||

∣∣∣∣∣∣∣
ex ey ez

R2q sinΘ −R1R2 tanα−R1q cos Θ R1R2

−R1 sinΘ R2 cos Θ R2 tanα cos Θ + q

∣∣∣∣∣∣∣ (30.29)

which gives of the special case of the circular helix:

N = B×T = − cos Θex − sinΘey (30.30)

and the Darboux vector takes the form

D = τT + κB =
1√

R2 + q2
ez . (30.31)

�

In case of the circular helix the curvature and the torsion are both constant, and consequently their ratio is
constant. Therefore, the tangent and binormal vectors are inclined at constant anglesϕ to the generators
of the cylindrical surface onto which the helix is drawn, c.f. Fig. 30.4.

Proof: Differentiating the relationN · U with respect toΘ (whereU is a constant vector field
parallel to the generators of the cylinder) yields with Eq. (30.7):

(τB− κT) ·U = 0 . (30.32)

ThusU is perpendicular to the vectorτB−κT. ButU is parallel to the plane ofT andB (the rectifying
plane) and must therefore be parallel to the vectorτT− κB , which is the Darboux vector, inclined at a
constant angle toT . �

It is an important property of all helices that the curvature and the torsion are everywhere at a constant
ratio.

It is instructive to repeat the example with the projection of the circular helix onto thexy-plane:
r(Θ) = R cos Θ ex +R sinΘ ey which yieldsκ = 1/R andτ = 0.

30.2 Strips

At first approximation, the superconducting cable can be modeled purely geometrically as a two-dimensional
strip to be bent without stretching or squeezing into the three dimensional space so that all arc-lengths
of curves on the surface are locally and globally preserved. The surface of the bent strip may be un-bent
(developed) into the plane accordingly, and is therefore called a developable surface3.

30.2.1 The Frenet-Serret equations for strips

Following Blaschke [31], let{a1,a2,a3} be an orthonormal set of vectors, i.e., a moving frame

aj · ak = δjk. (30.33)

We set

daj
ds

=
3∑

k=1

akωjk, (30.34)

3Developable surfaces in Euclidean space are surfaces which can essentially be made of a piece of paper, if we assume
sufficient smoothness and exclude possible ways of arranging crumpled paper.
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as a linear combination of the moving frame. The coefficients read

ωjk =
daj
ds

· ak. (30.35)

Differentiating Eq. (30.33) yields

daj
ds

· aj = 0 and
daj
ds

· ak +
dak
ds

· aj = 0 (30.36)

which implies that

ωjj = 0 and ωjk + ωkj = 0. (30.37)

Taking Eq. (30.34) and setting

a1 =
dr
ds

= T, a2 = n, a3 = b, (30.38)

and

ω23 = τ, ω31 = κg, ω12 = κn, (30.39)

whereκg is thegeodesiccurvature which corresponds to the hard-way bend, andκn is thenormalcurva-
ture which corresponds to the easy-way bend, yields the generalized Frenet-Serret equations for strips,
see Fig. 30.5

dT
ds

= κnn− κgb, (30.40)

dn
ds

= −κnT + τb, (30.41)

db
ds

= κgT− τn, (30.42)

which may be written in matrix form asT ′

n ′

b ′

 =

 0 κn −κg

−κn 0 τ

κg −τ 0


T

n
b

 , (30.43)

where we have abbreviated againdT
ds by T ′ etc.

Given a baseline, e.g., an ellipse on a cylinder and a field of frames on that baseline, the curvature
parameters can be derived from Eq. (30.35) according to

τ = b · n ′ = ϑT
′, (30.44)

κg = T · b ′ = ϑn
′, (30.45)

κn = n ·T ′ = ϑb
′, (30.46)

The three curvature parameters denote the differential twist anglesdϑT,b,n around the Frenet frame as it
moves along the baseline byds, see Fig. 30.6.

For the curvature of the space curve we have

| κ |=‖ T ′ ‖=
√
κ2

g + κ2
n. (30.47)
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Fig. 30.5: Three examples of strips. Left: General case, Middle: Developed strip (κn = 0, τg = 0) with geodesic curvature
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For the normal vector of the space curve we get

N =
1
κ

dT
ds

=
−κgb + κnn√

κ2
g + κ2

n

(30.48)

and for the binormal vector

B = T×N =
κgn + κnb√
κ2

g + κ2
n

. (30.49)

From Eq. (30.48) we obtain the angleϕ1 between the principle normalN of the space curve and the
normaln to the strip by

cosϕ1 = N · n =
κn√
κ2

g + κ2
n

. (30.50)

The angle is zero in case of vanishing geodesic curvature.

30.2.2 Plane and geodesic strips

We can now study special cases which are displayed in Fig. 30.5. For a plane strip, Fig. 30.5 (middle),
the tangent plane along the curve is constant

n ′ = τb− κnT = 0 (30.51)

and consequentlyτ = κn = 0. The geodesic curvature is therefore the curvature of the plane strip and it
can be shown, [31], that this curvature is an invariant with respect to bending. For a vanishing geodesic
curvature,κg = 0, we find

N = n and B = b . (30.52)

The strip then becomes the envelope of the rectifying plane. The set of differential equations (30.43) is
then identical to the Frenet equations of space curves, Eq. (30.9).
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Fig. 30.6: A strip bent along a baseline drawn on a cylinder of radiusr, together with the generator lines of the developable

surface.

30.2.3 The generators of strips

A developable surface is generated by a field of straight lines, thegeneratorswhich are found to be the
intersections of successive tangent planesF (x, y, z, s) andF (x, y, z, s + ds) to the strip surface. We
will omit the x, y andz variables in the notation. These tangent planes are uniquely defined by:

F (s) = (r0 − r(s)) · n(s) = 0, (30.53)

wheren(s) is a normal vector to the strip inr(s) andr0 is an arbitrary point(x, y, z) that fulfills the
equation. It is required that

F (s) = 0, and F (s+ ∆s) = 0, (30.54)

and hence

dF (s)
ds

= lim
∆s→0

F (s+ ∆s)− F (s)
∆s

= 0. (30.55)

A field of orthonormal frames{T(s),b(s),n(s)} is assigned to the baseline, whereT(s) is the
tangent to the baseline andn(s) is the normal to the strip atr(s). Differentiating Eq. (30.53) yields

F ′(s) = r ′(s) · n(s) + (r0 − r(s)) · n(s) ′

= (r0 − r(s)) · (−κnT(s) + τb(s)) = 0. (30.56)

The first term vanishes becauser ′(s) = T(s) is orthogonal to the normal vector. The second term
is rewritten using Eq. (30.41). We find from Eq. (30.53) thatr0 must be a linear combination of the
vectorsT(s) andb(s),

r0 = r(s) + k1T(s) + k2b(s), (30.57)

and Eq. (30.56) requires that

k1

k2
=

τ

κn
. (30.58)
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thexy-plane. Note that the positioning and inclination angle of the strip is identical in thexy-plane.

We can thus write the solution as

r0(s, λ) = r(s) + λd(s), (30.59)

with some parameterλ and the generator

d(s) = τ T(s) + κn b(s), (30.60)

which in case of geodesic strips, i.e.,κg = 0, B(s) = b(s), is identical to the Darboux vectorD(s) of
the space curve. The solution of Eqns. (30.53) and (30.56) is a field of straight lines spanning the strip
surface, as it should be.

30.3 A starting point for coil end design

With a space curve describing the path of the cable’s lower edge on the winding mandrel, the geodesic
strip (uniquely determined by Darboux vectors in the Frenet frame) serves as a starting point for the coil
end design. It also yields some “natural” inclination angleβ of the cable in theyz-plane of the magnet
end for a prescribed space curve of the cable’s lower edge, Fig. 30.7.

The space curve may be taken as an ellipse on the coil winding mandrel. LetR0 be the radius
of the coil winding mandrel (for the inner layer of the LHC main dipole coilsR0 = 28 mm) andϕ the
positioning angle of the cable in thexy cross-section, see Fig. 30.7. One of the ellipse half-axes is given
by a = R0(π2 −ϕ). The other half-axis is a design variable withb = afe wherefe is the ellipticity factor
(usually around 1.1 to 1.2). For the ellipse on the cylinder we have

r(t) = R0 sin(
a

R0
cos t)ex +R0 cos(

a

R0
cos t)ey + b sin tey , (30.61)

with t on the open interval(0, π2 ). To avoid the calculation of arc-length by means of elliptic integrals,
no re-parameterization is done. The tangent, binormal and Darboux vectors, as well as curvature and
torsion, can then be calculated using the Equations (30.15) and (30.16). From these equations also the
inclination angle att = π

2 , i.e., in theyz cross-section of the coil end, can be calculated and is displayed
as a function of the ellipticity and the positioning angle in thexy-plane in Fig. 30.7 (right). The strip
generated by the space curve and the Darboux vector-field is shown in Fig. 30.7 (left).
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30.4 Optimization of the strip surface

For practical coil winding of superconducting magnets, however, the Frenet frame is not ideal because
of the following reasons:

• The coils are wound on a cylindrical winding mandrel and the coil ends must match the magnet’s
straight section (determined by the 2-dimensional field quality optimization). The Frenet frame,
however, requires the cable to meet the straight section in radial direction.

• Bending a plane strip into a defined position consists in bending the strip over its successive gen-
erator lines4, compare Fig. 30.8. It follows that the generator lines must not intersect the surface
of the cable which would result in tearing. The locus of intersection of successive generators is
called theedge of regression. The geodesic strip generally does not account for the absence of
such intersections of generators in the cable surface (henceforth denoted an edge of regression
violation).

• In order to avoid to wind inter-turn spacers into the coil end, the conductors are wound ontu each
other in blocks of up to 30 conductors. Consequently the shape of the subsequent conductor is
defined by the shape of the previous one, and thus cannot be optimal.

30.4.1 The design variables

The parameterization of a strip surface can be done according to Eqns. (30.59) and (30.60). The appli-
cation of an additional twistϑ∗T(s) around the tangent vectorT can be a solution to both of the above
mentioned problems. It results, however, in the generation of some geodesic curvature. From Eq. (30.44)
it follows directly that

τ∗ = τ + ϑ∗T
′. (30.62)

Inserting

T∗ = T, (30.63)

n∗ = cosϑ∗Tn + sinϑ∗Tb, (30.64)

b∗ = cosϑ∗Tb− sinϑ∗Tn, (30.65)

in Eqns. (30.46) and (30.45) yields

κ∗g = cosϑ∗T κg + sinϑ∗T κn, (30.66)

κ∗n = cosϑ∗T κn − sinϑ∗T κg. (30.67)

With Eqns. (30.60), (30.62) and (30.67) - (30.66), the mathematical model accounts for a start configu-
ration on a given baseline and yields the necessary degrees of freedom for the design optimization.

The baseline on the mandrel is chosen to be a hyper-ellipse

xn

an
+
y2

b2
= 1 (30.68)

of ordern and ellipticityfe = b
a , compare Fig. 30.6. With the given radius of the winding mandrel and

the fixed angular position at the onset of the bend, the design parameters are:

• The ellipticity of the baselinefe.
• The ordern of the hyper-ellipse on the cylinder (shape of the baseline).
• The angleβ between the innermost turn and the mandrel at the apex of the baseline.
• Four knots of a cubic spline function allowing for the local adjustment of the cable torsionϑ∗T

between the onset of the coil end and the baseline apex, according to Eqns. (30.62) and (30.67) -
(30.66).

4The absolute value of the generator vector,
√

τ2 + κ2
n, denotes the differential angle by which to bend the strip.
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30.4.2 The objectives

For the minimization of the mechanical stress in the cable, we aim at a minimumstrain energyE in the
elastic regime:

E =
1
2

∫ sc

0

(
fτ (τ(s))2 + fκn (κn(s))2 + fκg (κg(s))2

)
ds, (30.69)

whereinsc is the cable length. The flexural rigidities of the cable,fτ , fκn , fκg , are material and cable-type
related constants. Whereas the Rutherford type cables in the LHC main magnets allow some bending
over their narrow side, the conductors of the corrector magnets are made of up to 25 rectangular wires
glued together with an epoxy resin to form a ribbon which allows no geodesic curvature. In this case

fκg � fτ , fκn , (30.70)

so that the objective of minimum strain energy in a cable can be simplified to requiring that∫ sc

0
(κg(s))2 ds = min (30.71)

while keeping peak values ofτ , κn andκg below some critical values. For the small allowable values of
κg the assumption of elasticity in Eq. (30.69) is valid.

The following objectives can be calculated for the design optimization:

• Integrated squared geodesic curvature over each coil block.
• Maximum curvature parameter in each coil block.
• A parameter indicating an edge of regression violation within the strip surface.

To detect an edge of regression within the cable width, the length of the generators from the baseline to
the outer edge of the cable must be determined. In the 3-dimensional model this is a non-trivial task.

The inner theory of surfaces suggests to determine the geodesic5 that, from the pointr strives
towards the outer edge withb tangent to the geodesic. This computationally challenging task can be
avoided by making use of twobending invariances: The angle betweenT andd and the geodesic cur-
vatureκg. In the unbent (plane) strip, whereρg = 1

κg
is the radius of curvature of the inner edge, the

generator lengths can be determined by fundamental geometric operations, compare Fig. 30.8 (left). A
continuous parameter to indicate the severity of edge of regression violations is given by the integrated
magnitude of the generator vectors over the baseline where generator intersections within the cable sur-
face occur.

For the definition of the end-spacer shape, the generator lines of the cable have to be extended to
the outer diameter of the end-spacers.

30.4.3 The optimization process

The optimization process follows the steps below:

• Optimization of the coil cross-section. This determines the positioning and inclination angle of the
conductors and consequently the half axisa of the ellipses on the winding mandrel.

• For the inner-most turn of each coil block, estimation of the natural angle in theyz-plane for an
ellipticity factor offe = 1.2.

• Calculation of the Frenet frame.
• Matching the magnets cross-section at the onset of the bend by applying additional twist.
• Generation of the coil block geometry (with or without inter-turn wedges).
• Calculation of the local curvature parameters at every discretization point and in every turn in the

coil blocks.
5Given a parameter representationr0(s, t) of the surface, the geodesic is found by the means of variational calculus.
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• Optimization of the shapes with respect to the objectives above.
• In case the local geodesic curvature exceeds the limits found in the winding tests, the following

measures can be applied:

1. Additional twist
2. Thin wedges (made of polyimide foils) can be wound between the turns.
3. On the connection side, the mid-plane can be rotated in the direction of the turns with the

bigger half axes, see Fig. 30.13.

If these measures are not sufficient, an additional end-spacer has to be introduced in order to wind
less conductors into the coil block.

An objective weighting function is set up for the objectives while the edge of regression violation is taken
into account by means of a penalty transformation. The resulting optimization problem is solved using
the deterministic optimization algorithm EXTREM, see Chapter 31.

The algorithm is compatible with the routines previously implemented in ROXIE (which consid-
ered only the global deformation in the cable along the coil end). For instance the design of asymmetric
connection side benefits from the existing routines. The simultaneous optimization of the left and right
parts of cross-over turns, coupled only by the angleβ has lead to satisfactory results for both sides of the
asymmetric end. The post-processing and the existing CAD/CAM interfaces can also be used.

30.5 Corrector magnet coil end with ribbon conductors

The mathematical model and the design procedure have been validated at the coil end design of the MCB
orbit corrector dipole for the LHC. This coil end design was particularly difficult due to a large number
of conductors per coil block (maximum 26) and due to the brittle nature of the ribbon conductor that does
not support geodesic curvature. Previous designs based only on global parameters such as the constant
arc lengths of inner and outer cable edges had led to an unacceptable conductor lift-off from the winding
mandrel.

A first approach accounted only for a minimum geodesic curvature in the innermost cable of each
block. It could be shown that in this case the strain energy of the outermost turn in a block of 26 cables is
about 18 times higher than in the first turn. This, again, lead to an unacceptable lift-off of the outer turns
from the winding mandrel. The effect can be understood as the cable’s attempt to ease the strain energy
imposed on it by deviating from the base-curve. The coil blocks needed to be clamped onto the mandrel
thus forcing the cable into a position of higher geodesic curvature and strain energy, compare Figs. 30.9
and 30.10.

The minimization of the total strain energy in each coil block, balances the inevitable local geodesic
curvature between the first and last turn in a coil-block. As compared to the case where only the geodesic

Fig. 30.8: Left: Half of the cable developed into a plane. Note the geodesic curvature in the developed strip, the generator lines,

and in particular the first 6 intersecting generators. Right: Cable bent over the generator lines.
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Fig. 30.9: Winding trial of the MCB dipole corrector coil ends. Note the tooling for the clamping of the coil in order to prevent

conductor lift-off from the winding mandrel.

curvature of the innermost turn was minimized, the total block strain energy could be reduced by a factor
of 5. Fig. 30.10 illustrates the distribution of geodesic curvature in the innermost and outermost turns
for both cases. The latter design was approved for series production after a winding trial in European
industry.
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gles) of the second coil-block in the MCB corrector magnet, containing 26 conductors. Up: Result of a minimization of the

geodesic curvature in the innermost cable only. Down: Optimum solution to the minimization of the total block strain energy.
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30.6 Constant-perimeter coil ends in ROXIE

In order to establish the winding topology in ROXIE, the coil ends have first to be designed using an ap-
proach which is called constant-perimeter design by magnet builders. By imposing a constant perimeter
of the upper and lower edges of the cable, while checking the arc-length between equidistant points on
these edges a coil-end geometry with minimal geodesic curvature can be generated. The input parameters
for generation of a constant-perimeter coil-end geometry in the ROXIE program are thez-position of the
inner-most conductor of each coil-block (zp), its ellipticity factorfe and its inclination angleβ, and the
size of the inter turn spacers between the conductors. It is assumed that the inner edges of the conductors
follow ellipses (circles) or super-ellipses in the developed plane defined by their radial position in the
straight section. The conductors are wound around end-spacers which are designed in such a way that
the two narrow sides follow curves of equal arc length (with the goedesic curvature was chosen to be
zero). The outer and inner edges of the conductors are defined by their position in thexy cross-section
which yieldai andao the half-axes of the ellipses in thesz-plane (Fig. 30.2 and Fig. 30.11).

In thesz-plane we assume the inner edges of the conductor to be of elliptical shape

s2

a2
i

+
z2

b2i
= 1. (30.72)

The arc-length of the outer edge (with half axesao, bo) is assumed to be of constant perimeter to the
arc-length of the inner edge (with half axesai, bi) added to the length of the straight sectionli . The
perimeter of the ellipse (starting atz = zo) of the outer edge can be approximated by

Po =
√
P 2

s + y2
o (30.73)

with

Ps =
1
4
π(ao + bo)(1 +

λ2

4
+
λ4

64
) (30.74)

where

λ =
ao − bo
ao + bo

. (30.75)

For the perimeter of the inner ellipse we get

Pi =
1
4
π(ai + bi)(1 +

ν2

4
+
ν4

64
) (30.76)
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edges.
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Fig. 30.12: Left: Outer and inner edges of the conductors in thesz-plane (elliptical shape). Right: Conductor edges with

hyper-elliptical shape.

where

ν =
ai − bi
ai + bi

. (30.77)

The relaxation factorfr for the perimeter of the inner edge is usually taken between 0.98 and 1. The
unknownsbo andli can be calculated from the following two equations:

Pifr + li = Po, li + bi = zp − z0. (30.78)

Eliminatingli yields

Pifr + zp − z0 − bi =

√(
1
4
π(ao + bo)(1 +

λ2

4
+
λ4

64
)
)2

+ y2
o . (30.79)

Remember thatλ is a function ofbo. We can solve forbo recursively with the equation

bn+1
o =

√
(Pifr + zp − z0 − bi)

2 − y2
0 − 1

4πao(1 + λ2

4 + λ4

64 )
1
4π(1 + λ2

4 + λ4

64 )
, (30.80)

where

λ =
ao − bno
ao + bno

. (30.81)

The radius of curvature of the ellipse at the onset of the bend (small values ofz) is R = b2

a . An
alternative with a zero curvature at the onset of the bend is the hyper-elliptical shape

s2

a2
+
z3

b3
= 1, (30.82)

cf. Fig. 30.12. The calculation of the inner edge follows the reasoning for the ellipse. However, there is
no closed form available for the calculation of the perimeter of the hyper-ellipse. Therefore a polynomial
approximation for the perimeter is used.
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30.7 End-spacer manufacture

ROXIE contains a number of interfaces to CAD/CAM, structural analysis programs such as ANSYS, and
commercial field computation software such as VF-OPERA. The DXF interface (Data eXchangeFormat
established by the company AUTODESK) creates files for the drawing of the cross-section in thexy-
andyz-planes of the magnet, the developed view of coils and end-spacers and the 3D polygons for the
end-spacers and coils, thus eliminating error influences and considerably reducing the draughting work.

The shape of the end-spacers is determined by the shape and position of the coil-blocks as found
in the field optimization process. The surfaces to be machined are described by 2 polygons on the inner
and outer diameter of the end-spacers (where the straight lines joining the points on the two polygons are
generators of the developable surface).

The polygons are transferred into a CAM system, e.g., CATIA, for the calculation and emulation of
the cutter movements for machining the piece, through an ASCII file, a VDA file or a DXF file interface.
The spacers are machined by means of a 5-axis CNC machine from glass-epoxy (G11) tubes. Because
of the abrasive nature of the glass fibers, diamond tools must be used. Fig. 30.13 shows a top view of the
connection-side coil and the corresponding end-spacers for the outer layer dipole coil.

As CNC milling requires costly surface modeling and part-specific tooling, a rapid prototyping
method, called Solid Freeform Fabrication is applied for the manufacture of spacers to be used for wind-
ing tests. For prototyping, the Selective Laser Sintering (SLS) technique uses a photo-reactive polymer
powder deposited in a thin layer and scanned with a laser, so that the powder particles glue together into
a cross-section. The layering process is repeated till the part is completed. Accuracy and surface rough-
ness is limited by the size of the powder grains of about 0.1 mm in diameter. The material used for the
SLS process has good mechanical properties but would not withstand the curing temperature of 180o C
needed to polymerize the coil with its kapton insulation. It is also possible to manufacture the pieces with
a 5-axis water-jet cutting machine where the direction of the water-jet is given by the Darboux vectors.

Fig. 30.13: Connection side of a dipole model coil (left) together with its end-spacers (right).
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30.8 Coil end transformation with Euler angles

Arbitrary arrangements of coils can be generated applying translations and rotations as shown in Fig.
30.14 in order to generate assemblies of torus coils, Helmholtz coils or to calculate multipole feed-down
due to magnet misalignment.

Every rotation inR3 is given by an axis and an angleϕ of rotation around the axis. The group of all
rotations is denoted bySO(3). This group can be realized by linear transformations with corresponding
matricesR(ϕ) which preserve the metric (detR = 1). Rotations around the coordinate axes can expressed
by

R1(α) =

 1 0 0
0 cosα − sinα
0 sinα cosα

 , (30.83)

R2(β) =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

 , (30.84)

R3(γ) =

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 . (30.85)

The anglesα, β, γ are the Euler angles and represent the swing (also called yaw), tilt (also called pitch)
and roll angles, respectively. The anglesα, β, γ are defined positive in the sense of the right-handed
screw rule. Take good note that the rotation matrices are not commutative and therefore the sequence of
the transformations has to be respected.

30.9 Splice configurations

Figure 30.15 (top) shows two variants in the design of the joint connection of the inner and the outer coil
in the lead end of the MQXA insertion quadrupole. The variant on the right shows an external splice
placed outside the radial boundary of the coil, requiring special end collars for mechanical support. The
variant on the left features an internal splice entirely contained within the radial boundary of the coil.
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Fig. 30.14: Coil end transformations: Left: Roll (rotation around the z-axis), Middle: Tilt (rotation around the x-axis, also

called pitch), Right: Swing (rotation around the y-axis, also called yaw).
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Fig. 30.15: Different ramp and splice configurations: Top left and right: Two different methods of splicing (internal, external)

the MQXA quadrupole magnets. Bottom: Bus-bar interconnections for the MQM quadrupole magnets.

The goal is to provide better mechanical support and to simplify the magnet assembly by replacing the
end collars with the standard ones over the entire length. The geometry of the internal splice has been
defined using the “additional bricks” feature in ROXIE.

Another example of lead end design is the MQM quadrupole as shown in Figure 30.15 (bottom).
The lead end is made of three sections, the layer jump, the end-spacer section and the connection box.
The layer jump is 83 mm long and is made of three parts. In the first, the conductor twists away from
the inner layer until arriving parallel to the outer layer, shifted by one cable width from the adjacent turn.
It then moves outward with constant inclination until aligned to the outer layer. Finally, it turns around
the end, into its final position, following a hyper-ellipse. The lead end-spacers have been designed with
a similar end-block spacing, as the return end, and consequently the calculated peak field, is very close
to the value for the return end. The connection between the pole leads is made in the connection box.
Three splices are inadequate to connect the four poles in series. Due to the aperture of the magnet and
the twist pitch of the cable, an angular turn of90o is not sufficient for making a sufficiently long splice.
Therefore,270o turns are used for three splices in three planes, all orthogonal to the aperture axis. In
addition, a fourth plane is used to bring the two leads together. The sequence of splices was determined
such as to minimise their effect on the integrated field.



Chapter 31

Mathematical Optimization Techniques

Everything is for the best in the best of possible worlds,
Theodizee, Gottfried Wilhelm Leibniz (1646-1716).

Mathematical optimization techniques have for decades been applied to computational electro-
magnetism. Halbach [93] introduced in 1967 a method for optimizing coil arrangements and pole shapes
of magnets by means of finite-element field calculation. Armstrong, et. al. [7] combined in 1982 opti-
mization algorithms with the volume-integral method for the pole profile optimization of an H-magnet.
These attempts tended to be application-specific, however. Only since the late 1980s, have numerical
field calculation packages for both 2-D and 3-D applications been placed in an optimization environment.
Reasons for this delay have included constraints in computing power, problems with discontinuities and
nondifferentiabilities in the objective function arising from FE-meshes, accuracy of the field solution,
and software implementation problems.

Application of mathematical optimization techniques to magnet design using numerical field com-
putation causes special requirements on the optimization method because of the following reasons.

• The computing time for each objective function evaluation can be in the range of hours. The time
for the evaluation of the next search point can therefore be neglected.

• As the objective functions are calculated through FEM procedures, they are affected by numerical
errors. This makes the application of gradient methods problematic if differential quotients for the
gradient approximation have to be used.

• As the objective functions are not defined explicitly, continuity, differentiability and convexity
have to beassumedfor the application of some classes of optimization methods.

• Some of the trial solutions might lead to physically meaningless structures and the crash of finite
element calculations. This has to be considered during the set-up of the parametric model.

• Magnet design has to deal with multiple (conflicting) objectives.

Let us start with the last point. Most of the real-world optimization problems (including the design of
superconducting magnets) involve multiple conflicting objectives. In our case, for example, the search
for a maximum main field and a small volume of superconductor material. There is also a payoff between
a maximum field and small saturation induced field errors. Characteristic of thesevector-optimization
problems is the appearance of an objective-conflict in which the individual solutions for each single ob-
jective function differ and no solution exists where all the objectives reach their individual minimum. The
procedures for solving vector-optimization problems consist of three different parts: decision making,
treatment of constraints, and optimization algorithm.

• Methods for decision-making, based on the optimality criterion by Pareto in 1896 [156], have been
introduced and applied to a wide range of problems in economics by Marglin [134] and Fandel
[66]. They include objective-weighting and distance-function methods and constraint formulation
among others. These methods are also referred to as goal-programming methods.

361
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Fig. 31.1: Characterization of optimization problems and methods

• Methods for the treatment of nonlinear constraints have been developed by Zoutdendijk [241],
Fiacco and McCormick [68] and Rockafellar [176], among others, and are based on the optimality
criterion by Kuhn and Tucker [118].

• Numerous optimization algorithms using both deterministic and stochastic elements were devel-
oped in the sixties and covered in books by Wilde [230], Rosenbrock [177], Himmelblau [97], and
Brent [42]. With the increase of computing power, researchers have recently begun to focus on
genetic and evolutionary algorithms. Their advantages are the ability to find global optima and
treat a large number of design variables (Fogel [74], Holland [98], Schwefel [206]).

In the last decade a large number of papers on the application of mathematical optimization to electro-
magnetic design have been published, including papers by the author on the optimization of waveguide
structures and on the design and optimization of permanent magnet synchronous machines.

The sheer variety of optimization methods shows that no general method exists to solve nonlinear
optimization problems in computational electromagnetism in the same way, for example, that the sim-
plex algorithm exists to solve linear problems. The methods applied are deterministic algorithms that
do not require the derivative of the objective function; gradient methods, including design sensitivity
analysis with the adjoint state technique, and stochastic methods including simulated annealing, genetic
algorithms, and artificial neural networks (ANN). The performance difference between various methods
of the same general type are rather small when applied to the same class of problems. Any classifica-
tion of optimization problems and solution methods should therefore attempt to characterize the field of
application suited for the application of either deterministic or stochastic algorithms. Fig. 31.1 gives a
characterization of optimization problems and methods.

Remark: In this chapter we change the notation according to the conventions of matrix algebra,
i.e., we denote column vectors with lower case bold face characters and matrices with capital bold face
characters, omitting the square brackets. �
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31.1 The nonlinear optimization problem

Optimization problems are characterized by the aim of minimizing a nonlinear objective functionf of
x = (x1, x2, ..., xn). In magnet design, this function must be calculated by means of numerical field
computation. The optimization problem reads:

min{f(x)}, (31.1)

f : Rn → R, subject to nonlinear constraints

gi(x) ≤ 0, i = 1, 2, ...,m, (31.2)

hj(x) = 0, j = 1, 2, ..., p, (31.3)

gi, hj : Rn → R. Each variable design variablexl can take values from a domainΩl = [xl,lower, xl,upper] ∈
R, i.e.,

xl,lower ≤ xl ≤ xl,upper, l = 1, 2, ..., n (31.4)

in which we callxl,lower andxl,upper the lower and the upper bounds of the design variables, respectively.
The feasible domainM is given by

M = {x ∈ Rn|gi(x) ≤ 0; hj(x) = 0; xl,lower ≤ xl ≤ xl,upper;

∀ i = 1, ..,m; j = 1, .., p; l = 1, ..n}. (31.5)

If M = Rn the optimization problem is said to be unconstrained. All optimization problems can be
treated as minimization problems because

max{f(x)} = −min{−f(x)} . (31.6)

If necessary, we can also assume that the objective function takes only positive values as

min{f(x)} = min{f(x) + c} (31.7)

wherec is a positive constant.

31.2 Optimality criterion for unconstrained problems

A necessary condition for a solutionx∗ of an unconstrained optimization problem is given by

∇xf(x∗) =
(
∂f(x∗)
∂x1

, ....,
∂f(x∗)
∂xn

)
= 0. (31.8)

x∗ is then called a stationary point. Supposedf ∈ C2. A sufficient condition is that the Hesse1 matrix

H(x∗) =
(
∂2f(x∗)
∂xi∂xj

)
(31.9)

is positive definite, i.e.,

xTH(x∗)x ≥ 0 x ∈M = Rn. (31.10)

Thenx∗ is called the local minimizer of problem (31.1). For convex optimization problems where for all
x1,x2 ∈M ,

f(νx1 + (1− ν)x2) ≤ νf(x1) + (1− ν)f(x2) (31.11)

is satisfied for0 ≤ ν ≤ 1, x∗ is a global optimizer. Geometrically (in one dimension) a function is
convex if the line joining two points on its graph lies nowhere below the graph.

1Otto Hesse (1811-1874).
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31.3 Kuhn-Tucker equations

The necessary conditions for a constrained problem read:

∇xL(x∗) = ∇xf(x∗) + α · ∇xg(x∗) + β · ∇xh(x∗) = 0, (31.12)

g(x∗) = 0, (31.13)

h(x∗) = 0, (31.14)

αi > 0. (31.15)

Eqns. (31.12) - (31.15) are theKuhn-Tuckerequations [118]. The gradient of the Lagrange function
L must be zero, and the Lagrange-multipliersαi of the active inequality constraintsgi(x∗) must take
values greater than zero, otherwise it would be possible to decrease the value of a constraint without
increasing the objective function, which is of course not characteristic for an optimal point. Fig. 31.2
gives a geometric interpretation of the Kuhn-Tucker equations. Point 1 is not a minimum as−∇f =
α1∇g1 + α3∇g3 with α1 < 0. The constraintg∗1 = 0 causing stronger restrictions on the feasible
domain leads to point 2 as an optimum with a lower numerical value off(x). Thus point 1 is not an
optimum. The Kuhn-Tucker equations are satisfied in the optimal point 3, where the negative gradient
of the objective function is a positive linear combination of the gradients of the inequality constraints.
A vanishing Lagrange-multiplier shows that the constraint is redundant. In this case the optimization
problem is calleddegenerate. The quotient between the absolutely greatest and absolutely smallest non-
zero Lagrange-multiplier is called degree of degeneration.

31.4 Vector-optimization and Pareto-optimality

Real world optimization problems involve multiple conflicting objectives that must be mutually recon-
ciled. A vector-optimization problem in a standardized mathematical form reads

MIN {f(x)} = MIN {f1(x), f2(x), .., fK(x) } , (31.16)
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f : Rn → RK , subject to nonlinear constraints, Eqns. (31.2) - (31.3). For the definition of the optimal
solution of the vector-optimization problem we apply the optimality criterion by Pareto2, which was
originally introduced for problems in economics3, [156], [212]. A Pareto-optimal solutionx∗ is given
when there existsno solutionx in the feasible domain for which

fk(x) ≤ fk(x∗) ∀ k ∈ [1,K], (31.17)

fk(x) < fk(x∗) for at least onek ∈ [1,K]. (31.18)

This implies that a design in which the improvement of one objective causes the degradation of at least
one other objective is Pareto-optimal. It is clear that this definition yields a set of solutions rather than one
unique solution. Fig. 31.3 shows a graphic interpretation of Pareto-optimal solutions for two conflicting
objectives,f1 andf2. Fig. 31.4 shows a real world optimization problem with two design variables; the
half axesa andb of the ellipse defining the inner shape of the iron yoke of a dipole magnet. Bringing the
iron yoke closer to the coil increases the quench field but also increases the saturation dependent field
errors. The objective conflict is obvious. In Fig. 31.4 (right) the contour plots of the two objectives are
shown together with the Pareto-optimal solution set. On the thick line any increase in maximum field has
to be paid for, by an increase of field errors. Point P1 is not a Pareto-optimum as in P2 both objectives
are improved.

Let us employ a metaphor: Choosing a restaurant, the objectives are good food, friendly service,
a nice setting, and low prices. Obviously the so-called utopia solution where all the objectives take their
individual optimum does not exist. In real live we exclude the bad places right away. But after a while
we are left with a number of restaurants (forming a Pareto-optimal solution set) to which we return more
or less frequently. But we choose different places for a birthday celebration and for a quick lunch in an
empirical decision making process. We should not aim, however, at an optimal value to price ratio, as
in this case a free lunch is by definition the best (even if we get food poisoning). This make clear why,
in particular in technical decision-making processes, a mathematical treatment that guarantees a solution
from the Pareto-optimal solution set is in order.

31.5 Methods of decision-making

The first issue in an optimization process is thus the treatment of the decision-making problem. Most
important for the application of mathematical optimization algorithms is a decision-making method that

2Vilfredo Pareto (1848-1923).
3See for example http://cepa.newschool.edu/het/profiles/pareto.htm.
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Fig. 31.4: Left: Optimization problem with two design variables; the half axis of the ellipse (a,b) defining the inner shape of

the iron yoke. Right: Contour plots of the two objectives (Bss to be maximized,∆b3 to be minimized). The Pareto-optimal

solution set is indicated with the bold line. P1 is not a Pareto-optima as in P2 both objectives are improved.

guarantees a solution from the Pareto-optimal solution set. These methods are also referred to as goal-
programming. Table 31.1 gives an overview of the decision making methods that guarantee a solution
from the Pareto-optimal solution set. A comprehensive overview can be found in [53].

Described below are some methods that have been applied by the author to problems in computa-
tional electromagnetism.

31.5.1 Goal programming

31.5.1.1 Objective weighting

Theobjective weightingfunction [118] is the sum of the weighted objectives and results in the minimiza-
tion problem

min

{
u(F(x)) =

K∑
k=1

tk · fk(x) |x ∈M

}
(31.19)

with the weighting factorstk representing the users preference. For convex optimization problems it
can be proved indirectly [66], that Eq. (31.19) is a minimization problem with a unique Pareto-optimal
solution. The particular challenge here is to find the appropriate weighting factors when the objectives

Lagrange-Multiplier estimation Kuhn - Tucker 1951

Distance function Charnes - Cooper 1961

Objective weighting Zadeh 1963

Constrained formulation Marglin 1967

Fuzzy set decision making Bellman - Zadeh 1970

Payoff table Benayoun 1971

Multi-objective simplex method Zeleny 1974

Non-inferior set estimation Cohon 1978

Table 31.1: Decision making methods
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have different numerical values and sensitivity. Using objective weighting therefore results in practice
in a solution process where a number of optimizations have to be performed with updated weighting
factors.

31.5.1.2 Distance function

The problem of choosing appropriate weighting factors also occurs when thedistance functionmethod
[49] is applied. Most common is a least-squares objective function.f∗k are the minimum requirements
for the optimum design, or the set of measured values in case of the inverse field computation problem.
Then the minimization problem reads:

min

{
‖ z(x) ‖2

2 =
K∑
k=1

(tk(f∗k (x)− fk(x)))2 |x ∈M

}
. (31.20)

For convex functions and forf∗k taken as the minimal individual solutions which can be found by setting
up a payoff table (Section 31.5.3), it can be proved in the same manner as for the objective weighting
function, that Eq. (31.20) has an unique Pareto-optimal solution, see also Fig. 31.5. The disadvantage of
least squares objective functions with the Euclidean normL2 is the low sensitivity for residuals smaller
than one. Therefore sufficiently high weighting factorstk have to be introduced. If the one-normL1

is applied, the disadvantage is the non-differentiable objective function in the optimum. This is of no
importance for the application of search routines but is problematic for the use of gradient methods.

31.5.2 Constraint formulation and sensitivity analysis

The problem with the weighting factors can be overcome by defining the problem in the constraint for-
mulation [134]. Only one of the objectives is minimized and the others are treated by use of constraints.
The resulting optimization problem reads

min {fi(x)} (31.21)

subject to

fk(x)− rk ≤ 0, (31.22)

with k = 1, ...,K; k 6= i and the additional constraints, Eq. (31.2) - (31.4). Therk represent the mini-
mum request values specified by the user for thek-th objective. Combining Eqns. (31.22) and (31.2) and
omitting the bounds for the design variables (31.4) yields in vector notationg ′,d ∈ Rm+K−1,h′, c ∈
Rp:

min {fi(x)}, (31.23)

f 1

f 2

f 1

f 2

f 1

f 2
f *

f 1 = c

Fig. 31.5: Methods for decision making. Left: Objective weighting. Middle: Distance function. Note that only minimizing the

distance from the minimal individual solutions guarantees a Pareto-optimal solutions. Right: Constraint formulation.
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subject to

g ′(x)− d ≤ 0, (31.24)

h′(x)− c = 0. (31.25)

The separate treatment of the bounds are described in Section 31.6. The constraint formulation has the
advantage that a sensitivity analysis can be performed using the necessary optimality conditions at the
optimum pointx∗ which read for problem (31.23)-(31.25) , [129]:

∇xfi(x∗) + α · ∇xg ′(x∗) + β · ∇xh′(x∗) = 0, (31.26)

g ′(x∗)− d = 0, (31.27)

h′(x∗)− c = 0, (31.28)

αi > 0. (31.29)

By means of the corresponding Lagrange function it can also be proved that (31.23) - (31.25) is a min-
imization problem with a unique Pareto-optimal solution if all constraints are active. A non-active con-
straint would be equivalent to a zero weight in the weighting function. The Lagrange-multipliers are
estimated by solving the linear equation system (31.26) by means of the variational problem

minα,β{‖ ∇xfi(x∗) + Aα + Bβ ‖} (31.30)

with the gradients of the constraints arranged in the matricesA andB. The gradients of the active con-
straints have to be linearly independent for Eq. (31.30) to have a solution. A necessary condition is that
the number of design variables is greater or equal to the number of constraints. The Lagrange-multipliers
are a measure of the price which has to be paid when the constraint is decreased. Mathematically this
relationship is expressed by [129]

∇cfi(x∗) = −β, ∇dfi(x∗) = −α. (31.31)

Proof: In the optimum the Kuhn-Tucker equations have to be fulfilled, i.e.,

∇xfi(x∗(c,d)) = −
[
α · ∇xg ′(x∗(c,d)) + β · ∇xh′(x∗(c,d))

]
(31.32)

and both the equality and inequality constraints have to be active, i.e.,

g ′(x∗(c,d))− d = 0, (31.33)

h′(x∗(c,d))− c = 0. (31.34)
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Constraint formulation with penalty term for the∆b3 constraintf(a, b) = 50Bss + 3max{(0, ∆b3 − 1.)2} .

With the chain rule we get

∇cfi(x∗(c,d)) = ∇xfi(x∗(c,d)) · ∇cx∗(c,d) =

−
[
α · ∇xg ′(x∗(c,d)) + β · ∇xh′(x∗(c,d))

]
∇cx∗(c,d), (31.35)

∇dfi(x∗(c,d)) = ∇xfi(x∗(c,d)) · ∇dx∗(c,d) =

−
[
α · ∇xg ′(x∗(c,d)) + β · ∇xh′(x∗(c,d))

]
∇dx∗(c,d), (31.36)

and with the implicit function theorem

∇c

(
g ′(x∗(c,d))− d

)
= ∇xg ′(x∗(c,d)) · ∇c(x∗(c,d)) = 0, (31.37)

∇d

(
g ′(x∗(c,d))− d

)
= ∇xg ′(x∗(c,d)) · ∇d(x∗(c,d))− I = 0, (31.38)

∇c

(
h ′(x∗(c,d))− c

)
= ∇xh ′(x∗(c,d)) · ∇c(x∗(c,d))− I = 0, (31.39)

∇d

(
h ′(x∗(c,d))− c

)
= ∇xh ′(x∗(c,d)) · ∇d(x∗(c,d)) = 0. (31.40)

with the unity matrixI. Substituting (31.37) - (31.40) into Eqns. (31.35) and (31.36) the relations (31.31)
are obtained. �

Because of the different numerical values of the objective function and the constraints, the Lagrange-
multipliers are scaled according to

α∗k = αk
gk(x∗)
fi(x∗)

, β∗j = βj
hj(x∗)
fi(x∗)

. (31.41)

A geometric interpretation is given in Fig. 31.2. Movingg2 → g∗2 does not increase the objective
function considerably (point 4) whereas moving the constraintg3 → g∗3 with the resulting solution at
point 5 leads to a stronger increase off(x). The numerical value of the multiplierα2 in the equation
−∇f = α2∇g2 + α3∇g3 is thus higher thanα3.

31.5.3 Payoff table

The payoff table is a tool which provides the decision maker with information on the hidden resources
of a design. To create this table,K individual optimization problems are solved to find the best solution
for each of theK objectives,xi being the minimizer of the problemminfi(x). While fi is minimized,
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f1(x) < c1 f2(x) < c2 f3(x) < c3 ......... fK(x) < cK Minimizer

min {f1(x)} f1(x
1) f2(x

1) f3(x
1) ......... fK(x1) x1

min {f2(x)} f1(x
2) f2(x

2) f3(x
2) ......... fK(x2) x2

min }f3(x)} . . f3(x
3) . . .

. . . . . . .

. . . . . . .

min {fK(x)} f1(x
K) f2(x

K) f3(x
K) ......... fK(xK) xK

Table 31.2: Payoff table for K objectives

constraintsc1, ..., cK have to be considered for the other objectives in order to avoid trivial results, e.g.,
vanishing main field and therefore also vanishing field errors, see Table 31.2.

As will be shown in the applications section, payoff tables are useful for comparing different re-
sults in their individually optimized form and at the same time to compare their hidden resources. The
best compromise solutions can be found by minimizing the distance from the infeasibleutopiasolution
on the diagonal of the payoff table. By applying different norms (e.g., theL1, L2 andL∞ norms) the
optimal compromise solutions can be found. The payoff table can also help to set up constraint prob-
lems with Pareto-optimal solutions, i.e., finding feasible solutions for constraint problems with active
constraints.

31.6 Bounds for design variables

Since the design variables of the optimization problem can usually only be varied between upper and
lower bounds, a modified objective function is applied

p(x) =

{
f(x) no bound violated

f(x∗) + r(x) bound violated
(31.42)

with x∗ = (x1, x2, ...., x
∗
l , ..., xn) andx∗l = xl,upper if xl > xl,upper (upper bound violated) and

x∗l = xl,lower if xl < xl,lower (lower bound violated). The added penalty term reads

r(x) =
∑
l

rl


(xl − xl,upper)2 if xl > xl,upper

(xl,lower − xl)2 if xl < xl,lower

0 otherwise

(31.43)

with sufficiently high penalty parametersrl. The advantage of this procedure is that the violation of the
bounds is checked before a function evaluation is carried out, and impossible geometries with intersecting
domain boundaries are excluded. The existing algorithms for unconstrained minimization can then be
applied without modifications.

31.7 Treatment of nonlinear constraints

With the constraint formulation the problem of the treatment of the nonlinear constraints arises. Ta-
ble 31.3 gives an overview of methods available for the treatment of nonlinear constraints.

31.7.1 Penalty transformation

One method is the transformation of the constrained problem into an unconstrained problem by means of
apenalty transformation. The main idea is to add a penalty term to the objective function which depends
on the degree to which the constraints are violated and which vanishes if the constraints are satisfied.
The optimization problem (31.23) - (31.25) transformed into the penalty function reads

p(x) = fi(x) +
m+K−1∑
k=1

pk ·max2{(0. , gk(x)− dk)} +
p∑
j=1

qj(hj(x)− cj)2. (31.44)
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Penalty transformation Courant 1943

Augmented Lagrangian technique Hestenes 1946

Logarithmic barrier function Frisch 1955

Feasible directions Zoutendijk 1960

Reduced gradient method Rosen 1960

Constraint Rosenbrock Rosenbrock 1960

Sequential linear programming Griffith 1961

Sequential unconstrained minimization (SUMT)Fiacco - McCormick 1968

Exact penalty transformation Pietrzykowski 1969

Boundary search along active constraints Appelbaum - Shamash 1977

Sequential quadratic approximation Schittkowski 1983

Table 31.3: Methods for the treatment of nonlinear constraints

In order to prove the feasibility of the result, the penalty factorspk andqj have to be made infinite. Large
penalty factors, however, lead to ill-conditioned optimization problems. Using finite penalty factors
introduces a certain fuzziness into the solution, the constraints will not exactly be fulfilled. Replacing
the square terms in Eq. (31.44) by the modulus results in theexact penalty transformation. Here the
weighting factor can be finite (pk > |αk|, qj > |βj |) with the Lagrange multipliersαk andβj to guarantee
feasibility of the solution. The disadvantage is the non-differentiability of the objective function in the
optimum, the same problem that arises when applying the distance function method with theL1 norm.



Chapter 32

Optimization Algorithms

Better is the end of a thing than its beginning,
Ecclesiastes 7:8

It is most important to find a suitable minimization method to fit the method of decision-making and
the treatment of the nonlinear constraints, because optimization in electromagnetism involves time-
consuming evaluation of the objective function using the finite-element field computation. For a typical
problem of up to 10 design variables, around 200 function evaluations are carried out. Genetic optimiza-
tion and evolution programming usually need a couple of thousand function evaluations and are therefore
only applied in the concept phase where new principle designs are sought and a number of local optima
rather than one single solution are required. Some of the algorithms frequently used for our optimiza-
tion problems in the design of superconducting magnets are described below. An (non-comprehensive)
overview is given in Table 32.1.

32.1 Line search

Suppose that the functionf to be minimized is a function of a single variable only, and suppose that
the optimization problem is unconstrained. The techniques to solve this one-dimensional problem are
called line-searches and form the backbone of multidimensional nonlinear programming methods, since
higher dimensional problems are usually solved by a sequence of successive line searches. Starting at
an initial pointx0, the directiond of movement is determined and the line search is performed, i.e.,
min{f(λ)} = minλ{f(x0 + λd)}. The difference between the classes of optimization routines is the
way in which the search direction is determined, e.g.,d = −∇f(x) in the steepest descend method.
By studying one-dimensional methods we will also hone our tools for the solving of more complex
problems.

32.1.1 Golden Section search

The algorithm for the golden section search can be written as follows:

1. Start with intervals of length a between 3 arbitrary points x1, x2, x3.

2. Until convergence Do:

3. Divide the larger interval with the ratio 1:τ to obtain x4.

4. Calculate f(x4).
5. If f(x4) > f(x2) then:

6. New interval is x1, x2, x4

7. Else:

8. New interval is x2, x4, x3

9. End if.

10. End Do.

372



CHAPTER 32. OPTIMIZATION ALGORITHMS 373

Search methods

Direct search (coordinate descent)Wood 1960

Rosenbrock Rosenbrock 1960

Hooke-Jeeves Hooke - Jeeves 1962

Contour tangents Wilde 1963

DSC Davis - Swann - Campey 1964

Flexible Polyhedron search Nelder - Mead 1964

Powell Powell 1965

Simplex Abadie 1972

EXTREM Jacob 1982

Response surface Box - Draper 1987

Gradient methods

Newton’s method Newton 1700

Steepest descent Cauchy 1847

Quasi-Newton Davidon - Fletcher - Powell 1959

Levenberg-Marquard Levenberg/Marquard 1944/1963

Conjugate gradient (CG) Fletcher - Reeves 1964

Stochastic and neural computing

Pure random search Brooks 1958

Evolutionary Rechenberg 1964

Complex Box 1965

Simulated annealing Kirkpatrick 1983

Genetic algorithms Fogel - Holland 1987

Neural computing (ANN) Aarts - Korst 1989

Table 32.1: Optimization algorithms

From Fig. 32.1 we see that

a =
aτ

1 + τ
+

aτ2

(1 + τ)2
(32.1)

which is equivalent to(1 + τ)2 = τ(1 + τ) + τ2 and results in

τ =
1±

√
5

2
. (32.2)

The positive valueτ = 1.618 is called the golden section.

a

x1 x2 x4 x3

a
1+τ

aτ
1+τ

aτ
(1+τ)2

aτ2

(1+τ)2

aτ
1+τ

Fig. 32.1: Golden section search.
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32.1.2 Newton’s method

Suppose that the functionf to be minimized is 2-smooth and a function of a single variable only. Suppose
further that at a pointxk it is possible to evaluatef(xk) and the derivativesf ′(xk) andf ′′(xk). With the
truncated Taylor series

q(x) = f(xk) + f ′(xk)(x− xk) +
1
2
f ′′(xk)(x− xk)2, (32.3)

the functionq(x) agrees at(xk) with f up to second order and therefore an estimate forxk+1 can be
found by requiring that the derivative ofq vanishes, i.e.,

q′(xk+1) = f ′(xk) + f ′′(xk)(xk+1 − xk) = 0 (32.4)

that is

xk+1 = xk −
f ′(xk)
f ′′(xk)

. (32.5)

As Newton’s method does not depend onf(xk) we get forg(x) = f ′(x):

xk+1 = xk −
g(xk)
g′(xk)

(32.6)

as an iterative method for solving the equationg(x) = 0, cf. Fig. 32.1.2.

32.1.3 Quadratic fit

The advantage of the quadratic fit is that the derivatives of the objective function are not needed. The
method is used as line search in the algorithm EXTREM described below. Givenx1, x2, x3 with corre-
sponding function values, the quadratic fit through these points is

q(x) = f(x1)
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
+

f(x2)
(x− x1)(x− x3)

(x2 − x1)(x2 − x3)
+ f(x3)

(x− x1)(x− x2)
(x3 − x1)(x3 − x2)

(32.7)

with the minimum

x =
1
2

(x2
2 − x2

3)f(x1) + (x2
3 − x2

1)f(x2) + (x2
1 − x2

1)f(x3)
(x2 − x3)f(x1) + (x3 − x1)f(x2) + (x1 − x1)f(x3)

(32.8)

xx
xk xk+1 xk xk+1

f(x) g(x)

Fig. 32.2: Newton’s method.



CHAPTER 32. OPTIMIZATION ALGORITHMS 375

32.2 Multi-dimensional search methods

The basic algorithm for multidimensional search methods reads as follows:

1. Assign x1.

2. For k = 1, 2, ..., until convergence Do:

3. Chose search direction dk.
4. Perform line search to solve min{f(λ)} = minλ{f(xk + λdk)}.
5. Set xk+1 = xk + λmindk.
6. End Do

The problem is therefore reduced to the point of how to choose the search direction. The classi-
fication of optimization methods depends on whether or not the derivative of the objective function is
needed to specify this search direction.

32.2.1 Direct search

The easiest solution would be to choose the coordinate directions as the search direction, i.e.,dk = ek.
The method is called the method of alternating variables and is also known as coordinate descent, Gauss-
Seidel, or direct search. It results in a series of one-dimensional optimizations

minxk
{f(x1, x2, ..., xn)}. (32.9)

It is instructive to compare this method with what is called the Gauss-Seidel method for the itera-
tive solution of linear equation systems. Consider

Ax = b (A = (aij)i,j=1,...,n ∈ Rn×n, b = (b1, ..., bn)T ∈ Rn) , (32.10)

then thei-th iteration step is defined by the solving of thei-th equation forxi

x
(k+1)
i =

1
aii

bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

 , i = 1, 2, ..., n. (32.11)

                      

x

y
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1
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0

Fig. 32.3: Direct search.
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Fig. 32.4: Functioning of the algorithm EXTREM for the first 3 search steps. A-E indicate the search points in the line search

along the main search direction of the initial step.

32.2.2 EXTREM

The optimization algorithm EXTREM by Jacob [103] is a deterministic method which does not require
the derivatives of the objective function. It consists of one-dimensional minimizations by means of a
quadratic fit in a main search direction (user supplied) and an orthogonal direction evaluated by Gram-
Schmidt orthogonalization. After these one-dimensional searches have been carried out (end of a search
step), the main search direction is updated by a vector pointing from the solution of stepn−1 to the min-
imum of the search stepn. The user has to supply an initial step-size, which is(xl,upper−xl,lower)/10 by
default. This user-friendly algorithm is suitable for practically all applications, including unconstrained
scalar functions, distance functions, penalty functions, and augmented Lagrange functions. No other
parameter than the initial step size has to be user-supplied. The principle functioning of the algorithm is
shown in Fig. 32.4.

32.3 Gradient methods

According to Eq. (31.8) the gradient of the objective function is defined as an-dimensional row vector
∇xf(xk). We will display the transpose of this vector in the ink-saving notation

gk = g(xk) = (∇xf(xk))T . (32.12)

32.3.1 Steepest descent

The method of steepest descent is defined by the iteration

xk+1 = xk − λkgk, (32.13)

whereλk is again the nonnegative scalar, minimizingxk − λgk. The search is performed along a search
direction defined by the negative gradient of the objective function in the starting point. Of special
interest is the case of a quadratic problem of the kind

f(x) =
1
2
xTQx− xTb. (32.14)

whereQ is a positive definite symmetricn × n matrix. With Q being positive definite,f is strictly
convex and the minimizerx∗ can be found satisfying that the gradientg = Qx − b is zero, i.e.,x∗ is a
solution of the linear equation system

Qx∗ = b. (32.15)
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Therefore from Eq. (32.13) we get

xk+1 = xk − λk (Qxk − b) . (32.16)

Now λk can be calculated analytically, as from Eq. (32.14) we derive

f(xk+1) = f(xk − λgk) =
1
2
(xk − λgk)TQ(xk − λgk)− (xk − λgk)Tb (32.17)

and by differentiating with respect toλ we get

λk =
gTk gk

gTkQgk
with gk = Qxk − b. (32.18)

32.3.2 Newton’s Method

Newton’s method is based on an approximation of the objective functionf by a quadratic function which
is then minimized exactly. In the multidimensional case the counterpart of Eq. (32.3) reads:

q(x) = f(xk) +∇xf(xk)(x− xk) +
1
2
(x− xk)TH(xk)(x− xk). (32.19)

An estimate forxk+1 can be found by requiring that the derivative ofq(x) vanishes, i.e.,

∇xq(x)|xk+1
= 0 = ∇xf(xk) + H(xk)(xk+1 − xk). (32.20)

Therefore

xk+1 = xk − (H(xk))−1∇xf(xk) = xk − (H(xk))−1gk. (32.21)

This method has a couple of shortcomings, however:

• The Hesse matrix (containing the second derivatives of the objective function) has to be calculated
using differential quotients as the objective function is not explicitly defined.

• The Hesse matrix has to be inverted.
• Assuming that the objective function is quadratic near the solution, the method converges in one

step. However, due to non-quadratic terms in the objective function, the Hesse matrix may not be
positive definite and Newton’s method may lead to search directions diverging from the minimum.

Because of these shortcomings the standard Newton algorithm is almost never used in practice. A modi-
fication yields:

xk+1 = xk − λkSgk, (32.22)

whereλ is used as before to minimizef . With λk = 1 andS = (H(xk))−1 we get Newton’s method.
Replacing the inverse Hessian by the unity matrix, i.e.,S = I yields the method of steepest descent.
Another approach is to take a kind of compromise between the two extremes which yields the Levenberg-
Marquard algorithm.

32.3.3 Levenberg-Marquard algorithm

The compromise between Newton’s method and the method of steepest descent is made by taking

S = (εkI + H(xk))
−1 (32.23)

for a nonnegative value ofεk. To ensure descent, the matrixS has to be positive definit, which is enforced
by very large values ofεk. SettingS = (H(xk))−1 may lead to a good convergence near the optimum
but might not yield a direction of descent for a general point. The Levenberg-Marquard algorithm reads:
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1. For k = 1, 2, ..., until convergence Do:

2. Perform a Choleski factorization: εkI + H(xk) = GGT .

3. If factorization breaks down (S not positive de�nite) then:

4. Increase εk.

5. Else:

6. dk = (εkI + H(xk))−1gk.
7. End If.

8. xk+1 = xk + dk.
9. End Do.

Step 4 ensures thatεk > −minαi whereαi are the eigenvalues ofH. Because the eigenvalues of
εkI + H(xk) areαi + εk the matrixS is positive definit.

The Levenberg-Marquard algorithm was originally developed for nonlinear regression problems
using least squares objective functions. It can therefore be applied efficiently to the minimization of
the distance function resulting from inverse field calculation for the tracing of manufacturing errors in
superconducting magnets. With the residualsqi = (fi(x) − f∗i ) wherefi(x) are the calculated andf∗i
are the measured values, arranged in the vectorf(x) = (q1(x), q2(x), ...., qm(x)) the objective function
is given in the vector notation by

min {z(x)} = min

{
1
2

m∑
i=1

q2i (x)

}
= min

{
1
2

f(x)T f(x)
}
. (32.24)

The factor12 is included in order to avoid the factor of two in the derivatives. Using a quadratic approxi-
mation ofz(x)

q(x) = z(xk) +∇xz(xk)(x− xk) +
1
2
(x− xk)T (H(xk))(x− xk), (32.25)

yields the iteration scheme as above

xk+1 = xk − (εkI + H(xk))−1gk. (32.26)

Now we make use of the quadratic nature of the objective function. With the Jacobi MatrixJ(xk) of
z(xk) we get

gk = ∇xz(xk)T = (J(xk))T f(xk), (32.27)

H(xk) = (J(xk))TJ(xk) +
∂J(xk)
∂xk

f(xk). (32.28)

Neglecting the term∂J(xk)
∂xk

f(xk) the iteration reads:

xk+1 = xk − (εI + J(xk)TJ(xk))−1 · (J(xk))T f(xk). (32.29)

εI can be regarded as an approximation for the neglected term. Withε = 0 the method is termed Gauss-
Newton method. Because of this Hessian estimate, the second derivatives have not be calculated. With a
largeε the algorithm starts in a steepest descent direction.ε is decreased in the optimization procedure
because the neglected term becomes less and less important with decreasing residuals.
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32.3.4 Conjugate gradient (CG) method

Consider again the purely quadratic optimization problem

f(x) =
1
2
xTQx− xTb. (32.30)

The algorithm proceeds as follows:

1. Assign x1. Set g1 = Qx1 − b and d1 = −g1.

2. For k = 1, 2, ..., until convergence Do:

3. αk = − gT
k dk

dT
k Qdk

4. xk+1 = xk + αkdk

5. dk+1 = −gk+1 −
gT

k+1Qdk

dT
k Qdk

dk

6. End Do.

The gradients are calculated fromgk = Qxk − b. The first step is a steepest descent step. The
subsequent directions are linear combinations of the current gradient and the proceeding direction vector.
Line searches are avoided. It can be proved [129] that the iteration scheme yields search directions that
areQ orthogonal, i.e.,

dTkQdi = 0 for i ≤ k − 1. (32.31)

In practicalnonlinear optimization problems, however,Q is not known and therefore

gk = ∇xf(xk)T (32.32)

and

Q = H(xk) (32.33)

have to be evaluated at each step (which is unpractical for optimization in electromagnetism). If the
objective function is purely quadratic the above associations are identities, whereas in the non-quadratic
case the objective function is approximated in the vicinity of the search point by a quadratic function (like
in the pure Newton scheme). A method to avoid the calculation and storage ofQ (the Fletcher-Reeves
cg method), is to suppress step 3 and to perform a line search in step 4 to determineαk. Then replace
step 5 by

dk+1 = −gk+1 −
gTk+1gk+1

gTk gk
dk . (32.34)

32.3.5 Davidon-Fletcher-Powell algorithm

As the calculation of the Hesse matrix is costly, the idea is to use an approximation of the inverse Hessian
instead of the true inverse which is required in the Newton method. The method is therefore called a
Quasi-Newton or a variable metric method. Start from the iterative process

xk+1 = xk − λkSkgk, (32.35)

with an n × n matrix S and aλk chosen to minimizef(xk+1). One of the earliest methods for the
approximation of the inverse Hessian was proposed by Davidon and then later refined by Fletcher and
Powell. It simultaneously generates the directions of the conjugate gradient method and constructs the
inverse Hessian. The algorithm reads as follows:
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1. Assign x1. Use any symmetric positive de�nite matrix S1.

2. For k = 1, 2, ..., until convergence Do:

3. Set dk = −Skgk.
4. Solve f(xk + λdk) in λ and obtain xk+1 and pk = λkdk and gk+1.

5. Set qk = gk+1 − gk.

6. Sk+1 = Sk + pkpT
k

pT
k qk

− SkqkqT
k Sk

qT
k Skqk

.

7. End Do.

The derivatives of the objective function have to be approximated by differential quotients which
makes the convergence behavior dependent upon the accuracy of the field computation. An efficient
method for the calculation of the derivatives in FE solutions has been proposed (e.g., in [157]) for the
case of objectives that can be expressed as a function of the system variables used in the FE calcu-
lation. This is the case, for example, if quantities such as overall weight, fringe field, or maximum
induction have to be optimized. Even if these procedures are not available in the applied FE package, the
Davidon-Fletcher-Powell algorithm is very well suited for checking the optimality conditions by means
of a Lagrange-multiplier estimation, minimizing Eq. (31.30). As there the "design variables" are the
Lagrange-multipliersα,β the derivatives can be approximated with a high accuracy, which results in a
good convergence behavior.

32.4 Questions

1. Explain the concept of Pareto-optimality.

2. Give at least two methods for decision making.

3. Explain the three operators of genetic algorithms, crossover, mutation and selection.

4. Explain the concept of niching selection.
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Genetic Optimization

Slow though the process of selection may be, if feeble man can do much by artificial selection,
I can see no limit to the amount of change, to the beauty and complexity of the

coadaptations between all organic beings, ... , which may have been effected in the long course of time
through nature’s power of selection, that is by the survival of the fittest,

Charles Darwin (1809-1882), The Origin of Species

In the 1860s Darwin established the modern interpretation of evolution. Although organisms are capable
of reproducing in an exponential way, Darwin observed that this is not the case in natural populations
and concluded that some kind of selection (or survival of the fittest) must occur. He also observed
variations between individuals of particular species. The underlying mechanism, or genetic basis, that
accounts for these variations had been formulated by Mendel in the 1850s though this work had remained
unrecognized for more than thirty years. Whereas Darvin believed in continuous variation, Mendel
described heredity being due to discrete units. However, Mendel’s law and Darwin’s theory remained for
a long time unlinked concepts.

Aalthough we know from modern evolutionary theory that this is not the case, when it came
to the application of evolutionary concepts in computer science, genetic optimization algorithms and
evolution strategies were developed in parallel in the mid 1970s by Holland [98], and by Schwefel
[206] and Rechenberg [172]. The evolution strategies were based on the link between reproductive
populations rather than genetic links and their binary encoding in the genetic optimization techniques.
Both methods share a common principle, however. A population of individuals (representing feasible
technical solutions) undergoes some transformation and selection based on the fitness value of each
individual. The main differences of the methods are hidden on a lower level, and consequently genetic
algorithms with richer structures than binary strings, and with modified genetic operators, have been
proposed since the early 1990’s, see [143] for a comprehensive account.

In evolution strategies the representation of the individuals is given by floating point vectorsν =
(x, σ), whereσ is a vector of standard deviations (in accordance with the biological fact that smaller
changes occur more often than larger ones). From a population ofµ parents, offspring are created by
adding a Gaussian random variable to each component ofxi with a mean zero and a standard deviation
σi.

Facilitated by the development of computing power, evolution strategies and genetic algorithms
have been given considerable attention lately in the application to problems in electromagnetic field
computation [222].

By coding into binary strings, genetic algorithms are able to treat mixed continuous and integer
design variables and are therefore the choice for the magnet optimization.

A genetic algorithm employs the following components:

• A genetic representation for the potential solution of the technical problem, i.e., a parameter en-

381
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coding of the design variable vectorx into a binary stringb.
• A way to create an initial population (usually at random).
• An evaluation function that represents the role of the environment, i.e., a fitness ranking of the

binary string. Formally,e(b) = g(f(x)) wheref is the objective function of the real valued
design variable vectorx andg is some scaling function.

• Genetic operators that alter the composition of the offspring, e.g., crossover and mutation.
• A selection scheme.
• A set of optimization parameters tuned for the technical problem at hand, i.e., chromosome length,

population size, crossover rate, mutation rate, etc.

33.1 Parameter representation

The different real valued design parametersxl are combined into a single binary vectorb which is called
a chromosomein accordance with vocabulary from natural genetics. The length of the chromosome
depends on the required precision, i.e., forn decimal places the feasible domainΩl of xl is cut into

∆xl = (xl,upper − xl,lower) · 10−n (33.1)

equal size ranges. Thenml is the smallest integer such that

∆xl ≤ 2ml − 1 . (33.2)

The mapping from the binary stringb = (bml
bml−1...b0) into a real numberxl ∈ Ωl is given by

λl =
ml∑
i=0

bi · 2i (33.3)

and

xl = xl,lower + λl
xl,upper − xl,lower

2ml − 1
. (33.4)

Each individual is characterized by its single chromosome1 which is represented by a binary string of
length

m =
n∑
l=1

ml (33.5)

wheren is the number of design variables, see Fig. 33.1.

Using more vocabulary from natural genetics, the digits in the binary string are calledgenesand
the bit-strings representing the design variables are denotedalleles. The positions of the alleles within
the chromosome are calledloci. The chromosomes of the population (which is also called thephenotype)
form thegene-poolor genotype.

It is clear that the performance of genetic algorithms is reduced when the domains of parameters
are unlimited, the number of parameters is large, or a high precision is required. As already suggested
by Holland [99], genetic algorithms are thus used as a preprocessor to perform the initial search, before
the solutions are fine tuned using deterministic algorithms.

1Notice that each cell of an organism carries a certain number of chromosomes, e.g., 46 in case of the human being, while
in genetic optimization we employ one-chromosome individuals only.
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Fig. 33.1: Parameter encoding and decoding. Genetic optimization algorithms are based on the concepts of evolution (right)

and the underlying mechanism of the gene as a hereditary unit which is transmitted to the offspring (left). The chromosome is

the carrier (in biology a DNA molecule) containing genetic information arranged in a linear sequence.

33.2 Binary and Gray coding

With binary coding, two neighboring integers, e.g.,k = 7 with b(7) = (0111) andk = 8 with b(8) =
(1000) differ considerably in the bit string. In this example, the Hamming2-distance, i.e., the number of
different bits is 5. The Hamming distance can be programmed with

HD =
∑
i

ui ⊕ vi, (33.6)

where⊕ denotes the addition modulo 2 (exclusive-or). The appliedsingle-distance codeoriginally
developed by Baudot3 but better known as Gray4-code is a one-to-one mappingk → g(k) so that the
binary representationsg(k) andg(k + 1) differ exactly by one bit. In other words, their Hamming-
distance is 1 (cf. Fig. 33.2).

The Gray-coding (binary to Gray) is achieved by a bit-shift right and exclusive-or,⊕, of the binary
code ofk and it’s shifted version (the integer ofk/2). The binary string is truncated on the right and
supplemented with a zero on the left.

gi =

{
bi if i = 1
bi−1 ⊕ bi if i ≥ 2

(33.7)

where thebi are the bits in the binary string, thegi are the bits in the Gray-code andi = 1 is the most
significant bit. As an example, the Gray-coding of the decimal 13,b(13) = (1101), yields (1101) ⊕
(0110) = (1011). Decoding (Gray to binary) proceeds by multiple shift right and exclusive-or operations
on the shifted versions, i.e.,

bi =
i⊕

j=1

gj (33.8)

2Richard Hamming (1915-1998).
3Emile Baudot (1845-1903).
4Frank Gray
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For the decoding of the decimal 13,g = (1011), we get(1011)⊕ (0101)⊕ (0010)⊕ (0001) = (1101).
The main idea behind the implementations of the Gray coding is to move the genetic algorithm closer to
the problem space, i.e., that two points close in the representation space must also be close in the problem
space. Gray-coding is thus advantageous when the Hamming-distance is used as a distance measure in
the genetic algorithm. This is the case for niching methods discussed below.

Decimal Binary Gray Decimal Binary Gray

0 (0000) ↔ (0000) 7 (0111) ↔ (0100)

1 (0001) (0001) 8 (1000) (1100)

2 (0010) (0011) 9 (1001) (1101)

3 (0011) (0010) 10 (1010) (1111)

4 (0100) (0110) 11 (1011) (1110)

5 (0101) (0111) 12 (1100) (1010)

6 (0110) ↔ (0101) 13 (1101) ↔ (1011)

Fig. 33.2: Gray-coding table. With binary coding, two neighboring integers, e.g., 7 and 8 differ considerably in the bit string (5

bits) whereas the Gray-encoding ensures that neighboring integers differ by one bit only.

33.3 Genetic operators

Genetic optimization algorithms are driven by the following main operators:Crossover, a recombination
of strings of two chromosomes by breakage at a random point and reunion of the alleles. This is the
underlying mechanism of sexual reproduction.Mutation is the process of an alteration in a chromosome
structure. In optimization, this process avoids preliminary convergence towards a local minimum.Se-
lection is the force behind changes in the genotype in populations through differential reproduction, i.e.,
less fit members of the population having a smaller mating probability.

33.3.1 Crossover

Crossover combines the features of two parent chromosomes to form two offspring by swapping corre-
sponding alleles of the parents. The single point, orsimple, crossover operator can best be explained with
Fig. 33.3. The bits on the left-hand side of a crossing point of chromosome A are connected to the bits
on the right-hand side of a crossing point within chromosome B and vice-versa. Although the crossing
point is chosen at random, the offspring created do not cover the entire search space, as can be seen in
Fig. 33.4.

Chromosome A: (0101001|101) (0101001) (011) (0101001|011)
⇒ × ⇒

Chromosome B: (1011010|011) (1011010) (101) (1011010|101)

Fig. 33.3: Single point crossover of two chromosomes

A variety of crossover schemes have been proposed in literature, including two-point or multi-
point crossover, adaptive crossover where marks in the string representation keep track of particularly
beneficial crossing points, segmented crossover where the number of crossing points may vary, or uni-
form crossover that applies to single bits rather than alleles. See for example [143] for a comprehensive
account and further reading.

33.3.2 Mutation

The mutation operator acts with a certain probability (in our case about 0.15) on a bit-by-bit basis. Each
time the mutation operator is applied, a single bit is changed (mutated) from 0 to 1 or vice-versa. Each
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Fig. 33.4: Single point crossover of the chromosomes (0010) and (1001). Only the points on the bold lines can be reached,

offspring do not cover the entire search space.

bit has exactly the same chance of being mutated. The effect of this uniform mutation is twofold. First
it avoids preliminary convergence of the entire population towards a local minimum, and secondly, it
improves local convergence by a hill-climbing-like mechanism. Although both mechanisms seem to be
contradictory, they result from the different significance of bits in the binary string, as shown in Fig. 33.5.
In the first example a change in the fifth bit of the genotype results in a change in the second parameter
of the phenotype from 7 to 8. In the second example a change in the second bit of the genotype results
in a change of the first parameter of the phenotype from 10 to 13.

33.4 Selection

In each generation the chromosomes are evaluated using the objective function on the decoded sequence
of variables, and a new population is selected with respect to a probability distribution based on the
fitness values.

Selection methods can be classified into the following categories:

• Fitness proportional (orfairy-wheel) selection: A fitness value that represents a probability of
reproduction is assigned to each of the chromosomes so that the fit members of the population will
be selected more than once.

• Tournamentselection acts on a group ofk individuals, randomly chosen from the population,
where the best chromosome from thesek elements is copied into the next generation. The param-
eterk is called the tournament size. An increased numberk increases the selective pressure.

• The preservation of the best individual may always be enforced. This is called theelitist model.

10 7 2 1 1 0 Phenotype, k

1111 0100 0011 0001 0001 0000 Genotype, g(k)

a) 10 8 2 1 1 0 Phenotype, k

1111 1100 0011 0001 0001 0000 Genotype, g(k)

b) 13 7 2 1 1 0 Phenotype, k

1011 0100 0011 0001 0001 0000 Genotype, g(k)

Fig. 33.5: Influence of mutation. Single bit changes have different influence on the phenotype. a) The mutation of bit 5 results

in a phenotype difference of 1. b) The mutation of bit 2 leads to a change in the phenotype of 3.
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• Niching methods introduce a concept of distance according to the observation that a population
spread over a geographic range will become genetically differentiated in a number of subpopula-
tions (species) in so-called niches.

The principle of fairy-wheel selection is shown in Fig. 33.6. The algorithm is constructed as follows:

• Evaluate the chromosome, i.e., calculate the objective function value of the decoded sequence.
Formally, assignee(b) = f(x) + c.

• Find the probability of reproduction (fitness value) for each chromosome

pi =
e(bi)
n∑
j=1

e(bj).
(33.9)

wheren is the population size. We have to assume that all objective function values are positive and
we aim at maximization of the fitness. This is not a restriction as we can always add a sufficiently
large biasc.

• Calculate the cumulative probabilityqi for each chromosome:qi =
∑i

j=1 pj .
• Generate a random float numberr ∈ [0, 1].
• Spin the fairy-wheel: Select thei-th chromosome ifqi−1 < r < qi.

Notice that while fit chromosomes will probably be selected more than once, also less fit members of the
population have a certain likelihood of reproduction. Over a large number of generations, however, the
best chromosomes will always get more copies, the average stay even, and the less fit die off. This is
proven with theSchema Theorem[143].

No. Parent Objective Fitness No. of Child

Population func. val. value selected Population

Chromosome

1 (1000111010) 0.3 0.30 3 (1001101101)

2 (1110101101) 0.4 0.22 1 (1000111010)

3 (1001101101) 0.5 0.18 4 (1011010010)

4 (1011010010) 0.8 0.11 ⇒ 1 (1000111010)

5 (0111001100) 0.9 0.10 2 (1110101101)

6 (0111011010) 1.7 0.05 3 (1001101101)

7 (0011000101) 2.6 0.04 1 (1000111010)

Fig. 33.6: Fairy-wheel selection. A fitness value (likelihood of reproduction) is assigned to each individual according to the

objective function value. The new generation is formed by fitness proportional reproduction.

Figure 33.7 shows the development of a population of 30 individuals over 500 function evaluations
using a genetic algorithm with fairy-wheel selection for the minimization of the analytical test function
[97]

f(x, y) =
(x2 + y − 11)2 + (x+ y2 − 7)2

2186
(33.10)

which has 4 global minima of zero function value at the positions (3, 2), (3.58443,−1.84813), (−2.80512,
3.13131), and (−3.77931, −3.28319). All the individuals drift into a single solution. This is not useful
for magnet design optimization because not all the objectives in coil optimization can be mathematically
formulated and considered in the objective function definition. Therefore, a number of local optima are
sought which can then be further investigated. The most obvious method is that of iteration, with simple
repetitions of the algorithms. However, as not all local optima might be equally likely, methods have
been developed that permit the formation of subpopulations. These niching techniques will be discussed
in the next section.
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Fig. 33.7: Genetic algorithm with crossover and fitness ranking. The development of a population of 30 individuals is shown

over 500 function evaluations. All of the 30 individuals degenerate into a single stable solution.

33.5 Niching

Niching methods are able to locate a number of local optima and are reported to converge better than the
standard methods [203]. Niching methods can be grouped as follows:

• Sharingmethods use a functions(d) which determines the neighborhood for each chromosome
in the population. The simplest type of sharing function assigns a one to chromosomes which are
close in parameter space and a zero to individuals which are further away than a certain dissimi-
larity threshold. A fitness value is assigned as

Fs(xi) =
f(xi)

n∑
j=1

s(d(xi, xj))
, (33.11)

which results in the fitness of individuals with a high number of neighbors being reduced, and thus
in a lower probability of reproduction in densely populated niches.

• Crowdingmethods apply a replacement mechanism based on the distance to the offspring gen-
erated from individuals of a population. The new offspring replaces the chromosome which is
closest in parameter space, i.e., has the smallest Hamming-distance on the bit level and if its ob-
jective function value is lower (the fitness is higher).

• Clearingmethods remove individuals from the population when a niche is overpopulated. Only a
limited number, say thek best individuals survive the selection process. Individuals are assigned
to a niche if their distance is lower than a dissimilarity thresholdσs.

The crowding method, which is used for the conceptual magnet design, is explained in Fig. 33.8. In
fitness proportional selection, the probability of reproduction of the new chromosome would have been
rather low. Remember that we aim at a minimal objective function. However, when competition is
restricted to the closest member No. 6, then it will be copied into the new generation.
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No. Parent Objective Hamming No. of Child

Population func. val. distance selected Population

Chromosome

1 (1000111010) 0.3 5 1 (1001101101)

2 (1110101101) 0.4 7 2 (1000111010)

3 (1001101101) 0.5 6 3 (1011010010)

4 (1011010010) 0.8 3 ⇒ 4 (1000111010)

5 (0111001100) 0.9 3 5 (0111011010)

6 (0111011010) 1.7 2 New (0011001010)

7 (0011000101) 2.6 4 7 (1000111010)

New (0011001010) 1.1 0

Fig. 33.8: Niching selection. A new member of the population is tested for its genetic similarity (Hamming distance) to the

other members of the population (here chromosome 6). The new member replaces this closest neighbor if its objective function

value is lower, i.e., its fitness is higher.

Fig. 33.9 shows a comparison of the classical (Royal-road) genetic algorithm with Fairy-wheel
selection, to the applied method of niching, where for each offspring the chromosome with the smallest
Hamming-distance is located and selected if its fitness is better than that of the elder.
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Fig. 33.9: Left: Royal road genetic algorithm; Right: Genetic algorithm with niching.

Whereas in the Royal-road genetic algorithm the whole population is subject to a fitness ranking,
the selection in the niching genetic algorithm is performed on the level of each individual. Selected
chromosomes are then immediately joined to the population. The effect of the niching method is that
a numberof local optima are found which can then be further investigated and compared, see Fig. 33.10,
where again the analytical test function, Eq. (33.10), has been investigated.

Important for overall execution time is that offspring which already exists in the population, is not
evaluated for its fitness again. Robustness is guaranteed because of the following properties:

• No special knowledge of the feasible domain is needed. A number of local minima is obtained.
• No derivatives of the objective function are needed. Integer variables can be directly encoded.
• The population size and the number of bits for the encoding can be automatically adjusted. The

convergence has proven relatively insensitive to the mutation, crossover and generation rate.
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Fig. 33.10: Development of a population of 30 individuals shown over 1000 function evaluations of the niching genetic algo-

rithm. All four minima are found. Niching is therefore crucial for the conceptual design phase.

33.6 Optimization parameters

As discussed in [143], diversity is achieved because niching decreases the selective pressure. While high
selective pressure leads to premature convergence, weak selective pressure leads to an ineffective search
process. Therefore the main parameters, which are the number of iterations and the population size, have
to be adjusted to the optimization problem. Mahfoud [137] suggests to keep the number of individuals
in a population at around ten times the number of expected local optima. For the coil-block optimization
problem presented in Section 34.3, the population size was 60 in all cases. The crossover, mutation,
and generation rate, were chosen after a number of convergence tests. Convergence graphs are shown in
Fig. 33.11 for a crossover rate of 0.8, a mutation rate of 0.15 and a generation rate of 0.05.

Increasing the mutation rate to 0.6 shows a lower convergence at the beginning. After a few thou-
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Fig. 33.11: Convergence test on the coil optimization example. Objective function of the 10 best chromosomes and its average

(continuous line). Left: Convergence for standard parameters: Crossover rate 0.8, mutation rate 0.15, generation rate 0.05,

Right: Convergence for mutation rate 0.60 and crossover rate 0.35.
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sand iterations, however, when the population becomes stable, a higher mutation rate allows for further
improvement, since changes of single bits often correspond to small changes in parameters. Results for
single and 2-point crossover show no significant differences.

The application of niching genetic algorithms to magnet design is presented in Chapter 34, Section
42.2 in the ROXIE user’s documentation gives details on the syntax of the ROXIE input data.



Chapter 34

Integrated Design of Superconducting
Magnets

A man once saw a butterfly struggling to emerge from the cocoon,
to slowly for his taste, so he began to blow it gently.

The warmth of his breath speeded up the process all right.
But what emerged was not a butterfly but a creature with mangle wings.

Anthony de Mello (1931-1987), One Minute Wisdom.

The modeling capabilities of the ROXIE program and the application of the mathematical optimization
techniques have inverted the classical design process where numerical field calculations are performed
for only a limited number of numerical models. An integrated design process for superconducting mag-
nets has been established and is described using the example of the main dipole magnets for the LHC.

1. Feature-based geometry modeling of the coil and yoke, both in two and three dimensions using
only a number of meaningful input data to be supplied by the design engineer.

2. Conceptual design using a genetic algorithm, which allows the treatment of combined discrete and
continuous problems (e.g. the change of the number of conductors per block) and the solving of
material distribution problems.

3. The relative field errors caused by persistent currents at injection field level are calculated and
part-compensation by geometrical field errors. Deterministic optimization methods are used for
this task.

4. Minimization of iron-induced lower order multipoles.
5. Generation of the coil-end geometry and shape of the so-called end-spacers using methods of dif-

ferential geometry. Field optimization including the modeling and optimization of the asymmetric
connection side, ramp and splice region as well as external connections.

6. 3-D field calculation of the saturated iron yoke using the method of coupled boundary elements
and finite-elements, BEM-FEM.

7. Calculation of the peak voltage and peak temperature during a quench.
8. Sensitivity analysis of the optimal design through Lagrange-multiplier estimation and the set-up

of payoff tables. This provides an evaluation of the hidden resources of the design.
9. Tolerance analysis by calculating Jacobian-Matrices and estimation of the standard deviation of

the multipole field errors.
10. Production of drawings by means of a DXF interface for both the cross-sections and the 3-D coil-

end regions.
11. End-spacer manufacture by means of interfaces to CAD/CAM (DXF, VDA), rapid prototyping

methods (laser sinter techniques), and computer controlled 5-axis milling machines.

391
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Decision making Optimization Typical no. Typical no.

method algorithm of design of function

variables evaluations

Conceptual coil design Objective weighting Genetic algorithms 15 (60 Bits) 7000

Coil cross-section Distance function EXTREM 8 250

Conceptual yoke design Distance function Genetic algorithms 170 20000 x 4 FEM

(material distribution) (170 Bits)

Yoke cross-section Objective weighting EXTREM 10 100 x 6 FEM

Sensitivity analysis Lagrange-multiplier Davidon-Fletcher- 10 10

estimation Powell algorithm

Payoff tables EXTREM 6 x 100 x 6 FEM

3D Coil-end optim. Objective weighting EXTREM 5 100

Inverse field calc. Distance function Levenberg-Marquard 50 700

Table 34.1: Optimization problems in the integrated design procedure.

12. Tracing of manufacturing errors from measured field imperfections, i.e., the minimization of a
least-squares error function using the Levenberg-Marquard optimization algorithm.

Although corrector magnets are easier to built, they feature a short length (and thus dominant 3-D field
effects) and iron yokes which are very close to the coil (and thus dominant saturation effects). Thus steps
3-6 have to be iterated, or with more powerful computers, to be combined into one optimization problem.

Table 34.1 shows at a glance the different steps where mathematical optimization methods have
been applied to the design of the LHC dipoles and lists the typical number of design variables and
function evaluations.

34.1 Feature-based geometry creation

The ROXIE program includes routines for defining the geometry of coil cross-sections made up of
Rutherford-type superconducting cables or rectangular-shaped braids. The geometric position of coil-
block arrangements in the cross-section of the magnets is calculated from the following input data, see
also Figs. 34.1 and 34.2:

• In case ofcosnΘ magnets, the number of blocks, the number of conductors per block, conductor
type (specified in a cable data base), radius of the winding mandrel, and positioning and inclination
angle of the blocks. Taken into account is the fact that the keystoning of the cables is not sufficient
to allow for the construction of arc segments. This effect increases with the inclination of the
coil-blocks with respect to the radial direction. The grading of the current density is taken into
account by a discretization of the cable intoN1 ·N2 strands, whereN1 is the number of strands in
the narrow direction, andN2 is the number of strands in the direction of the broad side (2 ·18 in
case of the outer layer dipole cable).

• In case of window frame magnets, the number of blocks, the number of conductors per block,
conductor type,x andy position of the lower left corner of the block, and inclination angle with
respect to thex-axis.

• In case of beam pipe magnets, the number of blocks, the number of conductors per block, the
radius of the winding mandrel, the positioning angle of the first conductor and the increment angle
for the subsequent conductors.

• In case of hollow conductors (cable in conduit), the geometry is created as in the cases above. From
the cable boundary an inlaying cylindrical conductor withN1 arc segments is generated. The arc
segments have an inner radius such that exactly one strand is inscribed within each segment. In
the ROXIE input file the parameterN2 has to be set to zero.
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Fig. 34.1: Input data for the generation of coil geometries of thecosΘ type (left) and beam pipe magnets (right).

The input parameters for the coil-end generation are thez-position of the first conductor of each coil-
block, its inclination angle, the length of the straight section and the size of the inter-turn spacers between
the conductors. For the automatic generation of the coil-end region, three options are available:

• Coil-ends with or without inter-turn shims and conductors placed on the winding mandrel.
• Coil-ends with grouped conductors wound on end-spacers with shelves which provide for support

from below and result in an alignment of the conductors at the outer radius of the end-spacers.
• Race-track coil-ends with or without additional straight sections. With this option it is possible to

model solenoid and torus magnets.

With the geometric modeling complete, every feature (strand, cable, block, layer) can be subjected to ge-
ometric transformations such as translation, rotation, scaling, and imaging. At the same time, constraints
are defined for these operations in order to avoid penetration or physically meaningless structures. Not
only can the geometric properties of the magnet be changed in the optimization process, but also its ma-
terial properties such as the number of strands, current density in conductors and strands, filling factors,
and unit price.

34.2 The decision-making problem

The optimization process is driven by the decision-making problem. Most important for the application
of mathematical optimization routines is a decision-making method that guarantees a solution from the
Pareto-optimal solution set (which requires that the objective conflict is well understood and incorporated
in the decision problem). For the optimization of superconducting magnets the criteria and objectives
are organized in Table 34.2.

a
G a p

( x , y )

( N 1 , N 2 = 0 )

( x , y )

Fig. 34.2: Input data for the generation of block-coil magnets (left) and hollow conductors (right).
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Criterium Objectives

Maximize Minimize Constraints

Field quality (geometric) b3, b5, b7, ...

Field quality (magnetization) ∆b2, ∆b3, ...

Field quality (persistent) b3, b5, b7, ...

Main field B1 Margin> 0

Costs No. of conductors

Outer yoke radius

Sensitivity σ due to coil deformations

σ due to yoke tolerances

Manufacturability EM-Force parallel Pole angle

to broad face of Wedge sizes

cable in pole region Endspacer shapes

Tuneability Flexibility

of basic layout

Table 34.2: Criteria and objectives for dipole magnet optimization.

34.3 Conceptual coil design

Genetic optimization algorithms require a much larger number of function evaluations to reach an opti-
mum than do deterministic methods, but they can provide the user with a number of local optima rep-
resenting suitable starting points in the initial design phase. The implementation of genetic algorithms
was therefore envisaged for the design of roughly 20 different kinds of corrector magnets and insertion
quadrupoles for the LHC.

The dipole coil cross-section described in theWhite Book[226] project report was previously op-
timized using deterministic optimization techniques. Subsequently a number of technical modifications
resulted in a version referred to as5-Blockdesign [227]. The modifications included a change of the
ground plane insulation, change of insulation thickness (from kapton plus glass-epoxy to all kapton),
change of yoke radius, different beam separation distance and a part compensation of the persistent cur-
rent multipoles. The 5-Block design turned out to be too inflexible to accommodate further adjustments
should they become necessary at a later stage. In particular, a further compensation of theb3 term would
be difficult to implement because copper wedges would become too thin at their inner edge. Moreover,
the performance of the magnets with the 5-Block coil version indicates that the force distribution in the
inner block of the inner layer, with its 4 turns and an adjacent copper wedge of large dimensions, is
not very favorable. With the implementation of genetic algorithms in the ROXIE program in 1997 the
search for a more appropriate design was triggered. With the applied niching method a number of design
proposals were found and then examined in more detail.

It is important to obtain a number of alternative solutions as not all the objectives in coil optimiza-
tion can be mathematically formulated and considered in the objective function definition. For example:

• The unwanted multipoles are to be minimized. However, using goal programming methods, the
weighting for the field components each showing different sensitivity, has to be found in an itera-
tive procedure, as the effects of the components have to be examined using beam tracking.

• As the electromagnetic forces are enormous (about 4000 kN/m radially) the local force distribution
in the coil collar structure has to be optimized. This depends on the coil layout and requires
computations of coupled electromagnetic mechanical problems.

• Manufacturing considerations, including ease of the coil winding and collaring, affect geometri-
cal constraints on the pole angle and yoke geometry. Setting too many geometrical constraints,
however, results in ill-conditioned optimization problems.

• During manufacture, systematic errors occur due to the applied tooling and processes. During
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No. of individuals 60

No. of chromosomes 1

Chromosome length (bit) 50

Representation scheme Gray

Reproduction method Niching

Crossover method Uniform

Crossover probability 0.8

Mutation rate 0.005

Termination criterion No. of eval.> 6000

Table 34.3: Main parameters of the genetic algorithm.

the pre-series construction of the magnets the coils will be repositioned to compensate for these
systematic errors, whereas during the series manufacture of the magnets the coil topology can no
longer be changed. The coil must therefore have sufficient flexibility for fine adjustments.

The following goals are considered in the objective weighting function:

• Maximum main field component.
• Minimum field harmonics (with emphasis on a smallb11 andb13 component).
• Minimum volume of superconductor.
• Constraint on the pole angle (smaller than 80 deg.).
• Contraint on the load line margin (more than 10%).
• Minimum deviation of the conductor positions from an ideal radial position.

The last objective is mathematically expressed as

min

{
Nb∑
k

∣∣∣∣∣
Ncb∑
i

(αi − ϕi)

∣∣∣∣∣
}
, (34.1)

whereNb is the number of coil blocks,Ncb is the number of conductors in the k-th coil block,αi is the
inclination angle of the conductor andϕi is its positioning angle. In particular the higher order multipole
components,b9 - b13, cannot be optimized unless the conductor distribution in the coil blocks can be
altered by the algorithm.

The design variables for the optimization problem are the number of turns per coil-block, the inner
and outer size of the copper wedges between the coil-blocks (i.e., the positioning and inclination angle
of the blocks), and the current in each turn. The current has to be included as a design variable in the
optimization. This guarantees a feasible solution not exceeding the superconducting cable’s load-line
limit, which depends on the local magnetic field in the coil. The load-line limit is considered as an
additional constraint in the objective function by means of a penalty transformation.

These parameters are combined into a binary string as described in Section 33.1. The angles of
the coil-blocks are encoded by 4-bit strings while the number of turns per block are encoded by 3-bit
strings each, thus resulting in chromosomes of 50 bits. A population size of 60 chromosomes proves to
be sufficient, using a crossover probability of 0.8 and a mutation rate of 0.005. The main parameters are
summarized in Table 34.3.

For our parameter sets of 50 bits, about 6000 function evaluations were performed. Although
this number is relatively high it should be noted that the design space spanning the different conductor
distributions comprises about 130000 combinations. It is therefore impossible to explore the design
space with deterministic methods.

Fig. 34.3 shows four different designs that result from the optimization using genetic algorithms.
The designs have been fine-tuned using a deterministic methods. All designs have about the same field
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Fig. 34.3: Coil-block distributions of dipole coils found by applying genetic algorithms with niching, and subsequent fine tuning

using deterministic methods. The final choice of the coil cross-section for the LHC depended on mechanical considerations,

sensitivity to manufacturing tolerances, assembly tests and economic constraints.

quality and the same quench margin, which are achieved, however, with a different number of turns and
coil-block layouts. The two designs on the right of Fig. 34.3 were studied and compared in detail; results
are given in the next sections.

For magnets in the 6 tesla field range it is not be necessary to employ the grading of the current
density using different cables in the inner and outer layer. This avoids the development of a second
conductor and facilitates coil winding by avoiding the internal splice. In this case, however, the coil
block distributions shown in Fig. 34.3 cannot be scaled to the bigger aperture. Genetic algorithms were
therefore used to find 5-, 6- and 7-block coil configurations of a dipole magnet to be developed for the
fast pulsed synchrotron (SIS300) accelerator project at GSI in Germany [141], [142]. The magnets have
an aperture diameter of 100 mm. The cable is very similar to the outer layer LHC dipole cable but with
an additional stainless steel strip between the two layers, in order to increase the cross-resistance between
the strands. Fig. 34.4 shows the results, which all have a comparible field quality in the aperture. Notice
that the 5 block designs feature wedges on the mid plane in order to provide sufficient degrees of freedom
for field quality optimization.

34.4 Optimization of coil cross-sections

Deterministic optimization methods are used to find a coil cross-section with a part compensation of the
persistent current multipole field errors at injection. This can be done by an appropriate placement of the
coil-blocks. As can be seen in Table 34.4 for the finally optimized coil cross-sections, the difference in
the field components due to persistent currents is not very large even for the different coil layouts.

In the final optimization, where only a slight variation of the angular position of the coil-blocks
is considered and the number of turns remains constant, the geometrical field errors to part-compensate
the persistent current effects can be defined and the optimization problem can be set up by means of the
distance function (least-squares) method. The aim in this design step is to compensate for about 75% of
the persistent current multipoles at injection. Theb3 component is compensated by 4 units only, because
of the maximum strength in the sextupole spool-piece corrector magnets.

The least-squares objective function for, e.g., the V6-1 design then takes the form

min{t1(b3 − 4.0)2 + t2(b5 + 0.8)2 + t3(b7 − 0.3)2) + t4(b9 + 0.15)2}. (34.2)

The deterministic optimization algorithm EXTREM is used for minimizing Eq. (34.2). For the 8 remain-
ing degrees of freedom (inclination and positioning angle of the outer coil-blocks) about 100 function
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Fig. 34.4: 5-, 6- and 7-block coil configuration for a 6 tesla dipole magnet wound from only one type of conductor.

evaluations have to be carried out. The weighting factorst1 - t4 were chosen ast1 = 1, t2 = 5, t3 = 10,t4
= 30 to account for the different numerical values of the objectives.

Table 34.4 shows the results of the coil-block optimizations. The V6-1 design has an about 0.1
T higher maximum field, while the number of turns has been reduced to 40 per coil. This design was
chosen as the standard coil cross-section for the LHC. The geometric multipoles partly compensate the
persistent current effect at injection field level. For both 6 block alternatives the outwardly directed
electromagnetic force parallel to the broad face of the cable has been considerably reduced.

The better magnetic and mechanical performance of the V6-1 design was demonstrated with the
manufacture and cold test of 9 short model dipoles, cf. Fig. 34.5. It shows atraining characteristic with
successively higher field at subsequent quenches. Due to the insufficient clamping of some of the coil
parts, the windings can move slightly under the influence of the electromagnetic forces. This degrades
the performance of the magnet with a maximum attainable field lower than the predicted (short-sample)



CHAPTER 34. INTEGRATED DESIGN OF SUPERCONDUCTING MAGNETS 398

V6-3 V6-1 5-Block

Turns per coil 38 40 41

Turns in inner layer 16 15 15

Turns in outer layer 22 25 26

% on the load-line (inner layer) 81.05 84.92 82.5

% on the load-line (outer layer) 86.15 85.64 86.5

Peak field/main field (outer) 0.83 0.89 0.87

Peak field/main field (inner) 1.03 1.03 1.052

I nominal (A) at 8.33T (linear calculation) 11836. 11490. 11183.

Bss (T) (linear calculation) 9.70 9.76 9.65

L (mH/m) 6.64 7.17 7.47

Pole angle (deg) 70.5 70.99 57.4

Pole size (mm) 7.1 7.43 8.7

Force parallel to cable’s broad side (N/m) 16400. 17239. 33877.

b3 geometric 2.727 4.145 0.309

b5 geometric -1.654 -0.881 -1.605

b7 geometric 0.249 0.615 0.826

b9 geometric -0.609 0.101 -0.711

b11 geometric 0.748 0.598 1.774

b3 persistent -12.32 -11.03 -12.503

b5 persistent 1.611 1.19 1.596

b7 persistent -0.599 -0.479 -0.819

b9 persistent 0.201 0.229 0.456

b11persistent 0.083 0.035 0.147

Table 34.4: Characteristic data for the optimized coil cross-sections and comparison to the previous 5-Block design, shown in

Fig. 3.6. Linear calculations with an ideal iron yoke with inner radius of 98 mm andµr=2000.

limit.

The EM-forces push a conductor into a more stable position and therefore the subsequent quenches
are slightly higher, the magnet trains. The short-sample field obtained after the15th training quench
confirms the prediction (9.76 T) for the V6-1 version, whereas the 5-Block versions show an even lower
average than the predicted 9.65 T. This is due to mechanical problems resulting from the strong outward
directed electromagnetic forces, see Table 34.4.
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Fig. 34.5: Maximum dipole field reached after the first (left) and the15th training quench (right) for 5-Block and V6-1 coil

versions. Blue: 5-Block version, Yellow: V6-1 design.
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Fig. 34.6: Iron yoke with an area where quadrilateral facets are free to change their material properties between iron and air.

Result after 12000 function evaluations using genetic algorithms. The objectives were a maximum dipole field and minimum

variation of multipole errors versus excitation. The emphasis was put on the maximum field level.

34.5 Yoke design as a material distribution problem

For the iron yoke structure different designs were previously proposed and optimized using deterministic
methods. Solving the material distribution problems addressed in [63], using gradient methods and the
adjoint state technique, yields a more creative design tool than shape optimization. This provided the
impetus for testing the application of genetic algorithms to the optimization of yoke structures defined as
a material distribution problem. The influence of the iron magnetization is taken into account by means
of a FE calculation based on the reduced vector potential formulation.

The design variables that allow for separate collar structures as well as for combined collars are
the material properties (iron or air) of 170 elementary areas around the superconducting coil. Fig. 34.6
shows the area in the iron yoke in which the material properties of pre-defined quadrilateral facets are
free to change. The elementary areas in which the material can be specified as either iron or air cannot
be made too small, however, as then their effect on the objective function is masked by numerical errors.
Fortunately, the iron yoke influences only lower-order harmonics in the aperture, while higher order
harmonics are influenced mainly by the coil layout.

The separation of the two effects and the exclusion of the higher order harmonics from the ob-
jective function is therefore reasonable for the yoke optimization. The number of nodes in the FE-mesh
were reduced to about 2400, which yields computing times of 16 seconds (on a DEC Alpha 5/333) for
each nonlinear function evaluation.

If the optimization is performed at a single excitation, e.g., the injection field level of 0.53 T or the
nominal field level of 8.33 T, most of the results show jagged structures and checker-board-type material
distributions. Similar effects have been reported in pole shape optimization [214]. Not only are these
structures impossible to construct, they also have only numerical significance (the objective function
value being small) as these structures are extremely sensitive to local saturation effects, which in turn are
very sensitive to the FE discretization within these facets. A measure to avoid checker-board structures
is to define the facets in such a way that always a half overlap of these facets is guaranteed. Because
the LHC magnets are ramped between the injection and nominal field level, one of the objectives is to
minimize the variation of the multipole errors as a function of the excitation. The minimization of these
variations also helps to avoid physically meaningless structures.

Fig. 34.6 (right) shows the result after about 12000 function evaluations. The emphasis was put
on a maximum main field. The result is not surprising, as can be seen from the comparison with iron
cross-sections that have been designed and optimized using conventional techniques. The usefulness of
additional small holes in the iron yoke has been shown in [10].
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Fig. 34.7: Left: Yoke geometries with design variables for the optimization and sensitivity analysis. Top: Yellow book (MBP1);

Bottom: MBP2; Middle: Separate collar alternative (MBSCA). Right: Optimized yoke geometries.

34.6 Shape optimization of the iron cross-section

For the shape optimization of the yoke, between 5 and 10 design variables are considered. They are
shown for three different designs in Fig. 34.7 (left).

The objectives for the yoke optimization are:

• Maximum short-sample fieldBss.
• Smallb2 andb4 component at injection field level.
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• Low variation ofb2, b3 andb4 components versus excitation between injection and nominal field
level (this requires a number of FE calculations with different excitations for each objective func-
tion evaluation).

• Low sensitivity to tolerances on the yoke geometry (this objective can only be quantified after a
sensitivity analysis of the optimized design).

• Small outer yoke radius.

The higher-order multipoles are only slightly affected by the iron yoke. Theb3 component at injection
is of less importance as it can be easily part-compensated by the coil layout. The deterministic search
routine EXTREM is used for the optimization. Approximately 150 function evaluations have to be
performed. The results are given in Fig. 34.7 which shows on the left theYellow book(MBP1) design
which was designed in 1995 but had manufacturing problems resulting from the iron insert in the collars.
In addition, theb4 component was not previously considered as an objective for the optimization and
is now considered to be too high. The geometry (MBP2) features a combined collar with two different
elliptical shapes in the center part and in the outer part respectively.

Using the two different elliptical shapes on either side of the beam-axis provides enough degrees
of freedom for the optimization, so that the iron insert and the small hole in the center of the magnet are
no longer needed to control the magnetic flux. As will be shown in Section 34.8, the geometry of the
MBP2 magnet is also less sensitive to manufacturing errors than the geometry of the MBP1 magnet.

The use of stainless steel as a collar material allows the use of separated collars where the magnetic
flux coupling of the left and right aperture at injection field level can be reduced due to the symmetry
of the collars with respect to the beam-axis at 97 mm. This symmetry allows the collars to be flipped
during assembly so that punching errors do not produce unwanted asymmetries with respect to the beam-
axis. In order to balance the flux in the center and outer part of the magnet and therefore reduce theb2
component at higher field levels, a drop-shaped hole must be punched in the iron insert between the
collars. Due to the intrinsic symmetry with respect to the beam-axis at low field level (the iron yoke
acting as a perfectly symmetric screen between the two apertures) virtually nob2 andb4 components are
generated. Table 34.5 shows the field harmonics at injection and nominal field level together with the
maximum reachable main fieldBss and the nominal current.

Although the multipoleb2 of the MBP2 yoke geometry at injection field level is about 0.1 units
higher than for the MBP1 yoke geometry, the variation is considerably lower and theb4 component
is reduced by a factor of 2. The multipoleb3 has a higher numerical value at injection, but this is
desirable because of the partial compensation of the persistent currents. The variation inb3 was again

MBP1 (insert) MBP2 MBSCA (sep. collars)

I (A) @ 8.33 T 11729 11828 11459

Bss (T) 9.69 9.68 9.75

Field comp. inj nom inj nom inj nom

b2 0.5385 2.4062 0.6463 −0.8168 −0.0583 0.0346

b3 1.9206 3.4528 5.7750 6.1761 11.0084 11.4400

b4 −0.5324 −0.7269 0.2169 0.0621 0.0001 −0.1832

b5 −0.7490 −0.8109 −0.9138 −0.9140 −1.1466 −1.0244

b6 0.0230 0.0065 −0.0011 −0.0044 0.0000 −0.0133

b7 0.6113 0.6235 0.6324 0.6352 0.6105 0.6169

b8 0.0010 0.0007 −0.0002 −0.0003 −0.0000 −0.0006

b9 0.1003 0.1018 0.1032 0.1039 0.0986 0.1007

b10 0.0002 0.0001 0.0003 0.0003 −0.0000 −0.0000

b11 0.5945 0.6041 0.6121 0.6157 0.5865 0.5976

Table 34.5: Comparison of main parameters of MBP1 and MBP2 magnet, and separated collar geometry, MBSCA. Relative

field components in units of10−4 at 17 mm reference radius.
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considerably reduced. The multipole errors at injection field level in the case of the separated collar
(MBSCA) geometry are extremely low compared with the other geometries, except for the value ofb3,
which shows a positive offset of about 5 units. This can, however, be easily counter-balanced by the coil
design. Other merits are the reduction of the nominal operation current by 370 A and the increase of the
short-sample field valueBss by 0.08 T.

34.7 Payoff tables and Lagrange-multiplier estimation

Tables 34.6 and 34.7 are the payoff tables for the MBP2 magnet geometry with combined collars and
the separated collar geometry as shown in Fig. 34.7. Under realistic constraints for the variation of the
multipole errors, the maximum attainable field is 9.73 T in case of the MBP2 structure. The payoff for
an increased main field is a higher variation of theb2 andb3 component and an octupole component
(b4) at injection of 0.1 units (the constraint becoming active). The separated collar geometry provides an
ideal shielding between the apertures at injection field level, and thus the octupole is extremely low. For
this geometry the maximum reachable field is 9.9 T, a value which could not be reached with the MBP2
geometry. It can be seen, that the payoff tables are a useful means to investigate the hidden resources of
a design. The above result can therefore be reformulated as follows: The hidden resource for the main
field is higher for the separated collar geometry than for the combined collar magnet.

An increase of the main field can be achieved by bringing the iron yoke closer to the coil, which
helps to obtain not only a higher main field but also a better transfer functionB/I. It is clear that an iron
yoke which is closer to the coil shows a more saturation dependent behavior. The minimum achievable
b2 variations are higher in the case of the separated collar geometry compared with the combined collar
design.

Bss ∆b2 ∆b3 ∆b4 b4inj ryoke alel1 alel2 lh2r leang houdh blel1 Iss

> 8.2 < 2.0 < 3.0 < 0.2 < 0.1 < 275. (mm) (mm) (mm) (deg) (mm) (mm) (A)

max.Bss -9.73 0.758 1.4638 0.086 0.103 284.8 75.84 76.08 7.22 22.14 4.04 95.0 13647

min ∆b2 -9.66 0.036 0.551 0.077 -0.116 284.2 92.94 84.44 9.15 33.92 9.21 102.2 13892

min ∆b3 -9.65 3.847 0.002 0.267 0.085 266.1 86.73 88.23 17.24 41.69 4.65 102.6 13936

min ∆b4 -9.66 0.822 0.721 0.057 -0.047 284.9 86.39 95.94 7.03 34.26 11.99 105.0 13961

min b4inj -9.65 1.265 0.306 0.114 0.000 277.3 88.52 89.02 13.43 39.75 6.91 103.5 13921

min ryoke -9.68 1.099 0.483 0.238 0.095 265.5 82.96 79.31 16.14 29.88 10.54 97.4 13836

Table 34.6: Payoff table for the MBP2 magnet geometry.

Bss ∆b2 ∆b3 ∆b4 b4inj ryoke alel1 blel1 sstax sendx Iss

> 8.2 < 2.0 < 3.0 < 0.2 < 0.1 < 275. (mm) (mm) (mm) (mm) (A)

max.Bss -9.92 1.38 2.51 0.16 -0.0003 282.1 70.27 73.06 2.63 7.31 13074

min ∆b2 -9.78 0.76 2.43 0.20 -0.00002 275.0 88.86 84.97 4.40 12.40 13467

min ∆b3 -9.74 2.21 0.045 0.12 0.0002 280.1 92.47 94.35 4.22 12.94 13630

min ∆b4 -9.77 3.91 1.62 0.029 -0.00005 284.8 84.59 99.25 4.55 11.10 13625

min b4inj -9.77 1.41 0.27 0.22 0.0000 272.3 87.83 89.78 4.36 10.10 13546

min ryoke -9.75 1.22 2.21 0.22 0.0000 270.0 85.80 97.85 6.78 11.94 13656

Table 34.7: Payoff table for the separated collar geometry MBSCA.

Similar conclusions can be drawn from the Lagrange-multiplier estimation in the optimal point of
the problem posed in the Marglin form:

max {Bss(x)} (34.3)

subject to

∆b2 < 2.0, ∆b3 < 3.0, ∆b4 < 0.2, b4inj < 0.1, (34.4)
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with the design variables shown in Fig. 34.7. For the MBSCA geometry (first row in the payoff ta-
ble 34.7) the multiplier for the quadrupole variation is 3.4 and for the sextupole variation 0.57. This
indicates that the variation of the quadrupole term is the limiting factor for a further increase in main
field. The constraints on the octupole are not active, i.e., increasing the main field component by reduc-
ing the size of the non-magnetic collars reduces the octupole component at the same time. There is no
payoff between the main field and the octupole field error.

For the MBP2 geometry (first row in Table 34.6) the multipliers are 0.43 for the quadrupole vari-
ation, 0.69 for the sextupole variation and 0.30 for the octupole component at injection. The octupole
component, which is already relatively high, is thus the limiting factor for a further increase of the main
field. The payoff between main field and the quadrupole variation is lower in the combined collar geom-
etry than in the MBSCA design since less magnetic material between the beam channels is exposed to a
high field change during the ramping of the magnets.

34.8 Tolerance and manufacturability analysis

34.8.1 Coil tolerances

The random multipole errors are calculated using a sampling technique with 500 uniformly distributed
random errors between +0.05 mm and -0.05 mm, on the block positioning and inclination angles, and
their radial positions. Analysis of the multipole content of these 500 random magnets yields a normal
distribution function. The mean value and the standard deviationσ can be calculated by

µ =
1

500

500∑
i=1

xi, σ2 =
1

500

500∑
i=1

(xi − µ)2, (34.5)

whereµ is the mean value andσ2 the variance. Thexi are the calculated relative field componentsbn
andan. Fig. 34.8 shows the density function

f(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

(34.6)

of theb3, b5 andb7 field component for the V6-1 coil. Table 34.8 gives the numerical results. Taguchi’s
loss function is defined as

Lai,bi = k[σ2
ai,bi

+ (µai,bi − Ti)2], (34.7)

whereTi are the nominal values of the skew or normal multipole components. For our case we set the
weighting factork to one. The mean relative values are not the expected intrinsic values. This is due to
the fact that the field changes are a nonlinear function of the block perturbation. A shift of a coil-block
towards the mid-plane results in a higher field distortion than a move by the same amount away from the
mid-plane. As an example for the V6-1 solution, a shift of block no 2 (conductors 10-25, in Fig. 29.2)
towards the mid-plane by 0.07 mm results in ana2 component of 0.2074 units whereas a shift of 0.07
mm away from the mid-plane results in ana2 component of -0.2049 units.

34.8.2 Tuning range

Table 34.9 shows the convergence of the optimization procedure for the exploitation of the tuning range,
i.e., the solving of the optimizaton problems

• Full compensation of the persistent current effects at injection (b3 only to 6 units).
• No compensation of any effect resulting from persistent currents.

The resulting objective functionf(x) to be minimized reads in both cases:

min{f(x)} = min{∆2 b3(x)2 + 5 ∆b5(x)2 + 10 ∆b7(x)2 + 20 ∆b9(x)2} (34.8)
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Fig. 34.8: Histograms of 500 values , normalized for the total surface of one, and density functions of the (from left to right)

b3, b5 andb7 field component for the V6-1 coil (in units of10−4 at 17 mm radius) for 500 identically distributed random

displacements between± 0.05 mm from the nominal coil-block positions.

where∆bn = bn − b∗n with bn the calculated andb∗n the desired geometrical multipole errors
for part compensation of the persistent current effects. For the movement of the blocks some limits
(constraints) were introduced because of mechanical and geometrical reasons. During the optimization
process some of these limits are reached, i.e., the constraints are active. The number of active constraints
for a particular design is given in the table. The rank of the Jacobian matrix gives the number of inde-
pendent basis vectors building the design space, i.e., the real number of degrees of freedom to tune the
magnet. The rank is calculated with a singular value decomposition of the Jacobian. It can be seen that
the V6-1 version has a wider tuning range in both directions (note the achieved values for F(X)) than the
other two alternatives, while the number of linear independent design variables is not higher than that for
the 5-Block version.

V6-3 V6-1 5-Block

µb2 , σb2 0.0023 1.00936 0.0079 0.9855 -0.0205 1.3827

µb3 , σb3 4.3313 0.75279 4.1273 0.7103 0.1481 0.8951

µb4 , σb4 0.0116 0.44863 0.0145 0.4359 0.0408 0.5705

µb5 , σb5 -1.5320 0.29215 -0.8661 0.2712 -1.6865 0.3504

µb6 , σb6 0.0110 0.18849 0.0065 0.1647 0.0095 0.2097

µb7 , σb7 0.3287 0.10801 0.6231 0.0974 0.8031 0.1224

µb8 , σb8 0.0011 0.04610 0.0004 0.0417 -0.0018 0.0661

µb9 , σb9 -0.1185 0.02771 0.1011 0.0241 -0.7181 0.0479

µa1 , σa1 -0.0256 1.10503 -0.0180 1.0745 -0.1589 1.8136

µa2 , σa2 -0.0749 1.08907 -0.0652 1.0266 -0.0212 1.3218

µa3 , σa3 -0.0291 0.74269 -0.0211 0.6865 0.0229 0.8550

µa4 , σa4 -0.0144 0.52258 -0.0166 0.4673 -0.0351 0.5818

µa5 , σa5 0.0034 0.27523 0.0037 0.2538 0.0283 0.3333

µa6 , σa6 0.0012 0.15150 0.0026 0.1556 0.0012 0.2014

µa7 , σa7 0.0042 0.08769 0.0059 0.0921 -0.0043 0.1145

µa8 , σa8 -0.0022 0.06514 -0.0014 0.0633 -0.0028 0.0657

µa9 , σa9 0.0008 0.03654 0.0012 0.0364 -0.0012 0.0362∑
i(Lai + Lbi) 5.2756 4.7871 9.5749

Table 34.8: Mean and standard deviations for 500 identically distributed random displacements between± 0.05 mm from the

nominal coil-block positions.
∑

L is the sum of all Taguchi loss functions for the different multipoles of order1− 11.
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34.8.3 Yoke tolerances

Constraints on computing power prevent the calculation of random errors resulting from yoke tolerances
in the same way as is done for the coil-block deformations. The sensitivity analysis for the yoke is
performed by calculating the Jacobian matrix containing the derivatives of the multipoles with respect to
all specified dimensions. The Jacobian matrix

(
∂bi
∂xk

)∣∣∣∣
(P0)

=


∂b1
∂x1

. . . ∂bm∂x1
...

...
∂b1
∂xn

. . . ∂bm∂xn


∣∣∣∣∣∣∣∣
(P0)

(34.9)

where the derivatives are calculated using the upper differential quotient

ϕ(xupper) =
f(xupper)− f(xstart)

xupper − xstart

can be transferred via a CSV (comma delimited) interface into spread-sheet programs. If we assume
that for small tolerances∆xi, the variation of the field errors is linear and the tolerances are mutually
independent, we get

∆bn = α1∆x1 + α2∆x2 + ...+ αk∆xk (34.10)

where both thebn and the∆xk are random variables. The variance ofbn is

σ2
bn = α2

1σ
2
x1 + α2

2σ
2
x2 + ...+ α2

kσ
2
xk. (34.11)

The r.m.s. value

r.m.s =
√∑

k

α2
k =

√√√√∑
k

(
∂bn
∂xk

)2

(34.12)

for each of the multipoles can then be used for the comparison of the tolerance sensitivity of the different
designs, assuming that all tolerances are of the same order (σx1 = σx2 = σxk). The r.m.s. values are
given for the three different designs in Table 34.10.

The Jacobi matrix for the tolerances in coil-block positioning, coil size, and coil asymmetries
resulting from the collaring procedure is too big to be shown here; however, important conclusions can
be drawn:

V6-3 V6-1 5-Block V6-3 V6-1 5-Block

F (x∗) 8.82 5.98 13.97 8.57 4.29 9.64

b∗3 (required) 6. 6. 6. 0. 0. 0.

b∗5 (required) -1.61 -1.19 -1.60 0. 0. 0.

b∗7 (required) 0.60 0.48 0.82 0. 0. 0.

b∗9 (required) -0.20 -0.23 -0.46 0. 0. 0.

b3 (achieved) 6.000 6.0009 5.5468 -0.0068 0.0001 0.0000

b5 (achieved) -1.6101 -1.1892 -1.60001 -0.0017 0.0063 0.0263

b7 (achieved) -0.2709 0.9249 0.34339 -0.2065 0.1502 0.0019

b9 (achieved) -0.2060 -0.1537 -0.87502 -0.3241 0.1379 -0.4746

Active constraints 3 3 4 4 3 4

Rank of J 4 3 3 4 3 3

Table 34.9: Tuning range towards a full compensation of the persistent current multipoles at injection (left columns) and towards

a zero compensation of the persistent current multipoles (right columns)



CHAPTER 34. INTEGRATED DESIGN OF SUPERCONDUCTING MAGNETS 406

MBP1 (insert) MBP2 MBSCA

b2 4.5920 3.7112 0.00161

b3 1.0242 0.92635 1.6025

b4 0.07003 0.05954 0.00005

b5 0.03007 0.02567 0.04695

b6 0.00639 0.00190 0.00000

Table 34.10: R.m.s. values for yoke tolerances at injection field level in units of10−4 at 17 mm reference radius, per mm

tolerance on the yoke geometry (parameters shown in Fig. 34.7).

• A 0.1 mm increase of the coil azimuthal size produces a sextupole of 3.5 units and a decapole of
0.25 units.

• A 0.1 mm inner radius difference between lower and upper poles of the same aperture produces a
skew quadrupole of 0.75 units.

These two examples show that the sensitivity to coil deformations is an order of magnitude larger than the
sensitivity to yoke tolerances, and they show the importance of a stringent control of the coil manufacture.

34.9 Tracing of manufacturing errors

The dimensions of the active parts of the coils after their deformation due to manufacture, warm pre-
stressing, cool-down and excitation are impossible to verify under their operational conditions. Fig. 34.9
shows a series of quenches for a long dipole model built in industry. It shows a typical training char-
acteristic with successively higher fields at subsequent quenches. The enormous electromagnetic forces
push the conductors into a more stable position within the mechanical structure. These movements can
trigger atraining quench. In the model magnet presented, eight quenches occurred below the nominal
design field of 8.33 T. The subsequent quenches were above the nominal field.

Measurements of the field quality before and after the cryogenic tests show that the coil was
displaced after the assembly of the magnet and the quenches pushed the conductors towards their nominal
position. This can be seen from the field components given in Table 34.11 where the field components
measured before and after the cryogenic test are listed together with the intrinsic values which are the
calculated nominal errors. It can be seen that the field quality improves during the tests. The inverse
problem-solving consists of using optimization routines to find the distorted coil geometries that exactly

0 2 4 6 8 10 12 14 16 18 20

6.5

7

7.5

8

8.5

9

9.5

10

Fig. 34.9: Training quenches of a dipole model magnet built in industry (magnetic field at quench in T versus number of

quenches). Note the rise in performance after the8th training quench.
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Before After Intrinsic

n b a b a b a

2 0.378 −0.634 0.463 −0.229 0.2478 0.0000

3 −2.072 0.0944 −1.246 0.117 −0.9008 0.0000

4 −0.055 0.1506 −0.028 0.118 0.1105 0.0000

5 0.247 0.0348 0.1699 0.0128 0.0178 0.0000

6 0.0183 0.0062 0.0104 0.0115 −0.00183 0.0000

7 0.0316 −0.0064 0.0339 −0.0029 0.00534 0.0000

8 −0.0008 −0.0002 0.0005 0.0007 0.00002 0.0000

9 −0.0011 −0.0007 −0.0015 −0.0017 −0.00013 0.0000

10 0.0000 0.0011 −0.0002 0.0016 −0.00002 0.0000

11 0.0092 0.0000 0.0090 0.0000 0.00935 0.0000

Table 34.11: Magnetic field measurements before the8th quench and after the8th quench which resulted in a block movement

and a considerably improved training characteristic. Right columns show the intrinsic field errors as computed for nominal

dimensions and conductor location (in units of10−4 at a radius of 10 mm).

produce the multipole content measured. This approach makes possible the calculation of the sources of
the low training quenches, i.e., the movements of the coil-blocks during excitation of the magnet.

The function to be minimized in the inverse field computation problem reads

min

{
11∑
i=1

pi · (b∗i (x)− bi)2 + qi · (a∗i (x)− ai)2
}

(34.13)

whereb∗i (x), a∗i (x) are the calculated andbi, ai are the measured multipoles.x is the vector of the
design variables for the inverse problem. Thepi andqi are weighting factors that compensate for the
different numerical values of the residuals. Because of the non-symmetric nature of the geometrical
coil positioning errors, a large number of design variables result for the inverse field problem. It is
therefore assumed that the positioning errors hold for an entire coil-block rather than for individual
conductors. The design variables are the possible perturbations in radial direction of all 20 coil-blocks
plus 16 azimuthal displacements of the blocks. It is assumed that the blocks that are connected at the
mid-plane are free to move only by the same amount in azimuthal direction. Because there are far more
degrees of freedom than objectives, the problem is ill-posed. Therefore a regularization term

Preg =
36∑
i=1

ri · x2
i (34.14)

is added to Eq. (34.13) to assure that the coil-block displacements remain as small as possible. As a
minimization algorithm the Levenberg-Marquard method is applied. Originally developed for nonlinear
regression problems using least-squares objective functions, it can efficiently be applied to the minimiza-
tion of the distance function. The number of function evaluations is between 800 and 1000. The relative
movement of the coil-block during the test can be estimated from the calculated coil-block displacements
before and after the test. The displacements are shown in Fig. 34.10.
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0 10 20 30 40 50 60

ROXIE5.2

16/09/97   10.09MBL1N1 Displacements before cryogenic test

0 10 20 30 40 50 60

ROXIE5.2

16/09/97   10.10MBL1N1 Displacements after cryogenic test

Fig. 34.10: Displacement of coil-blocks before (top) and after (bottom) the cold test with training quenches. The comparison

of the two states indicates the movements which have triggered the quenches. The displacements were calculated from inverse

field calculations using field quality measurements at room temperature before and after the test. The radial displacement of

block 5 (left) is 0.183 mm before quench no. 8, all other displacements are to scale. The biggest movement occurred in block

5 which was shifted outwards by 0.07 mm during the quench.

34.10 Questions

1. Why is it possible to decouple the coil and iron yoke design in superconducting magnets. Would
this also be possible in conventional magnets?
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Chapter 35

Maxwell’s Original Set of Equations

This section reviews the symbols and equations listed in Maxwell’s booksA Treatise on Electricity &
Magnetism, Editions of 1873, 1881, and 1891 which has been reprinted in the Dover Series, Vol. 2, 1954,
[147].

Original Quaternion Notation Constituents Vector notation

Radius vector of a point ρ x,y,z Position vector r
Electromagentic momentumU F,G,H Magnetic vector potential A
Magnetic induction B a,b,c Magnetic flux density B
Intensity of magnetization J A,B,C Magnetization M
Total electric current C u,v,w Current density J
Magnetic force H α, β, γ Magnetic field strength H
Electric displacement D f,g,h Electric field strength D
Electromotive intensity E P,Q,R Electric flux density E
Current of conduction R p,q,r Current density J0

Table 35.1: Symbols used in Maxwell’s original set of equations (Version of 1891).

In component form, Maxwell’s equations are written as (Vol. 2., page 255 ff):

a =
∂H

∂y
− ∂G

∂z

b =
∂F

∂z
− ∂H

∂x

c =
∂G

∂x
− ∂F

∂y
(35.1)

which readsB = curlA in vector notation.

P = −∂F
∂t

− ∂ϕ

∂x

Q = −∂G
∂t

− ∂ϕ

∂y

R = −∂H
∂t

− ∂ϕ

∂z
(35.2)
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givesE = −∂A
∂t − gradϕ,

p+
∂f

∂t
=
∂γ

∂y
− ∂β

∂z

q +
∂g

∂t
=
∂α

∂z
− ∂γ

∂x

r +
∂h

∂t
=
∂β

∂x
− ∂α

∂y
(35.3)

can be expressed asJ + ∂D
∂t = curlH and

ρ =
∂f

∂x
+
∂g

∂y
+
∂h

∂z
(35.4)

is ρ = div D.

Maxwell then writes in components, (equation (7), page 256) what is now called the gauge trans-
formation equation

A = A′ − gradϕ (35.5)

and observes: “The quantityϕ disappears from equations (35.1) and is not related to any physical phe-
nomenon.” Therefore it would be historically more correct to speak of the Maxwell gauge instead of the
Coulomb gauge.

Maxwell then writes the equations (page 257 ff) by means of quaternions1 (denoted by calligraphic
lettersX ,H, E , etc.) which are defined as elements∈ R4 with X = x0e0 + x1e1 + x2e2 + x3e3 where
the scalar part denotedS.X is x0e0 and the vector partV.X = x = x − x0e0 = x1e1 + x2e2 + x3e3.
A modern account of quaternionic calculus can be found in [89]. Maxwell’s equations in the quaternion
notation are summarized in Table 35.2.

Quaternion notation Vector notation in SI units

B = V.∇U B = ∇×A
E = V.ρ̇B − U̇ − ∇ψ E = v ×B− ∂A

∂t −∇ϕ
C = cE + Ḋ J = κE + ∂D

∂t

B = H+ 4πJ B = µ0(H + M)
4πc = V.∇H J = ∇×H
D = 1

4πκE D = εE

Table 35.2: Maxwell’s equations in quaternion notation.

1The algebra of quaternionsH = (R4, ·) is established by means of the quaternion product ofX ,Y ∈ R4

XY = x0y0 − x · y + x0y + y0x + x× y (35.6)

where(·) and(×) denote the ordinary scalar and vector products inR3. This product is based on the algebraic rules of the
basis elements 1)e2

1 = e2
2 = e2

3 = −1, 2) e1e2 = e3; e2e3 = e1; e3e1 = e2, 3) eiej + ejei = 0 (i, j = 1, 2, 3; i 6= j). In
particular we have forx0, y0 = 0

− S.(XY) = x · y, V.(XY) = x× y. (35.7)



Chapter 36

Solutions of the Laplace Equation

36.1 Cartesian coordinates

Solution of∆ϕ = 0 for the general case (k2
x + k2

y + k2
z = 0):

ϕ =

{
sin kxx
cos kxx

}{
sin kyy
cos kyy

}{
sin kzz
cos kzz

}
. (36.1)

Solution of∆ϕ = 0 for ∂
∂z = 0, (kz = 0):

ϕ =

{
sin kxx
cos kxx

}{
sin kyy
cos kyy

}
. (36.2)

Solution of∆ϕ = 0 for ∂
∂y = ∂

∂z = 0, (ky = kz = 0):

ϕ =

{
x

1

}
= Ax+B . (36.3)

36.2 Cylindrical coordinates

Solution of∆ϕ = 0 for the general case:

ϕ =

{
sinnϕ
cosnϕ

}{
Jn(αr)
Nn(αr)

}{
eαz

e−αz

}
. (36.4)

Solution of∆ϕ = 0 for ∂
∂z = 0, (α = 0):

ϕ =

{
sinnϕ
cosnϕ

}{
rn

r−n

}
. (36.5)

Solution of∆ϕ = 0 for ∂
∂ϕ = ∂

∂z = 0, (n = α = 0):

ϕ =

{
lnr
1

}
= A ln r +B . (36.6)
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Chapter 37

The Imaging Method for Line Currents

The effect of an iron yoke with constant permeability and perfect circular inner shape with radiusRyoke

can be taken into account by means of the imaging method as long as the total current inside the yoke
is zero. Consider positive line currents I atx = d andR2

yoke/d and a negative currents -I atx = 0
according to Fig. 37.1. We show that theϕ-component of the magnetic flux density on the inner surface
of the cylinder equals zero.

xII-I
d

R2
yoke

d

R(2)
R(1)

Ryoke

R(3)

ϕ

y

Fig. 37.1: Imaging method for line currents in a hollow cylinder of infinite permeability

Starting with the vector-potential

Az = −µ0I

2π
ln
R(i)

Rref
(37.1)

and the cosine formula

R(i) =
√
r2 + x2 − 2rx cosϕ (37.2)

we get

B(i)
ϕ = −∂Az

∂r
|Ryoke

=
µ0I

2π
Ryoke − x cosϕ

R2
yoke + x2 − 2Ryokex cosϕ

. (37.3)
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Therefore:

B(1)
ϕ =

µ0I

2π
Ryoke − d cosϕ

R2
yoke + d2 − 2Ryoked cosϕ

, (37.4)

B(2)
ϕ =

µ0I

2π
Ryoke −

R2
yoke

d cosϕ

R2
yoke +

R4
yoke

d2
− 2

R3
yoke

d cosϕ
=
µ0I

2π

d2

Ryoke
− d cosϕ

R2
yoke + d2 − 2Ryoked cosϕ

, (37.5)

B(3)
ϕ =

−µ0I

2π
1

Ryoke
, (37.6)

and

B(1)
ϕ +B(2)

ϕ +B(3)
ϕ =

µ0I

2π

Ryoke − 2d cosϕ+ d2

Ryoke

R2
yoke + d2 − 2Ryoked cosϕ

− µ0I

2π
1

Ryoke

=
µ0I

2π
1

Ryoke
− µ0I

2π
1

Ryoke
= 0. (37.7)



Chapter 38

Solution of the Diffusion Equation for the
Conductive Plate in a Parallel Field

The diffusion equation is solved by means of the Laplace transform for different excitation functions.
i.e., jump and ramp. The Laplace transform of the diffusion equation reads

∂2B̃y(ξ, s)
∂ξ2

= sB̃y(ξ, s), (38.1)

with its general solution

B̃y(ξ, s) = C1e−
√
sξ + C2e

√
sξ (38.2)

that has to fulfill the boundary conditions

B̃y(0, s) = B̃y(1, s) = f̃(s). (38.3)

We obtain

B̃y(0, s) = C1 + C2 = f̃(s) (38.4)

and

B̃y(1, s) = C1e−
√
s + C2e

√
s = f̃(s). (38.5)

We can eliminateC2 = f̃(s)− C1 and define

C1 = f̃(s)
1− e

√
s

e−
√
s − e

√
s
, (38.6)

C2 = f̃(s)
e−

√
s − 1

e−
√
s − e

√
s
. (38.7)

Now we can rewrite Eq. (38.2):

B̃y(ξ, s) = f̃(s)
e−

√
sξ − e

√
s(1−ξ) − e

√
sξ + e−

√
s(1−ξ)

e−
√
s − e

√
s

. (38.8)

With

sinhx =
1
2
(
ex − e−x

)
(38.9)

Eq. can be simplified to

B̃y(ξ, s) = f̃(s)
sinh

(√
s(1− ξ)

)
+ sinh

(√
sξ
)

sinh
√
s

. (38.10)
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38.1 Jump discontinuity of the exciting field

With the Laplace transform of the step function

f̃(s) = B1
1
s

(38.11)

we can now perform the retransformation by summing-up all residuals

By(ξ, τ) =
∑

Res
(
B̃y(ξ, s) esτ

)
. (38.12)

Eq. (38.10) with Eq. (38.11) has one pole at

s = 0 (38.13)

andn poles at

j
√
s = nπ, n ≥ 1, (38.14)

that is

s = −(nπ)2, n ≥ 1. (38.15)

The residual of a functionf(z) at a polez0 is calculated by

Res (f(z)) |z=z0 = resz=z0 = lim
z→z0

(f(z)(z − z0)) , (38.16)

The residual at the poles = 0 is thus

ress=0 = lim
s→0

B1

sinh
(√

s(1− ξ)
)

+ sinh
(√

sξ
)

sinh
√
s

esτ

 , (38.17)

where the limit value can be found applying the rule by L’Hospital:

lim
x→x0

g(x)
h(x)

= lim
x→x0

g′(x)
h′(x)

. (38.18)

We obtain the result

ress=0 = lim
s→0

B1

1
2s
− 1

2

(
(1− ξ) cosh

(√
s(1− ξ)

)
+ ξ cosh

(√
sξ
))

1
2s
− 1

2 cosh
√
s


= B1(1− ξ + ξ) = B1. (38.19)

The othern residuals give withsn = −(nπ)2

ress=sn = lim
s→sn

B1

1
s

sin
(
j
√
s(1− ξ)

)
sin j

√
s

esτ
(
s+ (nπ)2

)

+
1
s

sin
(
j
√
sξ
)

sin j
√
s

esτ (s+ (nπ)2
)

=
B1

−(nπ)2
(
sinnπξ + sinnπ(1− ξ)

)
e−(nπ)2τ lim

s→sn

s+ (nπ)2

sin j
√
s
. (38.20)

Applying the L’Hospital rule to the limit yields

lim
s→sn

s+ (nπ)2

sin j
√
s

= lim
s→sn

−j2
√
s

cos j
√
s

=
−2nπ
cosnπ

=
−2nπ
(−1)n

, (38.21)

and the final result reads

By(ξ, τ) = B1

(
1 +

∞∑
n=1

2
nπ

(−1)n
(
sinnπξ + sinnπ(1− ξ)

)
e−(nπ)2τ

)
. (38.22)
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38.2 Linear ramp of the exciting field

The ramp function has the Laplace transform

f̃(s) = kB1Td
1
s2
, (38.23)

that has a double pole ats = 0. The residual of a functionf(z) at a double pole atz0 is calculated by

lim
z→z0

d
dz
(
f(z)(z − z0)2

)
. (38.24)

Using Eqns. (38.10), (38.12) and (38.23) the residual at the double pole is calculated by

ress=0 = lim
s→0

kB1Td
d
ds

sinh
(√

s(1− ξ)
)

+ sinh
(√

sξ
)

sinh
√
s

esτ

 , (38.25)

the result of which is found (by means ofWolfram Research - Mathematica 4.1)

ress=0 = kB1Td

(
τ +

1
2
(ξ − 1)ξ

)
. (38.26)

The othern residuals are found following the procedure shown in Section 38.1

ress=sn = −2kB1Td
(nπ)3

(−1)n
(
sinnπξ + sinnπ(1− ξ)

)
e−(nπ)2τ , (38.27)

and the result yields

By(ξ, τ) = kB1Td

(
τ +

1
2
(ξ − 1)ξ

−
∞∑
n=1

2
(nπ)3

(−1)n
(
sinnπξ + sinnπ(1− ξ)

)
e−(nπ)2τ

)
. (38.28)

38.3 Cos(ωt) excitation

The Laplace transform of a cosine-excitation reads

f̃(s) = B̂1
s

s2 + Ω2
(38.29)

with Ω = ωκµ0b
2. It has two conjugated poles ats = jΩ ands = −jΩ. Their residuals are conjugated

as well, that is to say they have the same real values whereas their imaginary values have different sign.
Their sum is the sum of their real values. For the poles = −jΩ we get the residual

ress=−jΩ =
B̂1

2
e−jΩτ

sinh
(√

−jΩ(1− ξ)
)

+ sinh
(√

−jΩξ
)

sinh
√
−jΩ

, (38.30)

and with

k2 = −jωκµ0, k = ±1− j

δ
, δ =

√
2

ωκµ0
(38.31)

we rewrite the residual

ress=−jΩ =
B̂1

2
e−jΩτ

sinh
(
bk
(
1− ξ

))
+ sinh

(
bkξ
)

sinh bk
. (38.32)



CHAPTER 38. SOLUTION OF THE DIFFUSION EQUATION FOR THE CONDUCTIVE PLATE IN A PARALLEL FIELD418

The ratio of two uneven functions is an even function and therefore both values fork give the same result.
The othern residuals are calculated like in Section 38.1 and we obtain the final result

By(ξ, τ) = B̂1 Re

e−jΩτ
sinh

(
bk
(
1− ξ

))
+ sinh

(
bkξ
)

sinh bk


+ B̂1

∞∑
n=1

2(nπ)3(
(nπ)4 + Ω2

)(−1)n
(
sinnπξ + sinnπ(1− ξ)

)
e−(nπ)2τ . (38.33)



Chapter 39

Physical Data Tables

39.1 SI (MKSA) Units

Physical quantity Unit Symbol Conversion

Length meter m

Mass kilogram kg

Time second s

Electric current ampere A

Thermodynamic temperature kelvin K

Amount of substance mole mol

Luminous intensity candela cd

Frequenzy herz Hz 1/s

Force newton N kg m/s2

Pressure, Stress pascal Pa N/m2

Energy,Work joule J N m = W s

Power watt W J/s = m2 kg/s3

Torque mewton meter N m

Electric charge coulomb C A s

Electric potential volt V W/A

Capacitance farad F C/V

Permettivity farad/feter F/m A s/V m

Electric field strength volt/feter V/m

Magnetic flux weber Wb V s

Magnetic flux density tesla T Wb/m2 = V s/m2

Inductance henry H Wb/A = V s/A

Permeability henry/meter H/m V s/A m

Magnetic scalar potential ampere A

Magnetic vector potential weber/meter Wb/m T m

Magnetic field strength ampere/meter A/m

Resistance ohm Ω V/A
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39.2 Conversions of Units

1 inch = 0.0254 m

1 foot = 0.3048 m

1 mile = 1609.344 m

1 acre = 4046.856 422 4 m2

1 ounce = 0.028 349 523 125 kg

1 pound = 0.453 592 37 kg

1 kWh = 3.600 MJ

1 atmosphere = 0.101 325 MPa

1 bar = 0.1 MPa = 0.1 N/mm2

1 m/sec = 3.6 km/h

1 G = 10−4 T

1 Oe = 103/(4π) A/m

1 Mx = 10−8 Wb = 10−8 V s

39.3 Physical and Material Constants

Permettivity of free space ε0 8.854187.. · 10−12 F/m

Permeability of free space µ0 4π · 10−7 H/m

Velocity of light in vacuum c 299792458 m/s

Gravitational constant g 9.80665 m/s2

Charge of the electron e 1.602176.. · 10−19 C

Mass of electron at rest m 9.109381.. · 10−31 kg

Electron volt eV 1.602176.. · 10−19 J

39.3.1 Electric Conductivity of materials

Quartz ∼·10−17

Mica ∼·10−15

Glass ∼·10−12

Distilled water ∼·10−4

Seawater ∼ 4.
Carbon 3.0·104

Cast iron 1.0·106

Nichrome 1.0·106

Silicon steel 2.0·106

Lead 5.0·106

Tin 9.0·106

Brass 1.1·107

Zink 1.7·107

Aluminium (drawn) 3.5·107

Gold 4.1·107

Copper 5.8·107

Silver 6.1·107

All in units of S/m at 20o C.
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39.3.2 Resistivity of Copper (alloys), Aluminium, NbTi and Nb3Sn

Material ρ at 4.2 K ρ at 300 K

Ω m Ω m

Copper ETP (annealed) 1.3·10−10 1.7·10−8

Copper pure (99.995 %) 1.98·10−10 1.65·10−8

Aluminium pure (99.998 %) 2.0·10−11 2.55·10−8

Aluminium (99.95 %) 1.0·10−9 2.55·10−8

Nb(60%)Ti < ·10−17 7.3·10−7

Nb3Sn < ·10−17 4.0·10−7



Chapter 40

Results of the Exercises

Probare et reprobare, B. Touschek (1921-1978).

40.1 Conventional C-Core magnet, Exercise 12.9.0.1

0.248T =
µ0NI

0.1
(40.1)

NI = 0.00197352 · 107 = 19735A (40.2)

The current used in the FEM calculation was 20000 A. At the origin thex-component of the magnetic
flux density is zero because of the symmetry. The coil’s barycenter is atx = 0.21 m andy = 0.1 m. For
they-component of the flux density we get:

|By| = 4
µ0I

2π
x

x2 + y2
= 4 · 2 · 10−7 · 10000 · 3.8817 = 0.0311 (40.3)

40.2 Superconducting dipole magnet with one-layer coil, Exercise 14.6.0.1

Btotal
1

Bbare
1

= 1 +
199
201

(
51.7
100

)2 = 1.2646 (40.4)

Result of the numerical calculation for the real geometry is 1.263.

40.3 Optimization of shell dipole structures, Exercise 14.6.0.3

Consider a current shellri < r < re with a current density varying with the azimuthal angleΘ, J(Θ) =
J0 cosmΘ, then we get for theBn components

Bn(r0) =
∫ re

ri

∫ 2π

0
−µ0J0r

n−1
0

2πrn

(
1 +

µr − 1
µr + 1

(
r

Ryoke
)2n
)

cosmΘcosnΘ rdΘdr . (40.5)

422
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For 3 shells with inner and outer radiiri1, ra1, ri2, ra2, ri3, ra3 the following nonlinear set of equations
has to be solved numerically by means of an optimization routine.

A11 sin 3Θ1 +A12 sin 3Θ2 +A13 sin 3Θ3 = 0

A21 sin 5Θ1 +A22 sin 5Θ2 +A23 sin 5Θ3 = 0

A31 sin 7Θ1 +A32 sin 7Θ2 +A33 sin 7Θ3 = 0 (40.6)

with the coefficients

A11 = −2µ0J0r
2
0

3π

(
r−1
a1 − r−1

i1

−1

)
A21 = −2µ0J0r

4
0

5π

(
r−3
a1 − r−3

i1

−3

)
(40.7)

A31 = −2µ0J0r
6
0

7π

(
r−5
a1 − r−5

i1

−5

)
A12 = −2µ0J0r

2
0

3π

(
r−1
a2 − r−1

i2

−1

)
(40.8)

A22 = −2µ0J0r
4
0

5π

(
r−3
a2 − r−3

i2

−3

)
A32 = −2µ0J0r

6
0

7π

(
r−5
a2 − r−5

i2

−5

)
(40.9)

A13 = −2µ0J0r
2
0

3π

(
r−1
a3 − r−1

i3

−1

)
A23 = −2µ0J0r

4
0

5π

(
r−3
a3 − r−3

i3

−3

)
(40.10)

A33 = −2µ0J0r
6
0

7π

(
r−5
a3 − r−5

i3

−5

)
(40.11)

40.4 Symmetry conditions in dipole, Exercise 14.6.0.2

b3 = -0.49 a2 = -3.67 b2 = 10.67

b5 = -0.049 a3 = -3.02 b3 = -1.20

b7 = -0.019 b2 = 5.34 b4 = -2.48

b2 = -10.67 a2 = -7.33 a2 = 7.33

b3 = -1.198 a4 = -0.95 a4 = 0.957

b4 = 2.48 b3 = -1.198 b3 = -1.198

a2 = -15.07 b3 = -1.90 b3 = 9.13

a4 = -1.74 b5 = -1.72 b5 = -1.34

b3 = -0.17 b7 = 0.322 b7 = -0.077

Table 40.1: Multipole field errors in units of10−4 at 17 mm reference radius.

40.5 Finite element shape functions, Exercise 19.4.0.1

From Stokes’ theorem ∫
a
B · da =

∫
a

curlA · da =
∫
∂a

A · ds. (40.12)

In 2-D the flux per unit length is therefore

ϕ/l = Az3 −Az4 = 0.031 T·m. (40.13)
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With the relationB = curlAz and the approximation of the magnetic vector potential in the finite
elementsAz = α1 + α2x+ α3y we get

Bx =
∂Az
∂y

= α3 (40.14)

By = −∂Az
∂x

= −α2 (40.15)

Now

α567
3 =

(x6 − x5)A7 + (x7 − x6)A5 + (x5 − x7)A6

0.5(x5 − x6)(y7 − y6)
(40.16)

α536
3 =

(x5 − x6)A3 + (x3 − x5)A6 + (x6 − x3)A5

0.5(x5 − x6)(y5 − y3)
(40.17)

Because of symmetryx7 = x5 = x3

α567
3 =

(x6 − x5)A7 + (x7 − x6)A5

0.5(x5 − x6)(y7 − y6)
=

−A7 +A5

0.5(y7 − y6)
, (40.18)

α536
3 =

(x5 − x6)A3 + (x6 − x3)A5

0.5(x5 − x6)(y3 − y6)
=

A3 +A5

0.5(y3 − y6)
, (40.19)

theBx component is discontinuous on the element boundary. However, the normal componentBy is
continious because of

α567
2 =

(y5 − y6)A7 + (y6 − y7)A5 + (y7 − y5)A6

0.5(x5 − x6)(y7 − y6)
(40.20)

α536
2 =

(y6 − y5)A3 + (y5 − y3)A6 + (y3 − y6)A5

0.5(x5 − x6)(y5 − y3)
(40.21)

Because of symmetryy5 = x6

α567
2 =

(y6 − y7)A5 + (y5 − y7)A6

0.5(x5 − x6)(y7 − y6)
=

A5 +A6

0.5(x5 − x6)
(40.22)

α536
2 =

(y5 − y3)A6 + (y6 − y3)A5

0.5(x5 − x6)(y5 − y3)
=

A6 +A5

0.5(x5 − x6)
(40.23)
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Chapter 41

The Xroxie User’s Interface

This ROXIE user’s documentation gives a comprehensive overview on all input options and their use.
Each functionality of ROXIE is described separately. In Chapters 42- 50 the options are listed and briefly
explained. Remarks are added on the use of the options. The functionalities covered in this documenta-
tion are: General functionalities including optimization and plotting; coil modeling; analytical field cal-
culation; numerical field calculation; calculation of time transient effects; interfaces to other programs.
In Chapters 55- 59 the options are illustrated at a number of worked examples. Further explanations are
given, traps and pitfalls are highlighted. Finally, the documentation comprises a technical documentation
of interface files of ROXIE with the BEM-FEM code for numerical field calculation. The documentation
finally includes an index of all available ROXIE input options and a reference to the chapters in which
they are explained.

Our thanks go to M. Aleksa, M. Lewin, and S. Ramberger who have contributed material to this
documentation.

41.1 The Graphical User Interface

41.1.1 Overview of the Tcl/Tk widgets

The structure of the Chapters 42- 50 is imposed by the input widgets of the Tcl/Tk-based graphical user
interface Xroxie. Xroxie is an X-windows program designed to supplement users of the ROXIE program
with a graphical user interface (GUI). The program is intended to work with ROXIE version 5.2 and
higher and aims to fulfill the following criteria: 1) To present the users of ROXIE with a single consistent
interface through the complete process of creating new coil calculations. This includes creating the
ROXIE input file, editing the material file, running the roxie program and viewing the results of the
ROXIE calculation. 2) To assist in the editing of input files by providing the user with descriptions, hints
and/or help boxes for the data required in constructing the input file.

When file is created or loaded into Xroxie, the data is presented as a form in the main Xroxie
window. The layout of this form in general follows the policy of the ROXIE input data file of splitting
the data into discrete sections, however the following points should be noted.

• Any sections of the form that are irrelevant for the options specified are not displayed on the form
and cannot be edited by the user. For instance, the plot 3-D information is unavailable until both
the LEND and LPLOT options are switched on. However, any data stored in such sections is
retained until a new form is edited or Xroxie is closed down, and can be reinstated by selecting the
appropriate options.

• The ROXIE data file contains a considerable amount of information, too much to display all at
once in a windowing environment. As a solution to this problem a method has been devised where
each section of the form can either be viewed or ’rolled up’ using the push button at the left hand
side of the section label. This enables space to be saved by temporarily hiding sections not being
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edited. In addition, the whole form can be scrolled up or down using the scroll bar at the side of
the window.

The philosophy behind the form is that anywhere a blank entries exists on the form, Xroxie, and ROXIE,
expect data to be supplied. However some tables allow blank entries (such as the plot 2-D ’field’). Xroxie
will check for missing information in a form before it is saved or ROXIE is run. However, due to the
complex interaction of the data in the input file, Xroxie cannot check the validity of this data.

In total the form defines 19 sections. These are explained in greater detail below.

Fig. 41.1: View of the Xroxie Graphical User Interface. All widgets are closed.

Comment:

Give a description (of up to 62 characters) for your model in the "Comment:"-line.

The "Comment:"-line will be plotted on top of every postscript plot.

Main Options

This section holds the options which affect the overall operation of ROXIE. Many of them affect what
data is required from the rest of the form. See the ROXIE documentation for specific information on
each option.

FEM/BEMFEM Options

This widget has options for mesh generation and non-linear magnetic field calculation with Finite Ele-
ments or the coupling of Boundary Elements and Finite Elements.



Note that the "Bosch-Edyson"- and the "Edyson + .ini file"-options are only currently for stand-alone
versions at CERN.

Global Information

The options part of the "Global Information"-widget yields functionalities that are generally more closely
related to 2-D analytical field calculation. It also has general data about the type of magnet to be simu-
lated, optimization algorithms, mirroring technique, etc.

3-D Global Information

This section holds the information and options required to configure ROXIE for 3-D coil end calculations.
Certain options, if turned on, require additional information to be specified elsewhere on the form. This
section is only available if the option ’LEND’ is turned on.

Layers

This table is used to define layers of coil blocks for more convenient cross-section modeling. Only
available if the "Layer Definition"-option in the "Main Options" is ’on’.

Block Data 2-D

Here the input data for the coil cross-section has to be specified. 1. The ’Imag’ and ’Turn’ fields are
only required and available if the option LSYMM is turned off. 2. The ’Ne’ field is only required and
available if the option LEND is turned on. 3. The table menu holds an option to merge extra Block 2-D
data from a file. This data must be in the same format as the BLOCK section of a normal output file
except the BLOCK header and comment lines should be removed. The data must be compatible with the
current settings of the LSYMM and LEND options in Xroxie (see points 1. and 2. above).



Block Data 3-D

As "Block Data 2-D" but for the input data of the 3-D coil ends. Only available if the "3-D Coil
Geometry"-option in the "Main Options" is ’on’.

Design Variables

This table stores the lower and upper bounds of the design variables of an optimization run. The ’String’
field in the table can take a single pre-defined symbol. This may be selected from a menu by right-
clicking in the appropriate cell. The table menu holds an option to read in scan data produced by a
previous run of the ROXIE program. This data is used to define starting values in the ’Xs’ column.
The table is also used for static geometrical transformations. Some methods and functionalities use the
"Design Variables"-table to read in model parameters or other data. This might look strange at first
glance, but is a means to guarantee downward compatibility of input files.

The table columns are called:

Variable Description

No Row number.

Xl Lower bound.

Xu Upper bound.

Xs Start value.

String Design parameter/transformation parameter.

Layer/Block/Cond./Strand Number of blocks/layers/conductors/strands.

During an optimization run, the design parameter is varied betweenXl andXu, starting withXs. If
we want to abuse design values for transformations, i.e., if we want that they are always applied but not
varied during optimization, we setXl = Xu = Xs. It is important to note that the design variables are
read at every ROXIE run and theXs values are always applied - even if no optimization has been chosen.

• Transformations, i.e.,Xl = Xu = Xs need to be grouped at the end of the table.

• In the "Layer/Block/Cond./Strand"-field we enter space-seperated integer numbers. The following
format is allowed:
1 4 7-9 10

The "n-m"-entry is stored as "n (n+1) (n+2) ... (m-1) m". Note that per lineno more than 20
layers, blocks, conductors or strands are stored!

Objectives

Here we define an objective function for an optimization. The table is also used to observe design
variables during an optimization run or to store plot data during transient calculations. The ’String’ and
’Oper’ fields in the table can take a single pre-defined symbol. This may be selected from a menu by
right-clicking in the appropriate cell.



With the PLOT-operand in the "Objectives"-table each objective can be plotted into a graph during opti-
mization runs and during time-transient and transfer-function calculations.

The columns of the "Objectives"-table are described below.

Variable Description

Ne Row number.

String Right-click in a field gives a list of objectives for optimization
or plotting.

Nor Specifies the objective, e.g., gives the order of the harmonic or
the number of a strand/conductor.

Oper Operand in the objective function or PLOT-operand.

Constr./Plot If the operand in the objective function constitutes a constraint,
then the value of the constraint is put here. With the PLOT-
operand the field gives the page-number onto which the plot is
to be drawn.

Weight The weighting factor for the objective. Also used with the
PLOT-operand.

Block spec.

This data line contains the numbers of those blocks in which field calculations on the strand-level are to
be performed.

Plotting Information 2-D

The postscript plots produced during a ROXIE run are defined here (2-axis graphs are defined in the
"Objectives"-widget). Only available if the "Postscript Plots"-option in the "Main Options" is ’on’.

Plotting Information 3-D

As "Plotting Information 2-D" for 3-D plots. Only available if the "Postscript Plots"- and "3-D Coil
Geometry"-options in the "Main Options" are ’on’.

Interface Options

The user can choose between different output files that act as interfaces to other programs. Also some
post-processing options are hidden in this widget.



Line Field 3-D

For the computation of the field inx-, y-, andz-components along a line. Only available if the "Field
along a Line (2-D,3-D)"-option is switched ’on’ in the "Interface Options".

Integral Field 3-D

Computes the field harmonics in 3-D in a number of positions in z. Only available if the "3-D Field
Harmonics"-option is switched ’on’ in the "Global Information 3-D"-widget.

Field Vector Matrix

Defines the matrix for a field map. Only available if the "Field-Vector Matrix (Map)"-option is switched
’on’ in the "Interface Options"

Additional Bricks

Additional brick elements can be defined if the "Additional Bricks"-option in the "Global Information
3-D" is ’on’.

Additional Leads

Additional leads can be defined if the "Additional Leads"-option in the "Global Information 3-D" is ’on’.



Transfer Function

Line of current factors each of which represents one step in a transfer function. Only available if the
"Transfer Function"-option in the "Main Options" is ’on’.

Time-Transient Effects

This widget holds information on the calculation of time-transient effects in superconductive material
(persistent currents, ...). Only available if the "Time Transients"-option in the "Main Options" is ’on’.

41.1.2 The preview window

It is possible to preview the geometry of the coil being editted in the form by selecting the menu option
’Run | Open preview window’. If there are no errors in the definition of the input file then a new window
will be opened displaying a cross-sectional image of the coil as in the following screen grab. This display
is controlled by the following buttons to be found at the bottom of the window:

• XY will display the coil’s 2-D cross-sectional view in the X-Y plane.
• YZ will display the coil end’s cross-sectional view in the Y-Z plane. This button will be unavailable

if no coil end is defined (LEND is switched off).
• SZ will display the coil end’s developed view in the S-Z plane. This button will be unavailable if

no coil end is defined (LEND is switched off). The cable type will automatically revery to being
’bare’ when this view is chosen.

• 1,2... will cycle between showing no numbering, showing block numbering, and showing cable
numbering on the image.

• Cablewill toggle between displaying the cable bare or insulated.
• Imag. will cycle between showing all blocks, non-imaged blocks, and imaghed blocks in the YZ

view. For use when two sets of image blocks are being connected at the coil ends and not available
if no imaged blocks are specified.

• Layer will cycle through the different layers of the coil on the SZ view. For each layer the outer
(34) edges will be shown in the top half of the image and the lower (12) edges will be shown in
the bottom half.

• Edgewill toggle between showing the inner (12) and outer (34) edges of the coil in the SZ view.
Only of use if one layer is defined and is used when two sets of image blocks are being connected
at the coil ends.

• Update will update the images according to the current state of the Xroxie form. This button will
need to be used if the Xroxie form is modified or a new form is loaded.

• Closewill close the preview window.



In the XY and YZ sectional views geometric information for a conductor can be obtained by
moving the mouse cursor over it. The conductor will be highlighted and various geometric information
will be displayed in the box to the left of the image, depending on whether the conductor is displayed
as a bare or insulated cable. In addition, by dragging a rectangle over the image using the mouse it is
possible to zoom in on a particular area of the coil. To re-instate the full view click on theXY ,YZ or SZ
as appropriate. It should be noted that the ROXIE program is called to perform the calculations required
to create these images and this has several implications:

• The paths to the ROXIE executable and data file should be correctly set under the menu option
’Run | Set paths’.

• All relevant data required in the form to create a correct input data file must be present, even if
not required to produce the geometry calculations. For instance, there should be no blank cells on
the form. If ROXIE detects any errors with the form when trying to run then these errors will be
reported directly to the user via a dialog window.

• If a non-zero contraction factor is specified in the "Global Information" widget, the numerical x-
and y-values in the preview window will be adjusted by the factor.

Fig. 41.2: The coil-geometry preview window.

41.2 Menu descriptions

41.2.1 File menu

• Clear form clears all data from the form, resets all options except those which are intended to be
true by default, and re-titles the form as ’untitled.data’. If the existing form has been changed and
not saved then the user will given the option to save the form before continuing.

• Open form ... displays a dialog box requesting a new data file from the user to be loaded into
Xroxie. If the existing form has been changed and not saved then the user will given the option
to save the form before continuing. Upon loading the new form Xroxie will perform a series of
checks for invalid data. If a discrepancy is found then a dialog box will pop up describing the
problem(s). The user can then choose to ignore the problem and if necessary correct the file in



Xroxie, or start up a text editor and fix the file ’by hand’. This will be necessary when data is
missing from the file.

• Save formsaves the current form in place of its existing file under the same name. If data is found
to be invalid or missing from the form a warning is given and the save aborted. Any old version of
the file is saved under the existing filename followed by a tilde(˜) character.

• Save form as...displays a dialog box requesting a new filename under which to save the current
form, retitles the form and saves it under the new name. If a file exists with the given name a
warning is given before it is overwritten. If data is found to be invalid or missing from the form a
warning is given and the save aborted.

• Save Templates file...saves an option sub-set to a file on disk to allow rapid setting of large sets
of options on ROXIE input files.

• Load Templates file... overlays a new sub-set of options over the existing option set up. The
template must first have been created using theSave Templates file... menu option.

• Print form prints the form out in the format of the saved data file. See menu item‘Run|Set Paths...‘
to choose which printer should be used.

• Exit closes down Xroxie. If the existing form has been changed and not saved then the user will
given the option to save the form before continuing.

41.2.2 Display menu

• View form as text will withdraw the Xroxie window and display the form within the text editor
specified under’Run|Set paths...’. This facility has been provided so that existing users of ROXIE,
who are used to the textual input format, may view the form using the native ROXIE format.
NOTE: It has not been intended for the file to be editted using the viewer. As Xroxie and the
viewer work on separate copies of the file, any editting done in the viewer will have to be saved
and then re-loaded into Xroxie for the changes to be seen.

• Maximize all sectionswill expand all the roll-up sections of the form that are currently minimized,
thus displaying the complete details of the form.

• Minimize all sectionswill roll up all the sections of the form that are currently maximized, thus
displaying only the headers for each section.

• Autofit all tables will resize ALL the tables in the form, whether displayed or not, to the exact
amount of rows required for the data in each table.

41.2.3 Run menu

• Run ROXIE . Runs the ROXIE program.
• Open cable data window. Editting the ’roxie.madata’ file.
• Open preview window. Previewing the coil geometry.
• View calculations. Views the calculations file from the last ROXIE run associated with the input

file being editted.
• View postscripts. Views the postscripts file from the last ROXIE run associated with the input file

being editted.
• Print calculations. Prints the calculations file from the last ROXIE run associated with the input

file being editted.
• Print postscripts. Prints the postscripts file from the last ROXIE run associated with the input file

being editted.
• Set paths... is used to set paths to various programs and files that Xroxie needs to function cor-

rectly. When run for the first time Xroxie will create a file in the users home directory called
.xroxiepath. This file retains the paths set by the user. To re-inisiate the default settings for Xroxie
this file can be deleted.



41.3 How to use the tables

Various sections of the Xroxie form use tables, similar to the one pictured above, for the entry of arrays
of data. The following points should be observed when using these tables:

• The tables have no maximum length and grow as entries are added. As different installations of
ROXIE set varying limits on the size of arrays that can be entered, Xroxie does not check to see if
these limits have been exceeded.

• When entering data into the table do not leave blank lines between lines of data. Xroxie looks
for the last row containing entries to decide how many rows are specified when creating a ROXIE
input file, and will interpret intermediate blank lines as missing data.

41.3.1 Navigating and editting tables

Below is a list of the most important editing facilities offered by the Xroxie tables. Where the mouse
action refers to the ’Menu’, the button at the top right of the relevant table should be clicked. This will
reveal a menu from which the appropriate choice can be made.

Input method Used in tables

To perform action Keyboard Mouse Input form Cable

Move to previous cell <Shift-Enter> X X

Move to next cell <Enter> X X

Move to cell above <Up Arrow> X X

Move to cell below <Down Arrow> X X

Insert blank line into table <Ctrl-O> X X

Cut row into table’s clipboard <Ctrl-W> X X

Copy row into table’s clipboard <Ctrl-C> X X

Insert table’s clipboard before row <Ctrl-Y> X X

Duplicate multiple lines* <Ctrl-D> Menu X

Delete multiple lines Menu X

Show more rows on table** <Ctrl-Down> Menu X

Show fewer rows on table** <Ctrl-Up> Menu X

Find and replace <Ctrl-F> Menu X X

Renumber first column <Ctrl-R> Menu X

Sort*** <Ctrl-S> Menu X X

Help on column <Shift-F1> Click in header X X

Move to beginning of entry <Ctrl-Home> X X

Move to end of entry <Ctrl-End> X X

Delete entry <Ctrl-/>,<Delete> X X

Show geometry columns**** <Ctrl-F1> Menu X

Show property columns**** <Ctrl-F2> Menu X

Show description**** <Ctrl-F3> Menu X

Notes:

* When using the ’Duplicate multiple lines’ option the line numbers to be entered should be the
logical row numbers of the table, these are NOT necessarily the same as the numbers listed in
column one of the table. Choosing the renumber option will ensure that the numbering in this
column and the table row numbering are the same.

** To show more or less rows for the cable table the window containing the table should be resized.
*** Sorting for tables in the input form is automatically performed on the first column of the table.

However, for the cable form sorting may be done on any field. If the <Ctrl-S> keyboard accelerator
is used sorting will be done on the column that holds the input focus.



**** When paging the table for the conductor information using Ctrl-F1, F2 & F3 the keyboard focus
must be in the ’Material’ column.

41.4 Running the ROXIE program

Once the form has been completed, the ROXIE program can be run without leaving the Xroxie enviro-
ment. To do this select the menu option’Run | Run ROXIE’. Providing all the settings in the ’Run|Set
Paths...’ menu option are correct and the ROXIE support files are available the ROXIE program should
run over the file seamlessly in a new Xroxie window. A display of execution time is shown at the bottom
of the window.

To abort a run prematurely press theAbort button. This will cause an interuption in the ROXIE
RUN. (/em Note: This should take effect immediatly but at present there is a bug which causes Xroxie
to wait until the next output from ROXIE before aborting).

Once ROXIE has finished theAbort button will change toCLose and there will be a message at
the bottom of the screen. If this reports an error then there was a problem:

• A) With the set up of Xroxie or the settings in the ’Run|Set paths...’ m,enu option.
• B) A problem with the input file, in which case the ROXIE output will show a dragon symbol.
• C) An abnormal abortion of the ROXIE command or the runroxie script.



Chapter 42

Mathematical Optimization

42.1 Optimization

The ROXIE program was developed from the onset with mathematical optimization techniques in mind.
This is reflected in the structure of the input files which allows, after the definition of the nominal ge-
ometry, to address any input data as a design variable of the optimization. The data structure also allows
to define basically all computed data (and the design variables) as objectives for the optimization. The
program structure is also reflected in the graphical user interface with its tables for design variables and
objective function definition.

After many years of development many elements have found their way into the "Design Vari-
ables" which are mere transformations or input parameters for certain algorithms. In the same way
post-processing options have found their way into to the "Objectives"-table. The user will quickly get
used to the concept. It has, after all, allowed ROXIE to remain almost completely downward compatible
to its previous versions as additional design variable or objectives do not alter the format of the.data-file.

The theoretical foundations of the optimization process is presented in Chapter 31.

Main options

Option Description

Optimization Indicate that ROXIE should perform an optimization run.

Design variables
The "Design Variables"-table has the following columns.

Variable Description

No Row number.

Xl Lower bound.

Xu Upper bound.

Xs Start value.

String Design parameter/transformation parameter.

Layer/Block/Cond./Strand Number of blocks/layers/conductors/strands.

During an optimization run, the design parameter is varied betweenXl (lower) andXu (upper), starting
with Xs (start). To keep downward compatibility of the code, design variables can be “abused” for
transformations or just as additional input parameters for subroutines and algorithms. In this case we set
Xl = Xu = Xs. These data have to be grouped to the end of the design variable block. Design variables
are parsed at every ROXIE run and theXs values are always applied - even if no optimization has been
chosen.

• Transformations, i.e.,Xl = Xu = Xs need to be grouped at the end of the table.

453



• In the "Layer/Block/Cond./Strand"-field we enter space-separated integer numbers. The following
format is allowed:
1 4 7-9 10

The "n-m"-entry is stored as "n (n+1) (n+2) ... (m-1) m". Note that per lineno more than 20
layers, blocks, conductors or strands are stored.

Optimization:
Three options in this menu consider the neural-networks approximator for the EXTREM-optimization
algorithm, see the "Extrem with ANN Approximator"-option above. The neural network is implemented
in ROXIE but fragile.

Variable Description

STEPS Number of steps for parametric study, compare the "Parametric
Study"-option above.

NNEUR Number of neurons for Radial Basis Function (default: 30) for
Neural Network.

SSTAT Threshold of S statistics (default: 1.3) for Neural Network.

NMLE Threshold of NMLE (default: 0.0005) for Neural Network.

Global information

Optimization algorithm

Option Description

<none> Do not optimize.

Extrem Deterministic optimization algorithm. Compare Section 32.2.2.

Quasi-Newton DFP Quasi-Newton- or Davidon-Fletcher-Powell algorithm, com-
pare Section 32.3.5.

Parametric Study Variation of design variables within bounds without optimiza-
tion. The number of steps is given in the STEPS-variable from
the "Optimization"-menu of the "Design Variables". The results
of a sequence of ROXIE runs is written to the.output-file.

Sensitivity Analysis Determine sensitivity of the objectives with respect to toler-
ances in the design variables. Evaluate the Taguchi Function,
compare Section 34.8

Levenberg-Marquard Compromise between Newton’s Method and the Method of
Steepest Descent, compare Section 32.3.3

Lagrange Multiplier Estimation Determination of the Lagrange-Multipliers in the optimality
condition given by the Kuhn-Tucker equations, compare Sec-
tion 31.3 and Section 34.7.

Mutual Inductances in Non-
Linear Circuits

Determination of the non-linear (differential) mutual induc-
tances between layers. Compare Section 24.1.3, especially
Eq. (24.54).

Blocks Individually Powered All blocks are powered successively, while the other blocks
have zero-current. Method to determine the impact of one block
on the field quality. Today replaced by the "Bn"-options in the
"Bn Strand Contribution ofI"-menu of the "Plotting Informa-
tion 2-D", see Section 46.1.

Random Multipole Error Determine the mean-value and the standard-deviation of the
multipole-components due to random changes of design param-
eters, compare Section 34.8.3

Genetic Algorithm Use ROXIE’s genetic algorithm for optimization, compare
Chapter 33 for theory and Section 42.2 for information on the
implementation.

Extrem with ANN Approximator Use neural network to accelerate the Extrem algorithm. This
option is implemented but fragile.



• The "Genetic Algorithm"-option does not allow to produce post-scripts during an optimization run.
To take a look at the various families of designs, use the "Scan Through.scan-File"-option from the
"Interface Options".

Objectives
The "Objectives"-table has the following columns.

Variable Description

Ne Row number.

String Right-click in a field of this column gives a list of objectives for
optimization or plotting.

Nor Specifies the objective, e.g., gives the order of the harmonic or
the number of a strand/conductor.

Oper Operand in the objective function or PLOT-operand. Right-
click to get a list of operands.

Constr./Plot If the operand in the objective function constitutes a constraint,
then the value of the constraint is put here. With the PLOT-
operand the field gives the page-number onto which the plot is
to be drawn.

Weight The weighting factor for the objective. Also used with the
PLOT-operand.

• In order toplot graphs with the PLOT-operand, the "Postscript Plots"-option must be switched ’on’.

• Whether or not the "Postscript Plots"-option is ’on’, any optimization run produces a.post-file that
containstwo plots: The first plot shows the convergence behavior of the global objective function.
The second plot gives the individual weighted objectives and their convergence.

The "Operand"-column yields a choice of operands.

Operand Description

MIN Minimize the objectivel, min(l).

MAX Maximize the objectivel, max(l).

MIN2 Minimize the square of the objectivel, min
(
l2

)
.

MAX2 Maximize the square of the objectivel, max
(
l2

)
.

MINI2 Minimize the square of the inverse of the objectivel, min
(

1
l2

)
.

MAXI2 Maximize the square of the inverse of the objectivel, max
(

1
l2

)
.

MINABS Minimize the modulus of the objectivel, min (|l|).
MAXABS Maximize the modulus of the objectivel, max (|l|).
< ’Lower-than’ constraint,l < c, with the upper boundc given in

the "Constraint/Plot"-column.

> ’Greater-than’ constraint,l > c, with the lower boundc given
in the "Constraint/Plot"-column.

= 1 ’Equals’ constraint,l !
=

c, with the constraintc given in the
"Constraint/Plot"-column. A linear (modulus) penalty is ap-
plied.

= 2 ’Equals’ constraint,l !
=

c, with the constraintc given in the
"Constraint/Plot"-column. A quadratic penalty is applied.

PLOT Plot the objective during the optimization. The page on which to
plot is given in the "Constraint/Plot"-column. Multiple plotting
onto one graph is possible. The weights of the "Weight"-column
are applied for the plotting.

• As a general rule the quadratic operatorsMIN2, MAX2, =2 yield faster convergence if the start-set of
design variables is far from the optimum solution. The ’modulus’-operatorsMINABS, MAXABS,
=1 give better results for fine-tuning, when the start value is already a rather good design.



Global values:

Variable Description

NORM2X L2-norm of the design variable vector.

NORM1X L1-norm of the design variable vector.

Interface options

Option Description

Scan Through .scan-File The "Genetic Algorithm"-option in the "Optimization
Algorithm"-variable of the "Global Information" produces
a .scan-file with all design-information of the different fam-
ilies of results. This options calls each design so it can be
post-processed.

Cockpit-Software Output Create a log-file to be read by the Tcl/Tk cockpit software for
optimization, see Section 42.1.

The optimization cockpit

The cockpit software for optimization with ROXIE is started from the "Run"-menu. It can only be started
with the "Optimization"-option in the "Main Options" and the "Cockpit Software output"-option in the
"Interface Options" switched ’on’. An optimization run can then be started from the cockpit window
and the design variables as well as the weighted objectives can be viewed online during optimization,
seeFig. 42.1. The main graph shows the convergence of the objective function. Moving the mouse cursor
above the graph shows the individual function values obtained during optimization.

Fig. 42.1: The cockpit window of ROXIE during an optimization run. Upper left: Design variables between lower and upper

bounds. Upper right: Objectives between the absolute maximum and minimum values obtained during the optimization run.

Lower right: Convergence of the objective function.

To use the cockpit window the following Tcl/Tk environment is recommended:



Utility Recommended Version

Tcl 8.4.9

Tk 8.4.9

BLT 2.4

BWidget 1.7

All required software can be found on the internet, e.g., onhttp://www.sourceforge.net. Be aware that
the BLT-toolkit does not work with the more recent version of Tcl/Tk 8.4.11!

42.2 Optimization with genetic algorithms

The genetic optimization routines in ROXIE are set up to handle bit-strings with about 60 bits. In order to
use the algorithm, the optimization routines have to be enabled (LALGO=.true.) and the graphics output
has to be disabled. Easy adaptation of pre-defined optimization parameters is foreseen. The genetic
algorithm requires the number of bits for the discretization of each design variable. This parameter has
to be entered in the column Xs of the design variable block instead of a start value, which is not needed
in global optimization.

Genetic algorithms also allow for integer design variables. The only integer variables accessible
to the ROXIE user are NUMCBL and those defined by the user in the .iron files. NUMCBL defines
the number of conductors in each coil block. It is recommended to use discretization which correspond
to the range of the integer variable. For a discretization by 2 bits for instance,22 different numbers of
conductors can be generated. Choosing a bit string of length three, a coil block of 3, 4, 5, or 6 conductors
can be chosen in the optimization. Therefore a range of 3 (Xa) to 6 (Xe) should be used in the setup.
If the number of possible conductors is not dividable by the number of discretizations, the resulting
non-integers are truncated in the optimization process.

Optimizing iron distributions

Currently the only design variable specified in the .iron file which can be addressed in the optimization
is the material property. Instead of the BH-specifier (BH_air, and BHiron1 etc.) an integer variable may
be used. The value 0 is equivalent to BH_air and all natural numbers are interpreted as the corresponding
BHiron material. This definition allows for switching material regions from iron to air and for changes
in the filling factor. For the latter case a list of material definitions has to be defined with appropriate
filling factors in the roxie.bhdata file.

Definition of the objective function

In order to achieve good results the sensitivity of all design variables should be similar. The optimiza-
tion interval should be set such that impossible or infeasible structures are avoided. Often, infeasible
structures can be avoided by geometrical considerations.

Optimization parameters

The performance of the genetic algorithm can be influenced by an additional file named roxie.gadata.
This file has to be created in the same directory as the .data file before starting the run. An example of a
roxie.gadata file is given below:

60 ! Size of population

0.05 ! Rate of generation in percent

0.15 ! Rate of mutation in percent per iteration

6000 ! Number of iterations

Each number has to appear on a separate line. The comments on each line are optional. If the roxie.gadata
file does not exist, default parameters are generated:



popsize = BIT_SIZE(child)

genrate = 0.05

mutrate = 0.0025*BIT_SIZE(child)

iterate = 100*BIT_SIZE(child)

Logging intermediate results

In order to avoid that results are lost in long genetic algorithm runs, a file roxie.gasafe is updated about
every 2000 evaluations. The file has to be created before the first run, e.g., by typing ’touch roxie.gasafe’.
In case of a stop, ROXIE can be re-started with the backup file. The optimization then continues from the
last saved state. Each complete re-start of the genetic algorithm usually creates a new parameter set and
therefore a new start population. The results of the optimization may therefore differ, since they depend
on the original population. The niches found in each run, however, should be similar. A second local
optimization stage may help in discriminating between distinct niches.

Post-processing

Evaluation of the optimization output can be done by reading the datasets from the scan-file. The scan-
file contains the best 20 results of about every 2000th evaluation.



Chapter 43

Graphical Output

ROXIE provides graphical output based on the CERN program library HIGZ (High level Interface to
Graphics and Zebra) and thus postscript plots are produced without the use of external post-processing
packages. A shortcoming of this technique is, however, that all output graphics has to be defined before
the ROXIE run is launched.

43.1 General plot options

The option "Postscript Plot" in the "Main options" as well as options in the headers of the "Plotting Infor-
mation 2-D/3-D"-widgets apply to a variety of different field plots. These general options are explained
here, whereas the different field plots are documented in the respective chapters to follow.

Main options

Option Description

Postscript Plots Use the "Plotting Information 2-D/3-D"-widgets to generate
field plots.

Note that graphs that are defined in the "Objectives"-widget are also printed to the postscript files, pro-
vided the "Postscript Plots"-option is switched ’on’.

Plotting information 2-D

Option Description

Coordinate Axes Plot coordinate axes.

Legend Plot the Legend.

Image Iron at X-Axis Image mesh-based plots at thex-Axis.

Image Iron at Y-Axis Image mesh-based plots at they-Axis.

Area Boundary Plot Plot the boundaries of areas in the.iron-file with bold line.

Poly-Marker Plot markers at every data point in a graph-plot that is defined
in the "Objectives"-table.

More Plot Options Extend the plotting table by more options.

The "Plot Information 2-D"-table has the following columns (including the additional options with "More
Plot Options").
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Variables Description

No Number of postscript plot.

X-Axis Plot range in +x-direction.

Color ’Y’: colour plot, ’N’: Black and White.

4quad ’Y’: plot all 4 quadrants, ’N’: plot first quadrant only.

Fmin Plot range of field values: min-value in the legend.

Fmax Plot range of field values: max-value in the legend.

X-Shift Shift the plot by this value inx-direction.

Y-Shift Shift the plot by this value iny-direction.

Vmax Plot only vectors up to this value (modulus). This option is used
to cut off unphysical singularities in field matrix calculations.

V-scale Scale the vectors in a field matrix plot.

Coll Not yet documented/available.

Time Not yet documented/available.

Field Select a field to plot.

The fields and forces which can be displayed are documented in the respective chapters of this documen-
tation.

Plotting information 3-D
As the design optimization processes of accelerator magnets is well established, it is convenient to de-
fine the plotting information before a ROXIE run, which thus avoids the launching of an external post-
processor.

Option Description

Plot Imaged at z=0 Plane Image iron and coil atz=0.

Display of Cut-Planes A 3-D plot is built of plane rectangles or triangles. This option
highlights the edges of those elements with a thin, white line.

3-D Min Field in Conductor see Section 46.3.

3-D Max Field in Conductor see Section 46.3.

No Shift of Plot Center If we use "3-D Transforms" in the "Design Variables"-table,
parts of the plot in−z-direction might be out of the plot-range.
Click this option and adjust the "Z-axis"-entry in the "Plot In-
formation 3-D"-table to overcome the problem.

Plot of Coordinate System Plot 3-D coordinate frame.

The "Plot Information 3-D"-table has the following columns.

Variables Description

No Number of postscript plot.

Z-axis Size of plot in z-direction in mm.

Colour ’Y’: colour plot, ’N’: Black and White.

360deg ’Y’: plot all 4 quadrants, ’N’: plot first quadrant only. (Quad-
rants are seen in thexy-plane when looking in+z-direction.

View Choose between different viewpoints.

Layer Choose between 0: all layers, 1: inner layer and 2: outer layer.

Field Select a field to plot.

The fields that can be plotted are documented in the respective chapters of this documentation.

• Note that ROXIE assigns the attribute of inner or outer layer by an input in the "Global Information
3-D"-widget called "Number of Blocks in Outer Layer" with integer inputN . The firstN blocks
are assigned to the outer layer. This option can only be used with the "Symmetric Coil"-option in the
"Main Options". The "Layer Definition"-option generally does not work due to the numbering of all
blocks which is incompatible with this division in inner and outer layer.



Chapter 44

Superconducting Wire and Cable
Properties

In ROXIE there are two files for supderconducting wire and cable data. The older one is theroxie.madata-
file. With the introduction of time-transient effects in superconductors, the cable-specific information
provided in theroxie.madata-file was no longer sufficient. Theroxie.cadata-file was thus introduced
with a modular feature-based structure.

44.1 MADATA file

The MAterial DATA file is a database for the definition of the geometrical and superconducting properties
of wires and cables. Theroxie.madata-file can be edited from the Xroxie window by choosing "Open
material data window (roxie.madata)" from the "Run"-menu.

The data is organized in five lines. Line one yields a "comment" in single inverted commas. Line
two gives the material- (conductor-) name. Line three has geometrical data of the conductor, line four
gives data of the superconducting strands in the conductor and line five yields information on the linear
approximation of the critical surface around a reference working-point. A data block has the following
layout:

'COMMENT'

'MATERIAL'

HEIGHT , INNER WIDTH , OUTER WIDTH , RADIAL INS. , AZIMUTH INS.

NO. STRANDS , DIA OF STRAND , CU/SC RATIO , CABLING ANGLE

TEMP , BCREF , JC/BCREF , DJC/DB

The data entries in lines 3-5 are not actually comma- but space-delimitted. There is a TCL/TK graphical
user interface to edit theroxie.madata-file. For legacy-reasons the GUI, however, only displays data up
to the DIA OF STRAND-entry. For SC-related data the user needs to edit theroxie.madata-file in an
editor.

44.2 CADATA file

The CAble-DATA file stores information on different cable types, mostly but not exclusively, Rutherford-
type superconducting cables. Theroxie.cadata-file has been created as a replacement for theroxie.madata-
file. The new file format holds more information than theroxie.madata-file in a structured way by the
definition of “features”. As a consequence, calculations that require additional input data, e.g., time-
transient effects in SC cables, can only be performed if the conductor has an entry in theroxie.cadata-file.
Double-entries inroxie.madata- androxie.cadata-files are handled by giving priority to theroxie.cadata-
entry. Theroxie.cadata-file can be edited in a GUI that is opened by selecting "Open cable data window
(roxie.cadata)" from the "Run" menu in Xroxie.
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The roxie.cadata-file is organized in blocks. The idea behind theroxie.cadata-file is to create a
modular database in which, e.g., several conductors can use the same insulation data or critical surface
fit. The final definition of a conductor consists of an identification of insulation-type, cable-type, etc. by
their (user-defined) names rather than by specifying all input-data for each conductor.

Theroxie.cadata-file can be edited by selecting the "Open cable data window (roxie.cadata)"-item
from the "Run"-menu.

Each block (INSUL, REMFIT, FILAMENT, STRAND, TRANSIENT, CABLE, CONDUCTOR)
in theroxie.cadata-file starts with a new line

BLOCK_NAME X

whereX is the a number of lines to follow. Then follows the data table, ended by a comment line where
the variable (feature) names are defined.

INSUL block
The INSUL-block contains data on the conductor insulation. Each row contains the following data:

Variable Type Description

No Integer Row number.

Name String Insulation name.

Radial Double Radial insulation.

Azimut Double Azimuthal insulation.

Comment String Comment in single inverted commas.

REMFIT block
The REMFIT-block contains data on the critical surface fit for the superconductor. Different fit function
can be found in Section 27.3.3. REM stands for ’remanent magnetization’. Each row of the table contains
the following data:

Variable Type Description

No Integer Row number.

Name String FIT name.

Type Integer Type of FIT.

DJSC Double FIT parameter 1.

T_C0 Double FIT parameter 2.

Alpha Double FIT parameter 3.

Beta Double FIT parameter 4.

Gamma Double FIT parameter 5.

C0 Double FIT parameter 6.

BC20 Double FIT parameter 7.

Comment String Comment in single inverted commas.

FILAMENT block
The FILAMENT-block contains data on SC filaments. Each row yields the following data:



Variable Type Description

No Integer Row number.

Name String Filament name.

fildiao Double Outer diameter of the filament.

fildiai Double Inner diameter of the filament (e.g., fil. with copper core).

fit || String Name of the critical surface fit for orthogonal direction 1.

fit ⊥ String Name of the critical surface fit for orthogonal direction 2.

Comment String Comment in single inverted commas.

• Two different fits are foreseen foranisotropic persistent currentcalculations. This is not yet imple-
mented. For the time being both values should be the same. The fit names have to be names specified
in the REMFIT block.

STRAND block
The STRAND-block contains data on the SC strands. Each row yields the following data:

Variable Type Description

No Integer Row number.

Name String Strand name.

diam. Double Strand diameter.

cu/sc Double Copper to superconductor ratio.

RRR Double Triple-R value.

Tref Double Reference temperature.

Bref Double ReferenceB-field.

Jc(BrTr) Double Critical current density [MA/m2].

dJc/dB Double Slope of critical surface with respect toB.

Comment String Comment in single inverted commas.

• The last four entries define alinear approximation of the critical surface around a working point.
This data is used for the calculation of the position on the load line which is automatically performed
when the "Peak Field in Coil"-option in the "Global Information"-widget is switched ’on’. Histori-
cally, this is an older piece of code. For the new version of quench-margin calculations the "Quench
and Temp. margin"-option in the "Global Information"-widget must be switched ’on’. This option
uses the critical surface fit defined in the REMFIT-block.

• The reference temperature of the working-point approximation is not used for the "Quench and
Temp. margin"-option in the "Global Information"-widget. This option uses the "T_0"-entry in the
CONDUCTOR block instead.

TRANSIENT block
The TRANSIENT-block contains data on the material properties for time-transient effects. Each row
yields the following data:

Variable Type Description

No Integer Row number.

Name String Transient parameter-set name.

Rc Double Crossover resistance.

Ra Double Adjacent resistance.

fil.twistp. Double Filament twistpitch.

fil.R0 Double Constant part of magneto-resistivity in filament matrix.

fil.dR/dB Double Linear part of magneto-resistivity in filament matrix.

strand fill.fac. Double Filling factor of SC-material in strand.

Comment String Comment in single inverted commas.



CABLE block
The CABLE-block contains data on the conductor geometry. Each row yields the following data:

Variable Type Description

No Integer Row number.

Name String Cable name.

height Double Conductor height [mm].

width_i Double Inner width [mm].

width_o Double Outer width [mm].

ns Integer Number of strands.

transp. Double Transposition pitch length [mm].

degrd Double Degradation factor. This option is not yet implemented.

Comment String Comment in single inverted commas.

CONDUCTOR block
The CONDUCTOR-block contains data that define the conductor using the features defined in the pre-
vious blocks. Valid features can be included by right klicking on the mouse. Each row contains the
following data:

Variable Type Description

No Integer Row number.

Name String Conductor name.

Type Integer Conductor type.

Cable String Cable name.

Strand String Strand name.

Filament String Filament name.

Insul String Insulation name.

Trans String Transient data name.

T_0 Double Working temperature.

Comment String Comment in single inverted commas.



Chapter 45

Coil Modeling

The ROXIE program includes routines for defining the geometry of coil cross-sections made of Ruther-
ford type superconducting cables or rectangular shaped braids. The geometric position of coil-block
arrangements in the cross-section of the magnets is calculated from the following input data, see also
Figs. 34.1 and 34.2:

• In case ofcosnΘ magnets, the number of blocks, the number of conductors per block, conductor
type (specified in a cable data base), radius of the winding mandrel, as well as positioning and
inclination angle of the blocks. Taken into account is the fact that the keystoning of the cables is not
sufficient to allow for the construction of arc segments. This effect increases with the inclination
of the coil-blocks with respect to the radial direction. The grading of the current density is taken
into account by a discretization of the cable intoN1·N2 strands, whereN1 is the number of strands
in the narrow direction, andN2 is the number of strands in the direction of the broad side (2·18 in
case of the outer layer dipole cable).

• In case of window frame magnets, the number of blocks, the number of conductors per block,
conductor type,x andy position of the lower left corner of the block, and inclination angle with
respect to thex-axis.

• In case of beam pipe magnets, the number of blocks, the number of conductors per block, the
radius of the winding mandrel, the positioning angle of the first conductor and the increment angle
for the subsequent conductors.

• In case of hollow conductors (cable in conduit), the geometry is created as in the cases above. From
the cable boundary an inlaying cylindrical conductor withN1 arc segments is generated. The arc
segments have an inner radius such that exactly one strand is inscribed within each segment. In
the ROXIE input file the parameterN2 has to be set to zero.

45.1 2-D coil modeling

Main options

Option Description

Symmetric Coil Make use of a symmetry in the coil geometry modeling.

Layer Definition Define layers of coil blocks, possibly each with a different sym-
metry.

Wedge/Endspacer Compute the shape of wedges and of the end-spacer in thexy-
plane for the plot option WEDGE.

The symmetry- and layer options are described in Section 55.1.
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Global information

Option Description

Cond. Alignment OD ’off’: align the inner side of the conductors on the winding man-
drel; ’on’: align the outer side of the conductors on a radius
rout = rmandrel + hcond..

Window Frames All blocks in the cross-section are defined as for a win-
dow frame magnet (rectangular cross-section). The entries in
the "Block Data 2-D"-table are read asX/Y/Inc instead of
R/ϕ/α.

Single Wires on Mandrel All blocks in cross-section define single wires on a mandrel,
compare Section 55.1.5.

More relevant data in the "Global Information"-widget:

Variable Description

Type of Coil/Ref. Field Define the symmetry type if "Symmetric Coil"-option is ’on’.

Contraction (1− Fac. Defined) All data in the "Block Data 2-D"-table with a phys. dimension
of a length is contracted by a factorfcont. = 1 − finput, l′ =
l ∗ fcont., thus modeling the effect of cool-down. Entry 0.01
results in a contraction by 1%.

Layers
Only available if the "Layer Definition"-option is switched ’on’ in the "Main Options". In the "Layers"-
table the user assigns blocks from the "Block Data 2-D"-table to layers and defines symmetry-types of
the layers.



Input Description

0 No symmetry

2 Dipole

4 Quadrupole

6 Sextupole

8 Octupole

10 Decapole

12 Dodecapole

1 One Dipole Coil

3 One Quadrupole Coil

5 One Sextupole Coil

7 One Octupole Coil

9 One Decapole Coil

11 One Dodecapole Coil

22 Dipole Connection Side

24 Quadrupole Connection Side

26 Sextupole Connection Side

28 Octupole Connection Side

30 Decapole Connection Side

32 Duodecapole Connection Side

31 Window Frame Dipole

41 Solenoid

52 Dipole, Both Ends in 3-D

54 Quadrupole, Both Ends in 3-D

56 Sextupole, Both Ends in 3-D

58 Octupole, Both Ends in 3-D

60 Decapole, Both Ends in 3-D

62 Duodekapole, Both Ends in 3-D

• No more than 20 blocks can be assigned to a layer per line.
The odd numbers 1-11 define one coil only, which corresponds to one pole of the magnet. The following
sketches illustrate the different options. The red block is a block entered in the "Block Data 2D"-table.
The black blocks are generated by the "Layer Definition"-option.

2 4 6

8 10 12



1 3 5

7 9 11

22 24 26

28 30 32

31 33 41



52 54 56

58 60 80

• The options22-32 are intended for return-end designs, i.e., coils with an asymmetry due to the
passing of conductors from one block to another during winding.

• The option31 is intended for two-in-one window frame dipoles with the apertures atop each other.
The33-option however, is designed for a single-aperture window frame quadrupole.

• The option41 yields the blocks in the upper half-plane for solenoid calculations, compare Sec-
tion 55.1.6.

• In 2-D, the options52-60are identical to the options 2-10. In 3-D however, 52-60 will generate an
entire coil made of loops of conductors, whereas 2-12 will generate only half a coil.

Block data 2-D
Each line in the table defines one block of conductors:

Variable Description

No Row number.

Ncon Number of conductors in block.

Radius/X/Z Radius.

Phi/Y/R Positioning angle.

Alpha/Inc Inclination angle.

Current Conductor current.

CondName Conductor Name.

N1 Radial discretization of conductor.

N2 Azimuthal discretization of conductor.

Imag 1: Block imaged atx-axis; 0: No action. (not with "Symmetric
Coil" -option)

Turn Block turned by angle. (not with "Symmetric Coil" -option)

Ne Number of coil-end definition that applies to this block. (only
with "3-D Coil Geometry"-option)



• The N1- and N2-parametersare explained in Fig. 55.1 (right). Setting these to values for which
N1xN2 is below the number of strands given in theroxie.madata- or roxie.cadata-files yields an
approximation of the actual strands by a smaller number of line currents. The total current remains
unchanged. This is also a way to accelerate the calculation of time-transient effects, knowing that
the accuracy of the calculation will be reduced.

• TheN1- and N2-parameterscan be used to define hollow-cylinder like conductors, compare Sec-
tion 34.1 and Section 55.1.8.

• Note that, with regard to 3-D coil end design, anumbering schemeshould be followed. Blocks
are to be ordered first by descending winding radius (outer layer before inner layer) and second by
ascending positioning angle.

Design variables

With the geometric modeling complete, every feature (strand, cable, block, layer) can be subjected to ge-
ometric transformations such as translation, rotation, scaling, and imaging. At the same time, constraints
are defined for these operations in order to avoid penetration or physically meaningless structures. Not
only can the geometric properties of the magnet be changed in the optimization process, but also its
material properties such as the number of strands, current density in conductors and strands, and filling
factors.

Layer:

Variable Description

XSHIFL X-Shift of entire layer.

YSHIFL Y-Shift of entire layer.

NUMLBL Number of conductors in block (put the original block number).

DRIL Mandrel radius of block.

PHI0L Position angle of block.

ALPH0L Inclination angle of block.

TURNL Turning layer by given angle.

TURNLS Turning (but anti-clock-wise for imaged blocks).

RECTLA Blocks in layer locally like "Window Frames"-option ’on’.

WIRELA Blocks in layer locally like "Single Wires on Mandrel"-option
’on’.



Coil blocks (Cross-section):

Variable Description

NUMCBL Number of conductors.

PHI0 Positioning angle.

ALPH0 Inclination angle.

PHIR Positioning angle (relative to Blockn-1.

ALPHR Inclination angle (relative to Blockn-1).

PHIRS As PHIR such that wedge is symmetric.

ALPHRS Inclination angle (difference to angle giving a symmetric
wedge).

PHIALP Positioning angle and inclination angle equivalent.

GAP Gap width of a rectangular block (relative to Blockn-1).

PHIV Azimuthal displacement of a block.

PHIVGL Azimuthal displacement ofall blocks.

RSHIFT Radial displacement of a block.

XSHIFT x-displacement of a block.

YSHIFT y-displacement of a block.

ALPH0V Increment of inclination angle.

RECTBL Rectangular block.

WIREBL Beam-pipe magnet block.

TILT Tilt angle of rectangular block.

ODFAC Conductor alignement factor (0: mandrel, 1: outer cylinder),
compare the "Cond. Alignment OD"-option in the "Global In-
formation". A number between 0 and 1 yields an alignment
between somewhere between the mandrel and the outer cylin-
der.

INCL Inclined buildup of rectangular block.

DFAKG Zoom factor of cable width inall blocks.

DFAK As DFAKG only in specified blocks.

DJFACH Zoom factor for cable height (J=const.) in specified block.

DFACW Zoom factor for cable width (J=const.) in specified block.

Conductors:

Variable Description

DRI Radius of mandrel (if "Layer Definition"-option is ’off’).

DHI Height of the conductor in block specified.

DWO Outer width of the conductor in block specified.

DWI Inner width of the conductor in block specified.

DRIC Radius of conductor.

DHIC Height of conductor.

DWOC Outer width of conductor.

DWIC Inner width of conductor.

DWIOC DWIC=DWOC=DWIOC.

SHIM Cond. is a shim (current = 0).

XSHIFC x-shift of conductor (xy-plane).

YSHIFC y-shift of conductor (xy-plane).

RSHIFC r-shift of conductor (xy-plane).

XSH12 x-shift of conductor surface 1-2 (xy-plane).

XSH34 x-shift of conductor surface 3-4 (xy-plane).

YSH12 y-shift of conductor surface 1-2 (xy-plane).

YSH34 y-shift of conductor surface 3-4 (xy-plane).



2-D transform (Layers and Blocks):

Variable Description

SHIFX x-shift of the coil block in 2-D.

SHIFY y-shift of the coil block in 2-D.

SHIFF Rotation (in degrees) of coil block in 2-D.

SHIFR r-shift of the coil block in 2-D.

SHIFLX x-shift of the layer in 2-D.

SHIFLY y-shift of the layer in 2-D.

SHIFLF Rotation (in degrees) of the layer in 2-D.

SHIFLR r-shift of the layer in 2-D.

Plotting:

Variable Description

SCALFN Scaling factor for numbering of conductors and blocks.

Objectives

Global values:

Variable Description

DCONT Contraction factor.

INCLM Mean inclination angle in magnet.

INCMAX Maximum inclination angle in magnet.

• The inclination angle measures the deviation of a conductor’s radial axis from a radial positioning.
The inclination angle is the sum over all conductors of the deviation from a radial position. Radial
positioning is important in order to reduce mechanical stress to the cable in the magnet’s coil end.
The INCLM value is printed to the.output-file at every run of ROXIE.

Conductor data:

Variable Description

ALLIGN Alignment constraint.

DTWLE Twist per unit length

R14CO Radial position of the insulated cable (side 1-4).

R23CO Radial position of the insulated cable (side 2-3).

F14CO Inclination of the insulated cable (side 1-4).

F23CO Inclination of the insulated cable (side 2-3).



Block (input) data:

Variable Description

PHI0 Positioning angle.

ALPH0 Inclination angle versusx-axis.

CURNTB Current, all Blocks effected (for optimization).

DRI Radius of the conductor in Block.

DHI Height of the conductor in Block.

DW0 Outer width of the conductor in Block.

DWI Inner width of the conductor in Block.

DFAK Zoom factor for width of conductor

PHIV Azimuthal displacement of whole Block.

RSHIFT Radial displacement of whole Block.

XSHIFT x-displacement of Blocks.

YSHIFT y-displacement of Blocks.

Block geometry:

Variable Description

INCLIN Inclination angle of last turn in bare block.

PHI1 Outer angle (inner radius) of block.

PHI2 Inner angle (inner radius) of block.

PHI3 Inner angle (outer radius) of block.

PHI4 Outer angle (outer radius) of block.

XPOS1 Position inx of corner 1 of the bare block.

XPOS2 Position inx of corner 2 of the bare block.

XPOS3 Position inx of corner 3 of the bare block.

XPOS4 Position inx of corner 4 of the bare block.

YPOS1 Position iny of corner 1 of the bare block.

YPOS2 Position iny of corner 2 of the bare block.

YPOS3 Position iny of corner 3 of the bare block.

YPOS4 Position iny of corner 4 of the bare block.

RPOS1 Radius of the corner 1 of the bare block.

Plotting information 2-D

Geometry:

Variable Description

NUMMC Numbering of conductors.

NUMMB Numbering of blocks.

NOCND No plotting of conductors.

WEDGE Plot the wedges between blocks and the endspacer. Only works
with the "Wedge/Endspacer"-option in the "Main Options".



Interface options

Option Description

Ansys Produces acoilmesh.iron-file with one area for each conductor.

Autocad AUTOCAD-readible file to plot the cross-section.

MS Excel Comma-delimitted list of corner-coordinates of each conductor.

Extended Printout Extended print into.output-file.

2-D Line Currents Produces afilename.fila2-D-file which contains two tables: (1)
a table with the corner points of the current-carrying areas and
(2) a table with the position of the individual line currents in the
model.

45.2 3-D coil modeling

The input parameters for the coil-end generation are thez-position of the innermost conductor of each
coil-block, its inclination angle, the length of the straight section and the size of the inter-turn spacers
between the conductors. For the automatic generation of the coil-end region, three options are available:

• Coil-ends with or without inter-turn shims and conductors placed on the winding mandrel.
• Coil-ends with grouped conductors wound on end-spacers with shelves which provide for support

from below and result in an alignment of the conductors at the outer radius of the end-spacers.
• Race-track coil-ends with or without additional straight sections. With this option it is possible to

model solenoid and torus magnets.

Many options set in 2-D design have important consequences for 3-D modeling, e.g., type of coil: race-
track, cosine-theta, single wires. The 2-D options are not reiterated in this section. The coil-end model-
ing with differential geometry methods is presented in Chapter 30. The input parameters for constant-
perimeter coil ends are described in Section 30.6.

Main options

Option Description

3-D Coil Geometry Tell ROXIE that we are doing coilends.

Wedge/Endspacer Only with "3-D Coil Geometry" - tell ROXIE to do endspacer
design. Not available for Window Frame magnets (Racetrack
coils).

Global information 3-D
The following options are available for in the "Global Information 3-D"-widget:

Option Description

Additional Bricks Add arbitrarily shaped conductors.

Additional Leads Add conductors that can be modelled by radius/positioning an-
gle/inclination angle.

Rutherford Cable Model This option is currently not supported.

Super-Elliptical Coil End Use of a hyper-ellipse as a coil-end baseline in thesz-plane,
compare Section 30.6.

Coil Imaged atz = 0-Plane Symmetric coil w.r.t.xy-plane. The 2nd half of the coil is not
plotted in postscript plots. It is, however, taken into account in
field computations. ROXIE assures the correct powering of the
imaged half.

More relevant data in the "Global Information 3-D"-widget is given:



Variable Description

Maximum Size of Coil Ends This number is used in the automatically produced plots (yz-
andsz-plane sections of coil ends. It determines also the maxi-
mum length of endspacers.

Number Of Blocks in Outer
Layer

The firstN blocks in the "Block Data 2-D"-table are ascribed
to the outer layer.

Cable Size Increase in Ends The cable size increases linearly over the coil end up to the apex.
The option is similar to the BULGE-option in the "Coil Ends
(Differential Forms)"-menu of the "Design Variables".

Number of Cuts in z-Plane Discretization density inz-direction.

Length of Extension into−z-
Direction

Coilend starts at negativez-value.

• Generally, the "Number Of Blocks in Outer Layer"-option only works with the "Symmetric Coil"-
option from the "Main Options" and not with the "Layer Definition". This has repercussions on the
3-D plotting of coil ends and endspacers. The option is also commonly used to design unsymmetric
endspacers for connection-side coil-ends. Here, the blocks on one side are ascribed to the ’outer
layer’ and two independent sets of spacers can be designed.

• Don’t use a none-zero "Length of Extension into−z-Dir. " together with the "Coil maged at z=0
Plane"-option in the "Global Information 3-D"! ROXIE won’t complain but the result is not reason-
able.

Layers
In addition to those layer symmetry-types that were introduced in 2-D, the following geometry types are
available for 3-D coil end design.

Input Description

22 Dipole Connection Side

24 Quadrupole Connection Side

26 Sextupole Connection Side

28 Octupole Connection Side

30 Dekapole Connection Side

32 Duodekapole Connection Side

31 Window Frame Dipole

41 Solenoid

52 Dipole, Both Ends in 3-D

54 Quadrupole, Both Ends in 3-D

56 Sextupole, Both Ends in 3-D

58 Octupole, Both Ends in 3-D

60 Dekapole, Both Ends in 3-D

62 Duodekapole, Both Ends in 3-D

"Connection Side" means that each block is only used to give one half of a coil end. This is necessary
as connection-side coil ends are generally assymmetric. Two blocks are needed to model one arc. The
"Both Ends in 3-D"-option has the same functionality as the "Coil Immaged atz = 0-Plane"-option in
the "Global Information 3-D"-widget.

Block data 3-D
The input parameters for constant-perimeter coil ends are described in Section 30.6.



Variable Description

Ne Row number/number of coil-end definition.

Beta Beta angle.

Bo Long half-axis of ellipse on cylinder.

Zo Straight Section.

Wi Wedge inner width.

Wo Wedge outer width.

Hwed Wedge height.

Tend Type of coil-end (layer definition).

Etype Conductor alignment in coil-end.

Design variables

Layer:

Variable Description

DBZ0L Long half axis of ellipse of coil end in block.

DZZ0L Straight section of coil end in block.

Coil Ends:

Variable Description

DBZ0 Long half axis of ellipse of coil end (if "Layer Definition" is
’off’).

DZZ0 Straight section of coil end (if "Layer Definition" is ’off’).

DZZR Straight section relativ to previous block.

BETAZ Inclination angle of block inyz-plane.

CENTER Shifts the center of the turns1

EXTRXS x-shift in xy-plane (saved for extrusion).

EXTRYS y-shift in xy-plane (saved for extrusion).

EXTRPH PHI turn inxy-plane (saved for extrusion).

DPERMF Perimeter adjustment for conductor. Shift the lower edge of the
conductor towards the magnet center.

DPERMB Perimeter adjustment for all conductors in block. Shift the
lower edge of the conductors towards the magnet center.

PERIMI Perimeter adjustment for inner surface of specified spacer. Shift
the lower edge of the inner surface towards the magnet center.

PERIMO Perimeter adjustment for outer surface of specified spacer. Shift
the lower edge of the outer surface towards the magnet center.

DYZS y-shift of conductor inyz-plane.

DZZS z-shift of conductor inyz-plane.

DYZSB y-shift of block inyz-plane.

DZZSB z-shift of block inyz-plane.

DYZSL y-shift of layer inyz-plane.

DZZSL z-shift of layer inyz-plane.

Coil Ends (Differential Forms):
The coil-end modeling with differential geometry methods is presented in Chapter 30.



Variable Description

BOVERA b/a-ratio.

HORDER Order of ellipse.

BULGE Bulge amplitude. Not to be confused with the BULGE-option
in the "Objectives"-table which corresponds to the classical
constant-perimeter coil end.

TORS1 Additional torsion (in rad).

TORS2 Additional torsion (in rad).

TORS3 Additional torsion (in rad).

TORS4 Additional torsion (in rad).

• Thedifferential-geometry based 3-Dcoil-enddesign cannot be used for field calculations and only
in a limited way for post-processing.

• The BULGE -parameter lets the user simulate the bulge effect of conductors in a coil-end block
due to deformations of the cable in the coil winding process. In practice, the block are often less
compacted on the lower edge than on the upper edge. The bulge amplitude releases the lower outer
edge of the coil-block model.

3-D Transform:

Variable Description

TRANSZ z-shift of the coil-blocks in 3-D.

TRANSX x-shift of the coil-blocks in 3-D.

TRANSY x-shift of the coil-blocks in 3-D.

TRAIMZ Imaging of 3-D coil-blocks at thexy-plane.

TRANSF Turn block (in deg) in thexy-plane toy-axis (Roll).

TRANST Turn the block (in deg) inzy-plane toy-axis (Tilt).

TRANSO Turn the block (in deg) inxz-plane toz-axis (Swing).

TRANIX Additional straight section inserted inx-direction, compare
Section 55.2.2.

TRANLZ z-shift of the layer in 3-D.

TRANLX x-shift of the layer in 3-D.

TRANLY z-shift of the layer in 3-D.

TRAILZ Imaging of 3-D coil end at thexy-plane.

TRANLF Turn layer (in deg) in thexy-plane toy-axis (Roll).

TRANLT Turn the layer (in deg) inzy-plane toy-axis (Tilt).

TRANLO Turn the layer (in deg) inxz-plane toz-axis (Swing).

• Note that when using theTRAIMZ- or TRAILZ- options, the user has to ensure the correct powering
of the imaged blocks/layers. In general this means an inversion of the sign of the block current with
respect to the none-imaged blocks/layers.

Plotting:

Variable Description

BLOCKC Color index for blocks in 3-D - 1: blue, 2: dark blue, 3: red .

BRICKC Color index for bricks in 3-D - 4: orange, 5: green, 0: invisible.



Objectives

Conductor Data:

Variable Description

DTWLE Twist per unit length.

CURVAT Maxium curvature in the block. The geodesic curvature in a
constant-perimeter coil end is calculated.

BULGE Bulge factor in the conductor. Not to be confused with the
BULGE-option for differential-geometry coil ends in the "De-
sign Variables"-table. The bulge factor calculates the deviation
from a constant perimeter coil end.

Block (Input) Data:

Variable Description

DBZ0 Long half axis of ellipse of coil end.

DZZ0 Straight section of coil end.

BETAZ Inclination angle of block inyz-plane.

Coil Ends (Differential Forms):
The coil-end modeling with differential geometry methods is presented in Chapter 30.

Variable Description

TORSIO Maximum torsion.

NORMA Maximum normal curvature.

GEODE Maximum geodesic curvature.

GEOSTR Integral of geodesic curvature squared over entire block. Pro-
portional to strain energy in block.

EREG Penalty if edge of regression in strip.

• Thedifferential-geometry based 3-Dcoil-enddesign cannot be used for field calculations and only
in a limited way for post-processing.

Plotting information 3-D

Variable Description

CURVAT Min/max curvaturek on broad/narrow sides,R = 1/k. This is
not a curvature parameter calculated with the differential geom-
etry method.

SUN Sunshine on coil ends.

COIL Plotting of coil-blocks.

BRICKS Plotting of additional bricks and leads.

SPACER Plotting of end spacers.

DARBOU Darboux vectors on coil ends.

• Automatic generation of plots. With the "3-D Coil Geometry"-option switched ’on’ in the "Main
Options" a number of plots is automatically generated, whenever postscript plots are done. The first
is a cut through theyz-plane. The second shows the outer layer blocks in thesz-plane in a split
representation. The left half shows the lower edge of the cables, the right half shows the upper edge.
The third plot gives the same split representation of all coil-blocks. Finally, the fourth automatically
produced plot yields only the upper edge of all conductors in thesz-plane.

• Also the "Wedge/Endspacer"-option in the "Main Options" leads to anautomatic plot of enspacer
shapes in the theyz- andsz-planes.



• TheDARBOU-option plots the so-called rulings of a coil end that is defined using differential geom-
etry methods. To obtain the plots, not only the "Strips from Darboux Vec."-option, but also the "CNC
Machine files"-option needs to be switched ’on’ in the "Interface Options". The coil-end modeling
with differential geometry methods is presented in Chapter 30.

Interface options

Option Description

CNC Machine files Endspacer Design Output.

Opera 8-node Bricks 3-D bricks of the coil end for the "Opera" field calculation pro-
gram.

Opera 20-node Bricks 3-D bricks of the coil end for the "Opera" field calculation pro-
gram.

Virtual Reality (3-D) Writes afilename.wrl-file which can be opened by any VRML-
browser for an interactive 3-D-view of the coils.

3-D Line Currents Produces afilename.fila3-D-file which contains information on
the positioning of line currents in the 3-D coil model.

Input Data from ’BEND’ Read-in coil end from the ’BEND’ coil-enddesign program.

Strips from Darboux Vectors Design differential geometry-based coil ends.

• The "Strips from Darboux Vectors"-option switches the coil-end design method from constant-
perimeter coil ends to differential-geometry based coil ends. The coil-end modeling with differential-
geometry methods is presented in Chapter 30.

Additional Bricks
The input for additional bricks is made in two tables. The first table describes the current in a conductor,
the number of strands and the number of cuts in the conductor. The second table defines the cuts for each
conductor. Choosing a conductor in the first table activates the respective second table. The table data is
defined as follows:

Variable Description

Current Current in the additional conductor.

N1 Number of strands from corner 1 to 4 and 2 to 3.

N2 Number of strands on side 1-2 and 3-4.

Ncut Number of cuts to define the conductor.

Variable Description

Xcut x-coordinate of a corner of a cutting plane.

Ycut y-coordinate of a corner of a cutting plane.

Zcut z-coordinate of a corner of a cutting plane.

Four lines in the second table define one cutting plane of a conductor. The number of cutting planes
equals the number of bricks plus one.

Additional leads
The input-scheme for additional leads is similar to that of additional bricks. Two tables define a conductor
and the positioning of the conductor in the cut planes. The first table defines one conductor type per lead:



Variable Description

Current Current in the conductor.

N1 Number of Strands in radial direction.

N2 Number of Strands in azimuthal direction.

Div. Number of divisions inz-direction.

Condname Name of the conductor inroxie.madata- or roxie.cadata-file.

Variable Description

Icc Positioning of the lead: ’0’: the position defined byr/ϕ is in
the middle between corners 1 and 2; ’1’:r/ϕ define corner 1.

Radius positioning radius.

Phi0 positioning angle.

alph0 Inclination angle.

Z0 z-position of cutting plane.

One line in the second table defines one cutting plane of the additional lead.



Chapter 46

Analytical Field Calculation

In the coil cross-sections and 3-D coil ends the current flow is modeled by line currents in the positions
of SC strands in the cables. This chapter treats the calculation of electromagnetic fields from line cur-
rents via the Biot-Savart law and the resulting electromagnetic forces on the conductors. The analytical
calculation of fields from line currents is described in Chapter 13.

46.1 2-D analytical field calculation

Main Options

Option Description

Axi-Symmetry Regardx- andy-coordinates asz- andr-coordinates and solve
the Maxwell Equations in cylindrical coordinates. To model
axi-symmetric 3-D cases in 2-D.

• With the "Axi-Symmetry"-option all conductors in the cross-section must be positioned in the upper
half-plane. They are then interpreted as current-loops with thex-axis as axis of rotation.

• The "Axi-Symmetry"-option produces a plot of the axial and radial field-components over thez-
position. The fields are plotted at different radii between the center of the solenoid and the coil.

Global information

Option Description

Grading of Current Density Take into account the inhomogeneous current density in key-
stoned cables.

Self Field in Strands For the calculation of the fields at strand-level: take into account
also the self field.

Self and Mutual Inductance Calculate self- and mutual inductances between layers. The out-
put is written into a table in the.output-file.

Quench and Temp. Margin Calculate the distance to the critical surface in the position of
every strand.

Peak Field in Coil Calculate the field at strand-level.

• To switch the "Grading of Current Density"-option ’off’ in keystoned cables allows for a better
comparison of ROXIE results with other, FEM-based field calculation programs which would model
the current by a homogeneous current density.

• The "Quench and Temp. Margin"-option uses the fit of the critical surface given in theroxie.cadata-
file’s REMFIT block. The "Peak Field in Coil"-option also prints a margin to load line for every
block. This option uses the linear approximation of the critical surface around a working point. Note
that, in order to obtain good results, both, the fit and the linear approximation must be entered in
roxie.madata- or roxie.cadata-file according to measurements!
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• Be aware that the method used with the "Self and Mutual Inductance"-option is only applicable
in the absence of nonlinear magnetic material. Otherwise the "Mutual Inductances in nl. Circuits"-
option must be chosen in the "Optimization Algorithm"-field of the "General Information". The non-
linear self inductance is evaluated using the SINDU- and SINDUD-options in the "Global Values"-
menu of the "Objectives". The latter options are used with the "Transfer Function"-option.

• Switching to ’on’ the "Peak Field in Coil"-option has many implications.

• The forces upon each conductor are calculated.

• The position of each conductor on the loadline is determined and the maximum per block
is written to the.output-file. This functionality uses the linear approximation of the critical
surface.

• Plots of the blocks’ position on the loadline and of the forces on the conductors are automati-
cally plotted when the "Postscript Plots"-option is switched ’on’.

• "Peak Field in Coil" is required to be switched ’on’ for a number of other options, e.g., quench
margins, inductances, plots of fields and currents in the coils, time-transient calculations, ...

Variable Description

Radius of Harmonic Analysis Radius for Fourier Decomposition of the radial component of
the field.

Inner Radius of the Iron Yoke For mirroring method.

Relative Permeability of Yoke For mirroring method.

Highest Order of Multipole Co-
eff.

Calculate the coefficients of the Fourier Series up to this order.

Type of Coil/Ref. Field For relative multipole coefficients in units10−4. They are re-
lated to the specified field component in tesla.

Design variables

Layers:

Variable Description

CURNLH Current in specified block.

Coil Blocks (Cross-Section):

Variable Description

TEMPBL Operation temperature in block.

• TheTEMPBL -option sets the operation temperature in specified blocks, e.g., to test the impact of
an inhomogeneous cooling on the margins to quench or on persistent currents. The TEMPBL-option
is used with features that use the critical-current fit function and not with those that use the linear
approximation thereof.



Current:

Variable Description

CURNTB Current, all blocks effected.

CURNTH Current, only specified block.

CURNTC Current, only specified conductor.

CURNTS Current, only specified strand.

CURNTD Short circuit current (IB1 postive, IB2 negative)???.

CURNTF Current factor for all blocks.

CURRFH Current factor, only specified block.

CURRBH Current factor plus/minus one, only specified block. Binary op-
erator to switch current in block between ’+’ and ’−’. For use
with genetic algorithm. Input 0,1=⇒ factor 1,−1.

Quench, Inductance:

Variable Description

TURNS Number of turns per conductor (for inductance calculation).
The strands in a cable are usually connected in parallel (Ruther-
ford type cable). If they are connected in series, then the induc-
tance increases by the number of turns per conductor.

Additional Field:

Variable Description

ADDX Constant induction (in tesla) inx-direction.

ADDY Constant induction (in tesla) iny-direction.

Other:

Variable Description

XCOIL x-displacement of the measurement coil (harmonic analysis).

YCOIL y-displacement of the measurement coil (harmonic analysis).

FCOIL Turning of the measurement coil (harmonic analysis).

DELLI Ellipticity of coil. Simulate a deformation of the coil and the
mandrel.

R Radius of iron yoke for mirroring method.

CONPHI Constant current shell up to angle phi.

COSPHI Cosine current shell up to angle phi.

ELLPHI Intersecting ellipses up to angle phi. No longer supported.

IRISB3 b3 correction for iris plot (units).

IRISB5 b5 correction for iris plot (units).

IRISB7 b7 correction for iris plot (units).

IRISB9 b9 correction for iris plot (units).

IRIERR Maximum error in plot (units). Maximum on the legend of an
iris plot.

GDFIEL Good field (units) to calculate the goodfield radius (with the
GDFIER option in the "Objectives"-block.).

GDFSV Good-field radius start value for iteration (with theGDFIER op-
tion in the "Objectives"-block.).

MAXW Radius for calculation of forces with Maxwell stress tensor.
Calculate the forces on objects inside a circle, centered at
x = 0, y = 0 with this radius.

• For a comment on the "GDFIEL "- and "GDFSV"-options see the remark on the "GDFIER"-option
in the "Objectives"-section.



Objectives

Normal Multipoles:

Variable Description

B Field.

BR Field related to main component.

Skew Multipoles:

Variable Description

A Skew field components.

AR Skew field related to main component.

Global Values:

Variable Description

NIB N I/Bref.

GDFIER Good-Field Radius.

MARGMI Minimum margin to quench. Calculated from linear approxi-
mation of critical surface.

XCOIL x-Displacement of the measurement coil.

YCOIL y-Displacement of the measurement coil.

DELLI Elliptical deformation of coil on mandrel, compare the DELLI-
option in the "Design Variables".

SINDU Self inductance.

SINDUD Differential self inductance.

TORQUE Torque from Maxwell stress tensor, compare the MAXW-option
in the "Others"-menu of "Design Variables".

• The GDFIER -option calculates the radius, up to which the field is of good quality. The quality is
defined in terms of the sum of unwanted field (other than main component field). If this unwanted
field, related to the main component (in units10−4), is below the value specified in the "Design
Variables" as GDFIEL, then this radius has ’good field’. The maximum such radius that can be
found is called the ’good-field radius’. The design variable "GDFSV" yields a start value for good-
field radius calculations. The good-field calculations are closely related to the iris-plots, in that the
radius belongs to the largest circle that can be inscribed into the iris plot without leaving a specified
color region.

• At the momentGDFIER is only implemented for dipole fields.

Peak Fields:

Variable Description

PEAK Peakfield in the block.

LOADLI Percentage on the load line.

Magnetization Data:

Variable Description

AB Skew and normal in one plot. No longer supported.

Solenoid Data:
The solenoid options are available with the "Axi-Symmetry"-option ’on’ in the "Main Options".



Variable Description

SOLBXM Solenoidal field inz- (x-) direction.

SOLBYM Radial (y) field component in solenoidal field.

SOLBXD Variation of solenoidal field.

Block spec. (Peak fields, Forces, FEM plots)

In this data line the blocks are specified in which to do peak-field calculations, force-calculations and
more. The following format is allowed:
1 4 7-9 10

Plotting information 2-D

Geometry:

Variable Description

YOKE Imaging iron yoke.

DISPLV Displacement vectors in Blocks.

Aperture:

Variable Description

QUAL Field quality in aperture. Deviation from pure field is calculated
in every point from Biot-Savart law.

IRIS Like QUAL but deviation calculated from the field harmonics
(faster).

MATR Field vectors in cross-section. Modulus represented by arrow
size.

MATRC Field vectors in cross-section Modulus represented by color
code.

MATRP Like MATR but only field from SC-magnetization (PCs, ISCCs
analytic model, IFCCs).

• Note that theMATR , MATRC - andMATRP -options can be operated as such or with the "Field-
Vector Matrix"-option from the "Interface Options". The option lets the user define the matrix spac-
ing and produces an output file. Furthmore, the reduced field from numerical field calculations is
only taken into account if the "Field-Vector Matrix"-option is used.

• TheQUAL -option evaluates the formulafij = 1− B(xij)
Bideal(xij)

in a matrix of 100x100 points (200x200

for 360◦ plots) over the plotting range. The color-scheme has one color for every0.1 units of10−4.
With the 20-color legend, the maximum field-deviation displayed is2 units of10−4.

• The IRIS -option works similarly to the QUAL-option. The difference is that the field is not calcu-
lated in every matrix point from Biot-Savart law but it is generated from the Fourier-Series expansion.
This method is faster. By default the legend encompasses8 units of10−4. Each color therefore rep-
resents0.4 units of10−4. For the IRIS-option, the upper bound of the legend can be set using the
IRIERR-option in the "Other:"-menu of the "Design Variables".

Coil Fields:
For all coil fields the "Peak Field in Coil"-option must be switched ’on’.



Variable Description

A Vector potential.

BX Magnetic field (x-component).

BY Magnetic field (y-component).

|B| Magnetic field (modulus).

B Magnetic field vectors.

BPERP B perpendicular to broad face of conductor.

BPARA B parallel to broad face of conductor.

MARG Margin to quench (in %).

MARGT Temperature margin (in K).

• The MARG - andMARGT -options are calculated from the critical current fit. Compare comment
on the "Quench and Temp. Margin"-option in the "Global Information" above.

Lorentz Forces:
For all force calculations the "Peak Field in Coil"-option must be switched ’on’.

Variable Description

FX Electromagnetic force inx-direction.

FY Electromagnetic force iny-direction.

|F| Electromagnetic force (modulus).

F Force vectors.

FPERP F perpendicular to broad face of conductor.

FPARA F parallel to broad face of conductor.

FORC Electromagnetic forces on blocks.

FPN F‖ overF⊥.

Current Distribution:
For all current representations the "Peak Field in Coil"-option must be switched ’on’.

Variable Description

I Current in strand.

JELE Current density in strand.

JCU Copper current density in strand.

JSC Superconductor current density in strand.

|I| Current in strand (modulus).

|JEL| Current density in strand (modulus).

|JCU| Copper current density in strand (modulus).

|JSC| Superconductor current density in strand (modulus).

Bn Strand Contribution of I:
For all harmonic representations the "Peak Field in Coil"-option must be switched ’on’.



Variable Description

B1 B1 contribution of strand current.

B2 B2 contribution of strand current.

B3 B3 contribution of strand current.

B4 B4 contribution of strand current.

B5 B5 contribution of strand current.

B6 B6 contribution of strand current.

B7 B7 contribution of strand current.

B8 B8 contribution of strand current.

B9 B9 contribution of strand current.

B10 B10 contribution of strand current.

B11 B11 contribution of strand current.

Interface options

Option Description

Field-Vector Matrix (MAP) Define a field-vector matrix and produce a file. A widget opens
in the GUI. The reduced field from numerical field calculations
is taken into account, compare Section 59.1.1.

Field Along a Line (2-D,3-D) Calculate the field inx- andy- component along a file. Output
is written to postscript file and.output-file. An extra widget
opens.

2-D Field Map in Coil Write field at every strand to a file, compare Section 59.1.6.

2-D Line Currents Produce afilename.fila2-D-file which contains two tables: (1)
a table with the corner points of the current-carrying areas and
(2) a table with the position of the individual line currents in the
model, compare Section 59.1.7.

Write Multipoles for Pp. Write the multipole components to a file for post-processing,
compare Section 59.1.8.

46.2 Levitation in 2-D

To calculate the levitation force-field, the "Field-Vector Matrix"- and "Levitation (gradB2)"-options
are used. The algorithm calculates the levitation forces in every point defined with the "Field-Vector
Matrix"-option, henceforth called the reference matrix. A plot is produced that shows the forces inx-
andy-direction in the points of the reference matrix.

Objectives

Magnetic levitation:

Variable Description

LEVDX Variation of force (x-component) over the reference matrix.

LEVDY Variation of force (y-component) over the reference matrix.

LEVYM Maximum levitation force (y-component) over the reference
matrix.

Plotting Information 2-D

Aperture:

Variable Description

QUAL2 Levitation force error onFy.

QUAL3 Levitation force error onFy andFx.



• TheQUAL2 - andQUAL3 -options evaluate the forces inx- andy-direction in a matrix of 100x100
points (200x200 for360◦ plots) over the plotting range. The deviation of the force field from the
mean-value in the reference-matrix is evaluated. The color-scheme has one color for every percent
of deviation. With the 20-color legend, the maximum displayed force-deviation 20 percent.

Interface Options

Option Description

Levitation (grad B**2) This option must be ’on’ in order to do levitation calculations.

46.3 3-D analytical field calculation

In this section we only document those options that are proper to 3-D calculations and thus not available
in 2-D.

Global Information 3-D

Option Description

3-D Peak Field Calc. Calculate the field and forces on strand level.

3-D Field Harmonics Calculate the integrated multipole components along a line. An
extra widget opens in the GUI.

• For 3-D Peak field calculationsis is also imperative to have the "Peak Field in Coil"-switch ’on’ in
the "Global Information".

• In "3-D Field Harmonics"-calculations a maximum number of 8 integration points is printed sepa-
rately to the.output-file. Above 8 steps, only the integral harmonics are being printed. The orders of
multipoles to be plotted are specified in the "Objectives"-table. A plot is then automatically generated
when the "Postscript Plots"-option is switched ’on’.

Design variables

Plotting:

Variable Description

SCALIZ 3-D field cones plotted in−z-direction regardless of the "Plot
Imaged at z=0 plane".

Additional Field:

Variable Description

ADDZ Constant induction (in tesla) inz-direction.

Other:

Variable Description

FSCAL Main field component (absolute value) to which relative 3-D
integrated harmonics should be related when the "3-D Field
Harmonics"-option is switched ’on’ in the "Global Information
3-D"-widget.



Objectives

Normal Multipoles:

Variable Description

B3 Average field over end, calculated with the "3-D Field
Harmonics"-option in the "Global Information 3-D"-widget.

B3R B3, related to main component, calculated with the "3-D Field
Harmonics"-option in the "Global Information 3-D"-widget.

Skew Multipoles

Variable Description

A3 Average field over end, calculated with the "3-D Field
Harmonics"-option in the "Global Information 3-D"-widget.

A3R A3, related to main component, calculated with the "3-D Field
Harmonics"-option in the "Global Information 3-D"-widget.

Conductor Data

Variable Description

PVAR Variation of pressure on narrow face.

Peak Fields

Variable Description

PEAK3-D 3-D Peak field in the block.

Plotting information 3-D

Option Description

3-D Min. Field in Cond. Choose the filament with the lowest field in the peak-field con-
ductor for the Roller-coaster plot.

3-D Max. Field in Cond. Choose the filament with the highest field in the peak-field con-
ductor for the Roller-coaster plot.

• The "3-D Min. Field in Cond." and "3-D Max. Field in Cond."-options produce so-called Roller-
coaster plots. The option "3-D Peak Field Calc." must be ’on’. For each block specified in the "Block
spec. (Peak fields, Forces, FEM plots)"-widget the conductor with the largest peak-field is chosen.
The field and its components are plotted over the intersection number inz-direction and, in a second
plot, over thez-coordinate. The data is also written into tables in the.output-file.

Variable Description

P Pressure due to Lorentz forces on surfaces.

FXFZ Fz on broad side;Fx on narrow side.

FYFZ Fz on broad side;Fy on narrow side.

FRFF Fr on broad side;Fϕ on narrow side.

B Bmin on broad side;Bmax on narrow side.

BMID AverageB on broad and narrow sides.

JZ Current inz-direction.

• TheJZ-option works only if the "Peak Field in Coil"-option is switched ’on’ in the "Global Infor-
mation".



Chapter 47

Mesh Generation

The theory of mesh generation is presented in Chapter 20. While the definition of the coil geometry
is driven by a user’s interface based on the Tcl/Tk script language (data stored in a file namedfile-
name.data), the input data for the mesh-generator has to be written into a file namedfilename.iron.
To combine a coil with the appropriate iron yoke, the.data- and .iron-file must have the same name.
The .iron-file can be opened from the Xroxie environment from the "Iron"-menu as soon as the "Mesh-
Generator"-option is ’on’ in the "FEM/BEMFEM Options".

In this section the rules and commands for the creation of the.iron-file are given together with an
example. The HyperLine command supports design features for the creation of parametric meshes in
magnet design.

47.1 General rules

• The lines are ended by a semicolon.

• To comment a line insert a ’−−’ in front of it. Comments can also be added at the end of lines.

• Variables can be up to 100 characters long.

• The file has to start with the command “HyperMesh;”. Omitting this command allows to be com-
patible to an older version of the mesh-generator.

47.2 Definition of parameters

• Scalar variables cannot start by kp,ln,ar, or BH

• All arithmetic operations plus the functions like Sin, Cos, Asin, Acos, Sqrt, and Tan are allowed
in scalar expressions.

• Design variables are defined with the prefix dv and its value is given by ROXIE if they are defined
as design variables in the .data file as well.

47.3 Definition of keypoints

• Keypoints are represented with variables starting with kp, e.g. kp1 or kpleft.

• Possible operation with keypoints: sum, scalar multiplication, subtraction.

• Keypoints are defined from the scalar expressions with the operators [xcoor, ycoor] for Cartesian
coordinates and [radius @ angle] for polar coordinates.

• It is possible to access the coordinates of a keypoint as kp1.x for the x-componet and kp1.y for the
y-component of keypoint kp1.
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47.4 The HyperLine command

The HyperLine command was introduced to facilitate the input of complicated geometries. It is applied
instead of the Line, Arc and Ellipse commands to define lines. The syntax is as follows:

ln1 = HyperLine(kp1,kp2,"string",arg1,arg2,arg3,arg4);

The "string" determines the type of the HyperLine. According to the chosen line type the arguments
arg1-arg4 have different functions. Usually only some of them are user supplied, some of them can
be defined optionally. The following sections summarise all different HyperLine types and explain the
meanings of the parameters:

Curves, Arcs

• "Arc":

This is the keyword used for drawing a circular arc.arg1 is either
the radiusr of the arc or the name of a third key-point (kp3).
arg2 is optional and determines the linear contraction factor of
the mesh (the default value is 0.5). For positive radii always the
smaller arc segment is drawn, for negative radii the bigger one.

kp1

kp2

kp3

r

• "ParabolicArc":

kp1

kp2 x-axesα

kp3
p

This string signifies that this line will be a parabolic arc. As
first argumentarg1 the parameterp (p defines the parabola
by the equationy2 = 2px) or a third key-pointkp3 has to be
supplied.arg2 is optional and determines the linear contrac-
tion factor of the mesh (the default value is 0.5). The third
parameter is the angleα. Its default value is 0.

• "EllipticArc":

This keyword denotes an elliptic arc. The first and the sec-
ond argument determine the two half axesa andb (a andb
define the ellipse byx

2

a2 + y2

b2
= 1), the third argumentarg3

(optional) is the linear contraction factor of the mesh (the de-
fault value is 0.5) andarg4 (optional) is the angleα (default
is 0).

b a

α

kp1

x-axeskp2

• "HyperbolicArc":

α

a
bkp1

x-axeskp2

A hyperbolic arc is drawn. The first and the second argument
determine the two half axesa andb, the third argumentarg3
(optional) is the linear contraction factor of the mesh (the de-
fault value is 0.5) andarg4 (optional) is the angleα (default
is 0).

• "Interpolation":

This type is very similar to the oldEllipse command. The first argumentarg1 has
to be a third key-point. An interpolating function, equivalent to a finite-element shape
function is drawn between the three key-points. The second argument is optional and
denotes the linear contraction factor of the mesh (the default value is 0.5).



• "Line":

kp1

kp2 This command will connectkp1 andkp2 with a straight line.arg1
is optional and determines the linear contraction factor of the mesh
(the default value is 0.5).

Element-macros of features used in magnet design

• "CornerIn" and"CornerOut":

This line type creates a corner with both lines parallel to the
y- and x-axes. This feature appears frequently in iron yokes of
LHC magnets.

CornerOut

CornerIn

kp2

kp1

kp2

kp1

• "Bar":

h

kp2

kp1

This line type creates three sides of a rectangle. The inclination and
the orientation are determined by the sequence of the two key-points
kp1 and kp2. The first argumentarg1 (optional) is the heighth
of the rectangle (negative values change the orientation). The default
value of the height is half of the distance between the two key-points.

• "Notch":

This line type creates a corner with two lines inclined by the
anglesα (arg1) andβ (arg2). The default values areα = 0
andβ = π/2.

β x-axesα

kp2

kp1

Closed lines

These lines border an area themselves. However, the area has to be defined afterwards using theHyperArea

command (see Section 47.5,N = 1).

• "Circle":

2r

kp2

kp1
The"Circle" line type creates a circle with the two key-pointskp1

andkp2 lying on a diameter.

• "Ellipse":

This keyword will yield an ellipse with one half axes defined
by the two key-pointskp1 andkp2. The first argument (op-
tional, default isb = a) either denotes the second half axesb
of the ellipse or is the name of a third key-point lying on the
ellipse (kp3).

b
a

kp2

kp1 kp3

• "Rectangle":

h

kp2

kp1

This line type will draw a closed rectangle defined by the two key-
pointskp1 andkp2 and the first parameter (h = arg1). If no argu-
ment is supplied then a square is drawn.



• "MillCut":

This keyword will create a closed line as shown on the sketch. The
main symmetry axes is defined by two key-pointskp1 andkp2. The
first argument (optional, default is half of the distance between the two
key-points) determines the widthw of the object.

w
kp1

kp2

47.5 The HyperArea command

TheHyperArea command is an extension of the oldArea command. In contrast to the old command
which needed a closed polygon consisting of four lines only,HyperArea can define areas that are bor-
dered by any numberN of lines. Of course the surrounding polygon has to be closed. If more than 2
lines are supplied the lines have to beordered in a mathematically positive sense(anti clockwise). The
exact grammar is as follows:

ar1 = HyperArea(ln1,ln2,. . .,lnN,material);

The names of the lines have to start with the two lettersln, but are free otherwise. For better under-
standing the lines have been enumerated in our example. The last argument ofHyperArea is regarded
as the material of the area. The name of the material can beBHiron1–BHiron9 referring to one of the
nineB-H curves given in theroxie.bhdata file or is simplyBHair for a meshed air region (air region
part of the FEM-domain) orBH_air for an air region without mesh (field computation via boundary
elements).

47.6 The HyperHoleOf command

TheHyperHoleOf command is necessary to define holes in areas. If for example areaar1 lies entirely
in areaar2 (e.g. a hole in the iron yoke) the following line has to be included into the iron file after the
definitions of both areas:

HyperHoleOf(ar1,ar2);

This signifies thatar1 is a hole ofar2.

47.7 The Lmesh command

TheLmesh command serves for defining the mesh density in the domain.

Lmesh(lnN,K);

WherelnN is the line numberN andK is the number of element edges along that line.



47.8 Example of the “.iron” file for mesh generation

k p i n _ 2

k p i n _ 1

k p r a d _ 0

k p r a d _ 1

k p r a d _ 2

k p h o _ 1
k p h o _ 2

k p r a d _ 3

l n 1

l n 2

l n 3

l n 4

l n 5

l n 6

l n h o l e

-- This is the example input file for the above case

HyperMesh;

mm=0.001; Pi=3.14159265;

dv RADIUS=270; radius=RADIUS*mm;

dv RAD_HO=50; rad_ho=RAD_HO*mm;

dv ELL_A=110; ell_a=ELL_A*mm;

dv ELL_B=90; ell_b=ELL_B*mm;

kprad_0 = [radius @ 0];

kprad_1 = radius*[Cos(Pi/6), Sin(Pi/6)];

kprad_2 = [radius @ Pi/4];

kprad_3 = [0 , radius];

kpin_1 = [0 , ell_b];

kpin_2 = [ell_a , 0];

kpho_1 = kprad_1 - 2*[kprad_0.x-kprad_1.x,0];

kpho_2 = kpho_1 - [rad_ho/Sqrt(2.0), rad_ho/Sqrt(2.0)];

ln1 = HyperLine(kprad_1,kprad_0,"Arc",radius,0.4);

ln2 = HyperLine(kprad_1,kprad_2,"Bar",20*mm);

ln3 = HyperLine(kprad_3,kprad_2,"Arc",radius,0.6);

ln4 = HyperLine(kpin_1,kprad_3,"Line",0.4);

ln5 = HyperLine(kpin_1,kpin_2,"EllipticArc",ell_a,ell_b);

ln6 = HyperLine(kpin_2,kprad_0,"Line",0.4);

lnhole = HyperLine(kpho_1,kpho_2,"Circle");

aryoke = HyperArea(ln1,ln2,ln3,ln4,ln5,ln6,BHiron2);

arhole = HyperArea(lnhole, BH_air);

HyperHoleOf(arhole,aryoke);

Lmesh(ln1,12);



47.9 Mesh extrusion for 3-D problems

To generate a 3-D mesh from a 2-D cross-section by extrusion, a file: <filename>.extrude is needed.
HERMES first generates a 2-D.hmo-file and then it runs HMO2HMO3-D, which produces a 3-D file by
"extrusion" intoz-direction.

The.extrude-file has one line for every extrusion of an area defined in the.iron-file.

Variable Type Description

name String Area name starting withar....

start Double z-position of start of extrusion.

end Double z-position of start of extrusion.

bias Double Biasing of mesh spacing towards start- or end-position of extru-
sion.

num Integer Number of elements inz-direction.

mat String Material name.

The material name entry is optional. If no name is given, the material of the.iron-file is chosen. The
input must be uniform, i.e., all entries must have a material name or no entry has it.

In the example of Chapter 47, an.extrude-file looks like this

aryoke -0.2 0.0 0.5 8 BHiron5

aryoke 0.0 0.2 0.5 8 BHiron2

The above file produces a 3-D mesh of material BHiron5 from -20 cm to 0 cm inz-direction with 8
elements. Subsequently the 2-D mesh is extruded into BHiron2 from 0 cm to 20 cm. Note that, if the
2-D cross-section contains more than one area (holes must not be extruded!), then the extrusion interval
in z might be different for different areas. The author of the.extrude-file must ensure that the layers with
element boundaries inz-direction match for all areas - even if the areas do not touch.

An extrude file for two areas, sayaryoke1 andaryoke2 could look like this

aryoke1 0.0 0.4 0.5 3

aryoke2 0.0 0.4 0.5 3

aryoke2 0.4 0.5 0.5 1

Now aryoke1 andaryoke2 are extruded from 0.0 cm to 40.0 cm andaryoke2 continuous from 40.0
cm to 50.0 cm. In this examples the material is assigned to the areas that is specified in the 2-D.iron-file.



Chapter 48

Numerical Field Calculation

This chapter treats the calculation of electromagnetic fields in presence of non-linear magnetic material.
In 2-D there are two different methods available: A reduced vector-potential formulation for a Finite
Element (FEM) approach and a total vector-potential formulation for a hybrid method of boundary el-
ements (BEM) and finite elements. Permanent magnets, non-linear (differential) inductivity, and force
calculations are implemented in the BEM-FEM code. In 3-D, ROXIE offers a magnetic scalar-potential-
and a magnetic vector-potential formulation for a BEM-FEM calculation. A mesh generator is available
for parametric 2-D mesh generation and extrusion of 2-D meshes inz-direction.

48.1 The BHDATA file
Theroxie.bhdata-file has information on the magnetization curves of ten different materials,BHiron1 -
BHiron10. Each material has one data block in theroxie.bhdata-file. A block starts with two data lines
which are followed by a data table. The first line gives the material name
BHironX
The second line is structured as follows

Variable Type Description

num Integer Number of measurement points in the table.

fil Double Stacking factor of the yoke inz-direction.

The tabular data hasnum lines with entries forB [T] andH [A/m]:

Variable Type Description

B Double Magnetic induction in Tesla.

H Double Magnetic field in Ampère/meter.

Material names and comments are often written following the last data line in a table.

• Each table in theroxie.bhdata-file must start with the origin, i.e.,B = 0,H = 0.

• Especially in dense 3-D calculations, the quality of theB(H)-curve determines the speed of con-
vergence. Evennon-convergencehas been observed, leading to inaccurate results. In cases of
non-convergence: check your ROXIE model for input errors; check yourB(H)-curve for unphysical
behavior; make the mesh coarser.

• ROXIE assumes that a material is completely saturated if amagnetic inductionB exceeds the data
given in theroxie.bhdata-file. Above theB-values in the respective data-table ROXIE calculates with
the magnetic permeability of free space. This can be a nasty pitfall when you calculate withB(H)-
curves of linearly permeable material. Recall, however, that no material retains a high permeability
up to very large magnetic induction!
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• Never forget that a simulation including non-linear material can only be as accurate as the user
supplied material-data.

48.2 General options for numerical field calculation

FEM/BEMFEM Options

Option Description

Mesh-Generator Produce a Finite Element mesh from an.iron-file.

Post-proc. only For non-transient BEMFEM calculations in 2-D only. Such
changes to post-processing parameters may be made which do
not require recalculation of the problem.

48.3 Global information

Set the "Optimization Algorithm"-variable to "Mutual Inductances in Nl. Circuits" to calculate the dif-
ferential mutual inductances, compare Section 24.1.3.

Design variables

Plotting:

Variable Description

HMOMM Dimensions in .hmo file given in mm.

• The .hmo-file has geometrical data usually given in meters. If, however, the data is to be read in
millimeters, theHMOMM -option passes this information to ROXIE.

The boundary conditions settings in the "FEM"-, "BEMFEM 2D"-, "BEMFEM 3D (Half)"-, and "BE-
MFEM 3D (Full)"-menus of the "Design Variables" apply to all 2-D (and 3-D) calculations. Parallel
arrows to the symmetry planes correspond to a Dirichlet boundary condition,Bn = 0. Perpendicular
arrows correspond to a Neumann boundary condition,Ht.

SGL1 DBL1 WINDOW

SGL12 SGL14 DBL14



FULL

Objectives

The following options are available for both 2-D algorithms, FEM and BEM-FEM:

Normal Multipoles:

Variable Description

BIR Geometry and iron.

BIRR Relative BIR.

Skew Multipoles:

Variable Description

AIR Gemetry and iron.

AIRR Relative AIR.

Global Values:

Variable Description

SINDU Self inductance, see also Section 48.7 and Section 57.2.

SINDUD Differential self inductance, see also Section 48.7 and Sec-
tion 57.2.

Plotting Information 2-D

Aperture:

Variable Description

MATR Field vectors in cross-section. Modulus represented by arrow
size.

MATRC Field vectors in cross-section Modulus represented by color
code.

MATRP Like MATR but only field from SC-magnetization (PCs, ISCCs
analytic model, IFCCs).

• Note that theMATR , MATRC - andMATRP -options have to be used with the "Field-Vector Matrix "-
option from the "Interface Options". The option lets the user define the matrix spacing and produces
an output file. The reduced field from numerical field calculations is only taken into account if the
"Field-Vector Matrix"-option is used.



Coil fields

Variable Description

ARED ReducedA.

BR Reduced|B|.
BREDX ReducedBx.

BREDY ReducedBy.

Interface options

Option Description

Field-Vector Matrix (Map) Define a field-vector matrix and produce a file. A widget opens
in the GUI. The reduced field from numerical field calculations
is taken into account.

48.4 2-D reduced FEM

The reduced vector potential method is described in detail in Section 21.1.

FEM/BEMFEM Options

Option Description

Reduced Ar FEM Use the 2-D reduced vector-potential solver.

• To use thereduced vector-potential solver, the entire problem domain needs to be meshed. The
coils themselves yield a source vector-potential contribution to the solution calculated by Biot-
Savart’s law. The coil domain thus does not to be modeled in the mesh geometrically, although
it needs to be covered by the mesh.

Design variables

FEM:
Compare the drawings on page 497.

Variable Description

SYMMR Maximum angle for harmonic analysis within FEM area
(90/180/360). Contrary to BEM-FEM calculations a harmonic
analysis outside the FEM-domain is not possible!

RIHARM Rescaling of radius for harmonic analysis. The field harmonics
are rescaled from the radius value given in the "Global Informa-
tion" to this radius. A larger value in the "Global Information"
might yield better accuracy, depending on the FEM mesh.

SGL1 Single aperture dipole with yoke defined in 1st quadrant.

DBL1 Double apperture dipole / single aperture quadrupole with yoke
in 1st quadrant.

WINDOW Window frame dipole with yoke in 1 quadrant.

SGL12 Single/double aperture dipole with yoke in 1st and 2nd quad-
rant.

SGL14 Single aperture dipole / single aperture quadrupole with yoke in
1st and 4th quadrant.

DBL14 Double aperture dipole with yoke defined in 1st and 4th quad-
rant.

FULL No symmetry planes.



Plotting information 2-D

FEM:

Variable Description

MESH Finite-elemet mesh.

IRON Iron yoke.

AR Reduced vector potentialAr.

|BRED| Reduced magnetic field|Br| (iron magnetization only).

|BTOT| Total magnetic field|Bt| (iron and coil).

|BS| Source field|Bs| (coil only).

MUE Relative magnetic permeabilityµr in iron yoke.

MUEFAC µr−1
µr+1

in iron yoke.

48.5 2-D BEM-FEM coupling

The theory of 2-D BEM-FEM coupling is explained in Chapter 22.

FEM/BEMFEM Options

Option Description

Vect.Pot. BEMFEM Use the 2-D coupling method of Finite Elements (yoke iron)
and Boundary elements (coils, air region).

• Contrary to the reduced vector-potential FEM, withBEM-FEM coupling the air- and coil regions
need not be meshed.

Design variables

BEMFEM 2-D:
Compare the drawings on page 497.

Variable Description

SGL1 Bn(x = 0) = 0, Ht(y = 0) = 0 (single aperture dipole with
yoke defined in 1st quadrant).

DBL1 Ht(x = 0) = 0, Ht(y = 0) = 0 (double aperture dipole /
single aperture quadrupole with yoke in 1st quadrant).

WINDOW Bn(x = 0) = 0, Bn(y = 0) = 0 (window frame dipole with
yoke in 1st quadrant).

SGL12 No boundary condition atx = 0, Ht(y = 0) = 0 (single- /
double aperture dipole with yoke in 1st and 2nd quadrant).

SGL14 Bn(x = 0) = 0, no boundary condition at(y = 0) (single
aperture dipole / single aperture quadrupole with yoke in 1st
and 4th quadrant).

DBL14 Ht(x = 0) = 0, no boundary condition at(y = 0) (double
aperture dipole with yoke defined in 1st and 4th quadrant).

FULL No symmetry planes.

CURRY Index to coil (FEM coils). Not yet documented.

FRINGR Radius of fringe field calculation

FRINGA Maximum angle for fringe field calculation (fromx-axis).

ACCIMP Improved accuracy of the GMRES iteration of BEMFEM
(70dB instead of 55dB).

NSTEPS Set maximum number of steps in Newton-Algorithm to 10 (in-
stead of 50).

• The FRINGR - andFRINGA -options produce plots in the.post-files that show the magnetic field
(components and total) on an arc around the coordinate centre.



Plotting information 2-D

BEMFEM:

Variable Description

MESH Finite-element mesh.

IRON Iron yoke.

AR Total vector potentialA in FEM domain.

|BTOT| Total magnetic field|B| in FEM domain.

MUE Relative magnetic permeabilityµr in iron yoke.

MUEFAC µr−1
µr+1

in iron yoke.

• To plot the iron yoke and/or information on the iron yoke, theIRON -option must be specified to-
gether with the field, e.g., ’IRON AR’ will plot the vector potential in the yoke, whereas only ’AR’
will not have any effect.

48.6 3-D BEM-FEM coupling

With the "3-D Coil Geometry"-option ’on’ in the "Main options", ROXIE expects also a 3-D mesh and
uses 3-D numerical algorithms. The choice in the algorithms is between a total vector-potential BEM-
FEM formulation and a total scalar-potential BEM-FEM formulation. All options (other than the choice
of a formulation) in this section apply to both, the vector-potential- and the scalar-potential formulation,
compare Chapter 22 for the former and Chapter 23.

FEM/BEMFEM Options

Option Description

Vect.Pot. BEMFEM 3-D coupling method of Finite Elements (yoke iron) and
Boundary elements (coils, air region). The problem is formu-
lated in terms of the 3 components of the magnetic vector po-
tential.

PSItot BEMFEM 3-D coupling method of Finite Elements (yoke iron) and
Boundary elements (coils, air region). The problem is formu-
lated in terms of the magnetic scalar potential.

• The "Vect.Pot. BEMFEM"-option, due to the linear, mesh-point-wise approximation of the three
components of the magnetic vector potential, cannot approximate jumps in the vector potential.
These jumps occur on sharp edges and corners in the presence of important jumps of the mag-
netic permeability at the edge/corner. These problem-types might lead to unphysical and inaccurate
results.

• The "PSItot BEMFEM "-option avoids the above problem. It is available, however, only for single-
aperture magnets, i.e., if the coil is centered at the origin.

Design variables

BEMFEM 3-D (half):

The "half"-versions of boundary conditions assume that the iron yoke is mirror-symmetric with respect
to the(z = 0)-plane. Compare the drawings on page 497.



Variable Description

SGLH1 Bn(x = 0) = 0, Ht(y = 0) = 0 (single aperture dipole with
yoke defined in 1st quadrant).

DBLH1 Ht(x = 0) = 0, Ht(y = 0) = 0 (double aperture dipole /
single aperture quadrupole with yoke in 1st quadrant).

WINDOH Bn(x = 0) = 0, Bn(y = 0) = 0 (window frame dipole with
yoke in 1st quadrant).

SGLH12 No boundary condition atx = 0, Ht(y = 0) = 0 (single- /
double aperture dipole with yoke in 1st and 2nd quadrant).

SGLH14 Bn(x = 0) = 0, no boundary condition at(y = 0) (single
aperture dipole / single aperture quadrupole with yoke in 1st
and 4th quadrant).

DBLH14 Ht(x = 0) = 0, no boundary condition at(y = 0) (double
aperture dipole with yoke defined in 1st and 4th quadrant).

FULLH No symmetry planes.

BEMFEM 3-D (full):
The "full"-versions of boundary conditions assume that the iron yoke has no symmetries inz-direction.

Variable Description

SGLF1 Bn(x = 0) = 0, Ht(y = 0) = 0 (single aperture dipole with
yoke defined in 1st quadrant).

DBLF1 Ht(x = 0) = 0, Ht(y = 0) = 0 (double aperture dipole /
single aperture quadrupole with yoke in 1st quadrant).

WINDOF Bn(x = 0) = 0, Bn(y = 0) = 0 (window frame dipole with
yoke in 1st quadrant).

SGLF12 No boundary condition atx = 0, Ht(y = 0) = 0 (single- /
double aperture dipole with yoke in 1st and 2nd quadrant).

SGLF14 Bn(x = 0) = 0, no boundary condition at(y = 0) (single
aperture dipole / single aperture quadrupole with yoke in 1st
and 4th quadrant).

DBLF14 Ht(x = 0) = 0, no boundary condition at(y = 0) (double
aperture dipole with yoke defined in 1st and 4th quadrant).

FULLF No symmetry planes.

Plotting information 3-D

In 3-D plots, the iron yoke is always represented when the respective "FEM/BEMFEM Options"-options
are ’on’. Unless the ’SUN’-option is chosen, the magnetic induction is displayed on the surface elements
of the iron yoke.

48.7 Transfer functions

Main options

Option Description

Transfer Function Calculate field at different levels of excitation.

• The "Transfer Function"-option triggers a series of successive calculations. It is not a time-stepping.
No time-transient effects are taken into account. The "Transfer Function"-option is primarily used to
determine the influence of yoke saturation on the field quality.



Objectives

Global values:

Variable Description

NIB N I/Bref..

BOVERI Transfer functionBref./I (in T/kA).

SINDU Self inductance, see Section 57.2.

SINDUD Differential self inductance, see also Section 57.2.

• With the "Self and Mutual Inductance"-option switched ’on’ in the "Global Information", theSINDU-
andSINDUD-options let you evaluate the linear and differential inductance of the magnetic circuit
during a transfer function. A plot is produced if the "Postscript Plots"-option is ’on’ that showsL
andLd as a function of excitation.

Normal multipoles (vers. excit.):

Variable Description

BIRI Normal multipoles (injection field level).

BIRRI Relative BIRI.

BIRN Normal multipoles (nominal field level).

BIRRN Relative BIRN.

BIRD Normal multipoles (variation).

BIRRD Relative BIRD.

Skew multipoles (vers. excit.):

Variable Description

AIRI Skew multipoles (injection field level).

AIRRI Relative AIRI.

AIRN Skew multipoles (nominal field level).

AIRRN Relative AIRN.

AIRD Skew multipoles (variation).

AIRRD Relative AIRD.

• For theBIRI - andAIRI -options the injection field level is assumed to be the first level in the "Trans-
fer Function"-widget.

• For theBIRN - and AIRN -options the nominal field level is assumed to be the last level in the
"Transfer Function"-widget.

Transfer function

The input in the line of the "Transfer Function"-widget is a space-delimitted enumeration of excitation
factors. The currents given in the "Block Data 2-D"-widget are scaled by each of the given values
successively.

48.8 Permanent magnets in 2-D

FEM/BEMFEM options

Option Description

Permanent Magnets Read in magnetization data from.VEFI-file and assign to areas
in .iron-file according to design variables (see below).



Design variables

BEMFEM 2-D:

Variable Description

HARD Index to magnetization vector field compare Section 57.1.

• For theHARD -option, the value in the "Xl, Xu, Xs"-columns of the table is of integer type. It points
to a vector field defined in the so-called.VEFI-file, see Section 48.8. The number in the right column
of the design variables points to an area in the.iron-file. In fact, it rather points to a material name. A
number 2 in the right table corresponds to the second material name in the first block of the.hmo-file,
see Section 51.1. You therefore need to check the.hmo-file in a first run before you can assign vector
fields. The magnetic characteristic of the permanent magnet is given in theroxie.bhdata-file under
the respective material name. For an example see Section 57.1.

The VEFI file
The .VEFI-file defines vector fields for the calculation of (hard) permanent magnets in 2-D. The.VEFI-
file is used in connection with an.iron-file and a.data-file that uses the option ’HARD’ in the "Design
variables"-table. For an example see Section 57.1The first line of the.VEFI-file has two parameters:

Variable Type Description

NFIELD Integer Number of vector fields to be defined.

TBLOCK Integer Total number of building blocks.

Then follows the definition of each vector field that consists of a header record and a sequence of pairs
of records specifying the building blocks. The header record has three parameters:

Variable Type Description

IFIELD Integer Consecutive number of vector field.

NBLOCK Integer Number of building blocks for the vector field.

FACT Double Scaling factor for the vector field.

The first line of the building block data yields the following parameters:

Variable Type Description

IBLOCK Integer Consecutive number of building block.

PCOSY Integer Pointer to the frame of reference.

ITYP Integer Type of coordinate system (1: Cartesian, 2: cylindrical).

IDIR INTEGER Direction of the vector field (+/-1: first, +/-2: second, +-3: third
basis vector).

ILIMIT(3) Integer Flags specifying the type of inequality for the range of each
coordinate (see below).

The second line has the limit parameters:

Variable Type Description

XYZLO(3) Double Lower limits for the range of each coordinate.

XYZHI(3) Double Upper limits for the range of each coordinate.

TheILIMIT flags have the following meaning, e.g. for thex-coordinate:

ILIMIT=0 −∞ ≤ x ≤ ∞



ILIMIT=1 −∞ ≤ x ≤ xhigh

ILIMIT=2 xlow ≤ x ≤ ∞
ILIMIT=3 xlow ≤ x ≤ xhigh



Chapter 49

SC-Related Time-Transient Effects

This chapter introduces ROXIE features to simulate superconductor magnetization, the persistent cur-
rents (PCs), as well as Eddy-Current effects on the strand level, the interfilament coupling currents
(IFCCs) and on the conductor level, the interstrand coupling currents (ISCCs) in Rutherford-type ca-
bles. The PC models have been developed at CERN, compare Chapter 27, whereas the analytical models
for IFCCs and ISCCs are based on models by M. Wilson, [231]. A network model for more accurate
modeling of ISCCs is equally available.

All models in this chapter have in common that they should be used with the "Layer Definition"-
option in the "Main Options". For the use of semi-analytical models, the "Symmetry: 0: Gen., 1: in1, 2:
2in1"-option in the "Time Transient Effects"-widges allows to make use of coil symmetries nevertheless.

The term ’SC magnetization’ is used for all quantities in ROXIE’s semi-analytical models, also
for Eddy-Current effects such as IFCCs and ISCCs. These effects are modeled as magnetizations on the
strand/cable level.

49.1 Semi-analytical models for SC magnetization

The main material parameters for the SC magnetization models are found in theroxie.cadata-file which
is editable via the "Open cable data window (.cadata)"-entry in the "Run"-menu. Main input parameters
are found in the "Time Transient Effects"-widget.

The analytical formula to compute the strand-magnetization from PCs is given in Eq. (27.33). The
IFCCs are evluated from

Mf = λw ∂tB
lw
2π

1
ρ0 + ρ1B︸ ︷︷ ︸

ρeff.

. (49.1)

The user is required to provide the wire filling-factorλw, the wire twist-pitchlw and the effective resis-
tivity ρeff. which consists of a constant partρ0 and a coefficient due to magneto resistanceρ1.

ISCCs are calculated as the sum of the following components.

M⊥
c =

1
120

∂tB
⊥

Rc
lcN(N − 1)

c

b
, (49.2)

M⊥
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1
3
∂tB

⊥

Ra
lc
c

b
, (49.3)

M‖
a =

1
8
∂tB

‖

Ra
lc
b

c
. (49.4)

The user provides the cable twist-pitchlc, the contact- and adjacent resistances,Rc, Ra and the cable
dimensionsb (narrow side - the mean value is taken for keystoned cables) andc (broad side).
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Main options

Option Description

Time Transient Perform a time-stepping, evaluate superconductor magnetiza-
tion.

Design variables

Layers:

Variable Description

FILDIL Filament Diameter in layer (inµm).

Coil Blocks (Cross-Section):

Variable Description

FILDIA Filament Diameter in block (inµm).

TEMPBL Operation temperature in block.

• TheTEMPBL -option sets the operation temperature in specified blocks, e.g., to test the impact of
an inhomogeneous cooling on the margins to quench or on persistent currents. The TEMPBL-option
is used with features that use the critical-current fit function and not with those that use the linear
approximation thereof.

Magnetization:

Variable Description

STRPRI Print info of specified strand(s).

ABSCIS Field harmonic versus excitation- (Bn versusI) plot (see ob-
jectives): takeI of specified block number (default is block 1).

Objectives

Magnetization data:

Variable Description

MSTR Magnetization in filament.

BSTR Magnetic induction in filament.

MSTRT Magnetization modulus.

BSTRT Magnetic modulus.

MSTRF Angle of magnetization.

BSTRF Angle of magnetic induction.

AB Skew and normal harmonics in one plot. Currently not sup-
ported.

DTRF Current factor of block as function of time.

• TheMSTR* - andBSTR*- andDTRF-options plot excitation, field and resulting strand magnetiza-
tion. Thex-axis data varies between the chosen analytical model: IFCCs and PCs-option 1 and 3
yield plots over the excitation current (of the first block); ISCCs and PCs-option 4 plot over the time.
For the latter two options, theMSTRF- andBSTRF-options yield the angular information of the
respective strand’s magnetization and excitation.



Plotting Information 2-D

Coil fields:

Variable Description

MX SC magnetization (x-component).

MY SC magnetization (y-component).

|M| SC magnetization (modulus*sign).

MMOD SC magnetization (modulus).

M SC magnetization vectors.

BPERP B perpendicular to broad face of the conductor.

BPARA B parallel to broad face of the conductor.

Bn strand contr. of M:

Variable Description

M1 B1 contribution of SC magnetization.

M2 B2 contribution of SC magnetization.

M3 B3 contribution of SC magnetization.

M4 B4 contribution of SC magnetization.

M5 B5 contribution of SC magnetization.

M6 B6 contribution of SC magnetization.

M7 B7 contribution of SC magnetization.

M8 B8 contribution of SC magnetization.

M9 B9 contribution of SC magnetization.

M10 B10 contribution of SC magnetization.

M11 B11 contribution of SC magnetization.

Time Transient Effects

Options

Option Description

IFCC (Wilson) Interfilament Coupling Currents - analytical model by M. Wil-
son.

ISCC (Wilson Analytic) Interstrand Coupling Currents - analytical model by M. Wilson.

Nonlinear Inner Iterations Only with BEMFEM calculations of a nonlinear iron yoke are
’on’. This option makes ROXIE recalculate the contribution of
the iron yoke at every step of the inner magnetization iteration.
If ’off’ the nonlinear iron yoke is only calculated before the first
and after the last step of the inner iteration.

Plotting Magn. Fields Only The harmonic analysis is done only from the fields due to SC
magnetization. The perturbation of the field quality due to SC
magnetization is calculated.

• The "IFCC (Wilson) "-option uses a formula to evaluate the total strand magnetization which does
not take into account those Eddy-Current loops that close in the outer copper coating of the strand,
i.e., it assumes a highly resistive barrier between the filaments and the outer coating.

• The "ISCC (Wilson Analytic) "-option a homogeneous magnetization in each conductor. The nature
of ISCCs is better represented in a network model, see Section 49.2.



Parameters

Variable Description

PC: 0:None; 1,3:1D; 4:Vector Persistent Current (PC) calculations. ’0’: no PC calculation;
’1’,’3’: two implementations of the same 1D persistent current
model; ’4’: vector hysteresis model for field-changes in modu-
lus and direction.

Symmetry: 0: Gen., 1: 1in1, 2:
2in1

To use time-transient effects, you should use the layer-option
which generates the full coils. If there is a symmetry, then you
may specify only the blocks first quadrant (in the right aperture)
in the "Block spec. (Peak fields, Forces, FEM plots)"-widget.
SC-magnetization is then only evaluated in these blocks. The
contribution of the other blocks in the layer is considered auto-
matically.

Start Time for Loss Calculation Start time for loss calculation (in seconds).

End Time for Loss Calculation End time for loss calculation (in seconds).

Start Time for Multipole Varia-
tion

The BIRD- and BIRRD-options in the "Objectives"-table calcu-
late the multipole variation during a transfer function or during
a transient calculation. For the latter, the time-frame for the
variation can be given.

Start Time for Multipole Varia-
tion

The BIRD- and BIRRD-options in the "Objectives"-table calcu-
late the multipole variation during a transfer function or during
a transient calculation. For the latter, the time-frame for the
variation can be given.

Maximum Number of Iterations Maxim number of iterations in the determination of the SC mag-
netization.

Time-Grid definition
The table for the definition of a stepping time-grid has the following columns.

Variable Description

No Number of interval.

Ts Start time of interval (seconds).

Te End time of interval (seconds).

Steps Number of time steps in interval.

Excitation function definition
The table for the definition of excitation functions for each block of conductors has the following
columns. Each block can be assigned a number of successive excitation functions over time intervals
that need not be the same as the stepping intervals in the table above. At every step of the stepping table
each block must be assigned one (and only one) excitation function.



Variable Description

No Number of excitation function definition.

Ts Start of excitation interval.

Te End of excitation interval.

Function Predefined excitation functions.

1: Linear ramp, fromA(Ts) to B(Te),

2: A + B cos(Ct + D),

3: Parabolic fromA(Ts) to B(Te) with accelerationC, C
2
t2 +

βt + γ, whereβ andγ are calculated to matchA andB at Ts

andTe.

4: Exponential fromA(Ts) with derivativeB,

5: Quadratic fromA(Ts) with maximum slopeC and linear
slope increase duringB ∆T , compare Fig. 49.1. ParameterD
is ’1’: ramp up, ’2’: ram up and down, ’3’: ramp down.

A Function parameterA.

B Function parameterB.

C Function parameterC.

D Function parameterD.

Blocks,Layers With the "Symmetric Coil"-option blocks are assigned the exci-
tation function in the specified time interval. With the "Layer
Definition"-option, individual layers are assigned excitation
functions.

• Function number 5 withD=2: In this case the∆T in Fig. 49.1 is set to(Te − Ts)/2.

Fig. 49.1: Quadratic excitation function as used in fast-ramping magnets.

49.2 Network model of Interstrand Coupling Currents

For the simulation of interstrand coupling currents an electrical-network model is implemented in ROXIE.
In this model, interstrand coupling currents are not treated as an additional magnetization of the SC con-
ductors (as in the above analytical model) but as additional (positive and negative) line currents in the
position of each strand.

The network model of ISCCs cannot be used with nonlinear iron.

Plotting Information 2-D

Current distribution:

Variable Description

ICC Interstrand coupling currents.



Time transient effects

Options:
All analytical SC magnetization models must be ’off’.

Option Description

ISCC (Network Model) Network model (without inductance matrix for interstrand cou-
pling current determination.

LICC + Mut. Inductances Compute and use the inductance matrix in the network model.

Plotting Magn. Fields Only The harmonic analysis is done only from the fields due to IS-
CCs. The perturbation of the field quality due to ISCCs is cal-
culated.

Parameters:

The "Symmetry"-parameter should be set to zero and all blocks be specified in the "Block spec. (Peak
fields, Forces, FEM plots)"-widget.

Time-grid definition:

The same time-grid definition is used as for the analytical models.

Excitation Function Definition:

The excitation function is defined in the same way as for the analytical models.

49.3 Quench Calculation

Examples for quench calculations are given in Section 49.3. The theory of the calculation is presented in
Chapter 29.

Global information

Option Description

Quench Calculation Perform a quench simulation.

Design variables

Quench, Inductance:

Variable Description

HEATER Heater delay (in seconds) for specified conductor (covered by
the heater).

RRR RRR for conductor specified above.

CFK Factor for series connection (2 dipole, 4 two-in-one dipole etc.).

QUENCH Conductor number in which quench originates.

DUMPR Dump resistance (ohm/unit length of magnet).

DUMPT Delay (in seconds) for switching-in of the dump resistor.

Objectives

Normal Multipoles:

Variable Description

BQUEN Field at short-sample current (quenchfield).



Chapter 50

Interfaces

For examples of the interface-files see Chapter 59.

Option Description

Field-Vector Matrix (Map) Write a file filename.matrfwith the magnetic induction field.
The spacing of the matrix field is defined in the "Field Vector
Matrix"-widget.

CNC Machine files Endspacer machining file. With "3-D Coil Geometry"-option in
"Main options".

Opera 8-node Bricks 3-D bricks of the coil end for the "Opera" field calculation pro-
gram.

Opera 20-node Bricks 3-D bricks of the coil end for the "Opera" field calculation pro-
gram.

Ansys Produces acoilmesh.iron-file with one area for each conductor.

Autocad Autocad (.dxf) file of coil cross-section.

MS Excel Produce a text-file, importable in MS Excel, of coil cross-
section geometry.

Virtual Reality (3-D) Writes afilename.wrl-file which can be opened by any VRML-
browser for an interactive 3-D-view of the coils.

2-D Line Currents Produces afilename.fila2-D-file which contains two tables: (1)
a table with the corner points of the current-carrying areas and
(2) a table with the position of the individual line currents in the
model.

Option Description

3-D Line Currents Produces afilename.fila3-D-file which contains information on
the positioning of line currents in the 3-D coil model.

Extended Printout Add mostly geometrical information to the.output-file.

2-D Field Map in Coil Write the magnetic induction in the position of every strand to
a file.

3-D Field Map in Coil Write the magnetic induction in the position of every strand in
every intersection inz-direction to a file.

Input data from ’BEND’ Read in coil end geometry from ’BEND’ output file.

Write Multipoles for Pp. Write multipoles into text file (one line/time step) for post-
precessing, e.g., in MS Excel.

• In 2-D, the "Field-Vector Matrix (Map) "-option only produces a file if a matrix-option (MATR,
MATRC or MATRP from the "Aperture"-menu) is chosen in the "Plotting Information 2-D"-widget.
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• The "Write Multipoles for Pp. "-option will only yield relative multipoles. If the "no reference"-item
is chosen in the "Type of Coil/Ref. Field"-field of the "Global Information" no output is written.

• Without the "3-D Peak Field Calc."-option in the "Global Information 3-D", the "3-D Field Map in
Coil"-option produces a file with only the geometrical information of strands in the coil end.



Chapter 51

ROXIE/BEM-FEM Transfer Files

51.1 The HMO-file

The .hmo-file contains mesh information. It is produced by either the HERMES 2-D parametric mesh
generator or by the HyperMesh, [4], 3-D mesh generator, using theedyson template file, [127].

The .hmo-file consists of six blocks: The first block contains component information (material
names, coils), the second block contains load collector data, the third block vector collector information,
the fourth block specifies all nodes, the fifth one the elements, and the last one additional boundary con-
ditions. With ROXIE we only make use of blocks one, four and five which we will describe in detail in
the following tables. The.hmo-file is organized as follows:

BEG_COMP_DATA

...

END_COMP_DATA

BEG_NODL_DATA

...

END_NODL_DATA

BEG_ELEM_DATA

...

END_ELEM_DATA

51.1.1 The component data
The body of the component collector data block is structured as follows.
One header record

Variable Type Description

NCOLL I8 Total number of components

A sequence of records with the component numbers and names

Variable Type Description

ICOLL I8 Number of the component

n/a String Component name

For numerical calculations the last component must have the nameSuperCoils. It represents the coils
modelled by line-currents.
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51.1.2 The nodal data
The body of the component data block is structured as follows.
One header record

Variable Type Description

NNT I8 Total number of nodes

A sequence of records with the component numbers and names

Variable Type Description

IN_HMO I8 Number of the node

XYZ(3) 1X,F12.8 Coordinates

For BEMFEM-calculations the node numbers have to be in ascending order. For EDYSON they are only
required to be unique. The coordinates are given in mm. Axisymmetric problems are discretized in the
xy-plane.

51.1.3 Element data
The body of the element data block is structured as follows.
One header record

Type Description

I8 Total number of all elements in file

1X,I8 Total number of L2 elements

1X,I8 Total number of L3 elements

1X,I8 Total number of T3 elements

1X,I8 Total number of T6 elements

1X,I8 Total number of Q4 elements

1X,I8 Total number of Q8 elements

1X,I8 Total number of TH4 elements

1X,I8 Total number of TH10 elements

1X,I8 Total number of P6 elements

1X,I8 Total number of P15 elements

1X,I8 Total number of H8 elements

1X,I8 Total number of H20 elements

A sequence of records which describe the elements

Variable Type Description

IEL_HMO I8 Number of the element

ICOLL 1X,I4 Element component number

ICONF 1X,I3 Element config number

KNE(1) 1X,I8 Number of the first node

KNE(2) 1X,I8 Number of the second node

... ... ...

For BEMFEM-calculations the element numbers have to be in ascending order. For EDYSON they are
only required to be unique.
The element component number describes which material the element belongs to. The material names
are given in the component data block.



The element type numberICONF describes the element geometry as follows:

ICONF Type Description

60 L2 Line element with two nodes

63 L3 Line element with three nodes

103 T3 Triangular element with three nodes

106 T6 Triangular element with six nodes

104 Q4 Quadrilateral element with four nodes

108 Q8 Quadrilateral element with eight nodes

204 TH4 Tetrahedral element with four nodes

210 TH10 Tetrahedral element with ten nodes

206 P6 Pentahedral element with six nodes

215 P15 Pentahedral element with fifteen nodes

208 H8 Hexahedral element with eight nodes

220 H20 Hexahedral element with twenty nodes

With ROXIE we only use element types T6, Q8, P15 and H20. The element-wise node numbering of the
respective types is depicted in Fig. 51.1
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Fig. 51.1: Finite-element types used with ROXIE. Element-wise node numbering in the.hmo-file.

51.2 The COR file
The.cor-file specifies the nodal coordinates for BEMFEM. It is basically a reference for the renumbering
of the.hmo-file nodes. The first line is a header info line (version number, etc.). Then follows the header
data line:

Variable Type Description

NNT I8 Total number of nodes

NDLN I7 Number of degrees of freedom per node

NDIM I6 Dimension of the problem



Then comes a sequence of records of the form:

Variable Type Description

IN Integer Node number

XYZ(3) Double Nodal coordinates

BSECT Integer Boundary section (0:Interior FEM node,>0: BEM node on
given boundary section)

IDOF Integer Number of degrees of freedom for current node

The last line is the closing line:

Variable Type Description

FILEEND Integer FILEEND=-1 denotes the end of the file

The following table summarizes the different coordinate systems for the respective problem types:

Geometry (x1, x2, x3)

Plain 2-D (x, y, 0)

Axisymmetric (r, 0, z)

(z, r, 0)

3-D (x, y, z)

51.3 The ELE file
The .ele-file contains elemental data. It has one header line (version number, etc.) and one data header
line:

Variable Type Description

IELEMS Integer Total number of elements including boundary elements

IMAXNOD Integer Maximum number of nodes per element

It follows a sequence of element records:

Variable Type Description

IEL Integer Element number

ITPE Integer Element type number

ICOLL Integer Collector- (component-) number to which the element belongs

INODS(21) Integer A sequence of node numbers from.cor-file for the current ele-
ment terminated by 0

A file closing line

Variable Type Description

FILEEND Integer FILEEND = -1 denotes the end of the file

51.4 The BDR file
The boundary condition data is given in the.bdr-file. One file header info line (with version number,
etc.) is followed by a sequence of records of the form



Variable Type Description

INOD Integer Node number (.cor-file) at which a boundary condition (BC) is
specified

IDOFTYP(10) 0X,I1 Sequence of 10 flags each of which specifies a type of BC for
each degree of freedom in the node;

flag 0 means: no BC specified

1: homogeneous Dirichlet-condition

2: inhomogeneous Dirichlt-condition

4: pseudo-BEM-nodes for subsequent field calculation

5: inhomogeneity BEM-node

8: positive periodic condition

9: negative periodic condition

VCOND(10) 1X,12.5 Sequence of BC vallues for each degree of freedom

A file closing line

Variable Type Description

FILEEND Integer FILEEND = -1 denotes the end of the file

ROXIE uses only the BC flag 1 for homogeneous Dirichlet-conditions.

51.5 The SOL file
The .sol-file contains the computed results of BEMFEM. It has one file header info line and a sequence
of time steps. For ROXIE there is only one time step available. Each time step is composed of a header
line:

Variable Type Description

ITYP Integer ITYP = -1 marks the header line of a time step

IPAS Integer Number of the present time step

TIME Double Absolute time of the present time step

Then comes a sequence of subblocks containing problem dependent results; each subblock consists of a
block header:

Variable Type Description

ITYP Integer ITYP = -11 marks the block header line of the potential data
block

NCOL Integer Maximum number of data columns (coordinates and/or reults)

NROW Integer Number of rows for the present block (0=not available)

The header is followed by a sequence of records:

Variable Type Description

IN Integer Node number

XYZ(3) Double Nodal Coordinates

V(NCOL-3) Double Results (vector and/or scalar potential)

The block is closed by a line



Variable Type Description

BLOCKEND Integer BLOCKEND = -99 marks the block closing line.

And the time step is closed by

Variable Type Description

TIMESTEPEND Integer TIMESTEPEND = -9 marks the end of the current time step.

51.6 The SRC file
BEM-FEM coupled problems can be driven by a source potential (ϕS,AS) due to impressed charges or
currents in the BEM domain. This potential should be given at the locations of the boundary nodes in
the following structure. The first line yields

Variable Type Description

BNODES I5 Number of nodes belonging to the boundary

Then follows a sequence of records with node numbers, nodal coordinates and prescribed potential val-
ues.

Variable Type Description

IN I5 .cor-file node number

XYZ(3) 1X,E18.11 Coordinates

POT(3) 1X,E18.11 prescribed source potential, see below

The node numbers must be in ascending orders and the number of records must be equalBNODES. The
degrees of freedom of the impressed source potential depend on the problem type as follows:

Problem Type DOF1 DOF2 DOF3

2-D Az

2-D Axi-symm. rAϕ

3-D vector Pot. Ax Ay Az

3-D scalar Pot. ϕ

51.7 The EVAL.LOC file
The BEM-FEM coupling allows the evaluation of the reduced potentials and fields at arbitrary points in
the BEM domain once the problem has been solved. Such additional evaluation points are given in the
eval.loc-file with the following structure. The header record yields

Variable Type Description

NKSI I5 Number of additional evaluation points

HFD 1X,E12.5 Parameterh for finite differences

The header is followed by a sequence of records with the coordinates of the evaluation points:

Variable Type Description

I I5 Number of evaluation point

V(3) 1X,E18.11 Coordinates



51.8 The EVALBFOUT.LOC file
On exit of a BEMFEM run an output file is written that yields the potential in the additional evaluation
points specified in theeval.loc-file. The header record reads:

Variable Type Description

NKSI I5 Number of additional evaluation points

Then follows a sequence of records with the results:

Variable Type Description

I I6 Number of the evaluation point

V(9) 1X,E18.11 Coordinates and result DOF, see below

The degrees of freedom that appear depend on the problem type:

Problem type DOF1 2 3 4 5 6 7 8 9

MagneticA 2-D x y Az Bx By

Axi z r rAϕ Bz Br

3-D x y z Ax Ay Az Bx By Bz

Magneticϕ 3-D x y z ϕ Bx By Bz

TheB field is computed from the potentials by means of finite differences with the parameterHFD.

51.9 The PLOTBF.OUT file
Some results from a computation for postprocessing are written to a textfile. In 2-D, this is theplotbf.out-
file. It starts with a header record

Variable Type Description

NELT Integer Number of finite elements

Then come the finite-element headers, each one followed by a sequence of nodal records. The element
header has

Variable Type Description

IEL I5 Number of the element as specifiend in the.ele-file

INEL I5 Number of nodes in the element

IGPE I5 Properties group number as specified in the.ele-file

MUR 1X,E12.5 Average relative permeability of the element

The nodal records of each element read

Variable Type Description

KNOD I5 Internal number of the considered node (not realted to.cor-file)

XY(2) 1X,E12.5 x-, y-coordinate

BXY(2) 1X,E12.5 Bx-, By-component

AZ 1X,E12.5 Az-component

The results are total fields (sum of reduced- and source fields). For Q8 quadrilateral elements a 9th line
is added with emptyKNOD entry. This record contains the field and potential values in the center of the
element.



51.10 The PLOTBF3-D.OUT file
The postprocessing file for 3-D calculations is somewhat differently structured than theplotbf.out-file.
There is one header record

Variable Type Description

RELT Integer Number of boundary elements

A sequence of records for each boundary element, each one followed by a sequence of nodal records.

Variable Type Description

IEL I5 Consecutive number of the boundary element

INEL I5 Number of nodes in the element

The nodal records read

Variable Type Description

KNOD I5 Internal number of the considered node (not realted to.cor-file)

XYZ(3) 1X,E12.5 x-, y-, z-coordinate

A(3) 1X,E12.5 Ax-, Ay-, Az-component

B(3) 1X,E12.5 Bx-, By-, Bz-component

51.11 Additional files
The following files are not further detailed in this manual:

File Description

.DAPA Magnetization curves for BEMFEM

.dyn Contains integral and mechanical result quantities for each time
step

.ght Binary file which contains the BEM matrices of a previous run

.inp BEMFEM input file

.out collects messages from a BEMFEM run



Chapter 52

Program structure

52.1 Overall structure of the ROXIE program with input and output files
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r o x i e . t e s t l o g

f n . o d a t a f n . s c a n  

C O I L  P R E V I E W

( 4 4 )

C A M D X F F I E L D M A P S S T D O U T O P E R A
A n s y s

G R A P H I C S

/ b i n / r u n r o x i e

f n . v f e m

f n . d x f s z i  / z o

f n . d x f c o r n

 

( c )   R .  B o s c h

 ( c )  R .  B o s c h

a n s y s . i n p

M E S H  P R E V I E W

f n . b e n d  ( 4 )
f n . s c a n  ( 2 )

G E N E T I C  A L G O R I T H M

B E F E T R A N  /  E D Y T R A N S

B E M - F E M  /  E D Y S O N

 ( c )   I G T E  G r a z

V R

f n . p o s t  
f n . w r l

H E R M E S

M G E N 2 H M O

I R O N  B - H
r o x i e . b h d a t a

D B 2 M G E N
G D Q _ M E S H  
( c )  U n i - S t u t t g a r t
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52.2 File transfer structure for finite element calculations

B E M - F E M  
( c )   I T E  S t u t t g a r t

B E F E T R A N
 ( c )  I T E  S t u t t g a r t

~ . i n p

~ . c o r
~ . e l e  
~ . b d r

F B D MG D Q _ M E S H

M G E N 2 H M O
( C )  U N I - S T U T T G A R T

. d b

e v a l . l o c
b e m f e m . s r c

e v a l b f o u t . l o c

p l o t b f . o u t
p l o t b f 3 d . o u t

~ . s e t

D B 2 M G E N

d e s i g n v . i h e r m

E D Y T R A N S
 ( c )  R o b e r t  B o s c h

E D Y S O N  
 ( c )  R o b e r t  B o s c h

~ . c o r
~ . e l e  
~ . b d r
~ . i n p

~ . i n i

X h e r m e s
. i r o n

V E D Y S O N

R O X I E 2 I N I

~ . h m o

H E R M E S
P A R A M E T R I C  P R E - P R E  P R O C E S S O R

M E S H - G E N E R A T O R

L B E M F E ML E D Y S O N

~ . D A P A

L V E D Y S O N

~ . D A P A

b e m f e m . i n p

b e m f e m . s o l
b e m f e m . g h t

~ . h m o

52.3 File transfer structure for mesh generation

F E M  S O L V E R

B E M - F E M  

F E M 2 D   ( c )   I G T E

m e i n 0 1 - 0 4 . i n p

d e s i g n v . i h e r m

m f e m 0 1 . i n i

 

B E F E T R A N  ( c )  R .  B o s c h

m f e m 0 1 . i n i

~ . h m o

H E R M E S

F B D M

P A R A M E T R I C  P R E - P R E  P R O C E S S O R
M E S H - G E N E R A T O R

M O R P H

G D Q _ M E S H

M G E N 2 H M O

( C )  U N I - S T U T T G A R T

. v f e m

. d b

p o i n t s . d a t

m g e n . # . d a t
m g e n . # . a i r . d a t

m g e n n e t . #p o i n t s . d a t

b a s e . h m o
b a s e . v f e m

l i n e s . b a s e . d a t
p o i n t s . b a s e . d a t

p l o t . o u t
e v a l o u t . l o c

q u e l 3 . i n p
e v a l . l o c

~ . h m o

m g e n . v f e m

m g e n . o u t

m g e n . o u t

m g e n . o u t

D B 2 M G E N

. v f e m
a n s y s . i n p

E D Y T R A N S  ( c )  R .  B o s c h

E D Y S O N  
 ( c )  R .  B o s c h
 ( c )  R .  B o s c h

~ . D A P A



Chapter 53

ROXIE License Agreement

License Agreement No. Kxxx/LHC

between

The European Organization for Nuclear Research,
an Intergovernmental Organization whose seat is at Geneva,
Switzerland, (hereafter referred to as CERN),

on the one hand, and

SAMPLE LAB on the other hand,

hereafter collectively referred to as the Parties;

WHEREAS

Stephan Russenschuck at CERN has developed a software product called "ROXIE";

The Software incorporates a software called "BEM-FEM light" which has been developed and
licensed to CERN by the Robert Bosch GmbH, Stuttgart, Germany . The license granted to CERN
includes the right to "give use of BEM-FEM light" merged with Roxie to a defined circle of users;

The Software incorporates another software called "FEM2D" which has been developed and li-
censed to CERN by Oszkar Biro and Kurt Preis at IGTE, Technical University of Graz, Austria. The
license granted to CERN includes the right sub-license third parties;

"ROXIE" including "FEM2D"and "BEM-FEM light" is hereafter referred to as the Software;

THE PARTIES HEREWITH AGREE AS FOLLOWS :

1. The Parties agree that, except for the rights held by Oszkar Biro and Kurt Preis with regard to
"FEM2D" and the rights held by the Robert Bosch GmbH with regard to "BEM-FEM light" the
copyright and all other rights related to the Software, in whatever form, including but not limited
to the object code (LINUX), the TCL-TK user interface and any user documentation, are vested in
CERN.

2. CERN herewith agrees to grant to Licensee a non-exclusive, non-transferable license to use and
copy (hereafter collectively referred to as Use) the Software exclusively for the purpose defined
and subject to the conditions stated hereunder.
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3. Licensee shall Use the Software via local installations of the object code on LINUX platforms.
Licensee is aware that such Use is subject to his having access to a TCL/TK version 7.6/4.2.

4. The provision by CERN of the Software is on an "as-is" basis with no express or implied warranties
of any kind including but not limited to those of merchantability, fitness for a particular purpose
and non-infringement of the proprietary rights, such as copyrights, patents and trade secrets, of
third parties. CERN, Oszkar Biro and Kurt Preis and the Robert Bosch GmbH accept no liability
whatsoever in relation to the Software and Licensee shall hold CERN, Oszkar Biro and Kurt Preis
and the Robert Bosch GmbH free and harmless from any liability arising from the Use of or
inability to Use the latter.

5. The Software is licensed for internal Use by Licensee only and Licensee shall not market, dis-
tribute, transfer, license or sub-license the Software to third parties it being understood that the
Use of the Software for military applications is in any case forbidden.

6. Licensee shall not assign the present License Agreement to a third party.

7. Licensee shall ensure that all copies of the Software shall contain in full the copyright statements
which are included in the Software.

8. Any reference, library documentation or other publication made by Licensee in connection with
the Software shall include the following reference: S. Russenschuck, Electromagnetic Design and
Mathematical Optimization in Magnet Technology, E-book,
ISBN: 92-9083-242-8, http://russ.home.cern.ch/russ

9. Within thirty days of the entry into force of the present License Agreement Licensee shall pay
CERN the amount of 3.000 CHF (three thousand Swiss francs). Any bank or other transfer charges
shall be at the expense of Licensee.

10. CERN shall keep Licensee informed of any up-date of the Software it being understood however
that any license of such up-dated version of the Software may be subject to a separate agreement.

11. Licensee shall take all necessary measures to prevent any infringement of the terms of this License
Agreement. Licensee shall be liable to CERN for any such infringement and hold CERN free and
harmless against any and all claims or lawsuits which may result therefrom.

12. Without prejudice to the foregoing, in case of an infringement by Licensee of the terms of this
License Agreement, CERN is entitled to terminate this License Agreement forthwith, without any
compensation being due by CERN to Licensee in relation therewith.

13. Each Party shall have the right to terminate the present License Agreement at any time by giving
the other party two month prior notice. If the agreement is terminated prior to three months, CERN
shall reimburse the License fee in the amount of 3.000 CHF (three thousand Swiss francs).

14. In case this License Agreement is terminated, Licensee shall delete all copies of the Software, in-
cluding the user documentation and shall give written evidence to CERN of the Software deletion.

15. Any dispute arising from this license agreement which cannot be settled amicably shall be submit-
ted to arbitration, to be held in Geneva, Switzerland.

16. This License Agreement shall be interpreted in accordance with its true meaning and effect and,
as a consequence of CERN’s status as an Intergovernmental Organization, independently of any
national or local law. Provided that if and insofar as this License Agreement does not stipulate, or
any of the terms and conditions are ambiguous or unclear, then, in those circumstances only and
solely in respect of those circumstances and not in respect of the License Agreement as a whole,
reference shall be had to Swiss law.



17. This License Agreement cancels and replaces any previous agreement with regard to the Software
between CERN and Licensee and constitutes the sole agreement between the Parties.



Chapter 54

Index of ROXIE Options

Main Options

Symmetric Coil Section 45.1
3-D Coil Geometry Section 45.2
Layer Definition Section 45.1
Wedge/Endspacer Section 45.2
Optimization Section 42.1
Postscript Plots all sections
Time Transients Chapter 49
Axi-Symmetry Section 46.1
Transfer Function Section 48.7

FEM/BEMFEM Options

Mesh-Generator Chapter 48
Morphing (no remesh) Chapter 47
Permanent Magnets Section 48.8
Reduced Ar FEM Section 48.4
Vect.Pot. BEMFEM Section 48.5,

Section 48.6
PSItot BEMFEM Section 48.6
Post-proc. only Chapter 48
Bosch-Edyson not available
Edyson + .ini file not available

Global Information

Options

Quench Calculation Section 49.3
Grading of Current Density Section 46.1
Self Field in Strands Section 46.1
Self and Mutual Inductance Section 46.1
Quench and Temp. margin Section 46.1
Peak Field in Coil Section 46.1
Cond. Alignment OD Section 45.1
Window Frames Section 45.1
Single wires on mandrel Section 45.1

Parameters

Radius of harmonic analysis Section 46.1
Highest order of multipole coeff. Section 46.1
Inner radius of the iron yoke Section 46.1

Contraction (1-fac. defined) Section 45.1
Relative permeability of yoke Section 46.1
Type of coil / ref. field Section 45.1,

Section 46.1
Optimization algorithm Section 42.1

Global Information 3-D

Options

Additional Bricks Section 45.2
3-D Peak Field Calc. Section 46.3
3-D Field Harmonics Section 46.3
Additional Leads Section 45.2
Rutherford Cable Model Section 45.2
Super-Elliptical Coil-End Section 45.2
Coil imaged at z=0 Plane Section 45.2

Parameters

Maximum size of Coil Ends Section 45.2
Number of Cuts in Z-Plane Section 45.2
Number of Blocks in Outer Layer Section 45.2
Length of Extension into -Z Dir. Section 45.2
Cable Size Increase in ends Section 45.2

Layers

The input of the "Layers"-table is described in Sec-
tion 45.1 and Section 45.2.

Block Data 2-D

The "Block Data 2-D"-table is described in Sec-
tion 45.1.

Block Data 3-D

The "Block Data 3-D"-table is described in Sec-
tion 45.2.
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Design Variables

Layer:

XSHIFL Section 45.1
YSHIFL Section 45.1
NUMLBL Section 45.1
DRIL Section 45.1
PHI0L Section 45.1
ALPH0L Section 45.1
CURNLH Section 45.1
DBZ0L Section 45.2
DZZ0L Section 45.2
TURNL Section 45.1
TURNLS Section 45.1
RECTLA Section 45.1
WIRELA Section 45.1

Coil-blocks (cross-section):

NUMCBL Section 45.1
PHI0 Section 45.1
ALPH0 Section 45.1
PHIR Section 45.1
ALPHR Section 45.1
PHIRS Section 45.1
ALPHRS Section 45.1
PHIALP Section 45.1
GAP Section 45.1
PHIV Section 45.1
PHIVGL Section 45.1
RSHIFT Section 45.1
XSHIFT Section 45.1
YSHIFT Section 45.1
ALPH0V Section 45.1
RECTBL Section 45.1
WIREBL Section 45.1
TILT Section 45.1
ODFAC Section 45.1
INCL Section 45.1
DFAKG Section 45.1
DFAK Section 45.1
DJFACH Section 45.1
DFACW Section 45.1

Conductors:

DRI Section 45.1
DHI Section 45.1
DWO Section 45.1
DWI Section 45.1
DRIC Section 45.1
DHIC Section 45.1
DWOC Section 45.1
DWIC Section 45.1

DWIOC Section 45.1
SHIM Section 45.1
XSHIFC Section 45.1
YSHIFC Section 45.1
RSHIFC Section 45.1
XSH12 Section 45.1
XSH34 Section 45.1
YSH12 Section 45.1
YSH34 Section 45.1

Coil ends:

DBZ0 Section 45.2
DZZ0 Section 45.2
DZZR Section 45.2
BETAZ Section 45.2
CENTER Section 45.2
EXTRXS Section 45.2
EXTRYS Section 45.2
EXTRPH Section 45.2
DPERMF Section 45.2
DPERMB Section 45.2
PERIMI Section 45.2
PERIMO Section 45.2
DYZS Section 45.2
DZZS Section 45.2
DYZSB Section 45.2
DZZSB Section 45.2
DYZSL Section 45.2
DZZSL Section 45.2

Coil ends (differential forms):

BOVERA Section 45.2
HORDER Section 45.2
BULGE Section 45.2
TORS1 Section 45.2
TORS2 Section 45.2
TORS3 Section 45.2
TORS4 Section 45.2

3-D Transform:

TRANSZ Section 45.2
TRANSX Section 45.2
TRANSY Section 45.2
TRAIMZ Section 45.2
TRANSF Section 45.2
TRANST Section 45.2
TRANSO Section 45.2
TRANIX Section 45.2
TRANLZ Section 45.2
TRANLX Section 45.2
TRANLY Section 45.2
TRAILZ Section 45.2



TRANLF Section 45.2
TRANLT Section 45.2
TRANLO Section 45.2

2-D Transform (layers and blocks):

SHIFX Section 45.1
SHIFY Section 45.1
SHIFF Section 45.1
SHIFR Section 45.1
SHIFLX Section 45.1
SHIFLY Section 45.1
SHIFLF Section 45.1
SHIFLR Section 45.1

Current:

CURNTB Section 46.1
CURNTH Section 46.1
CURNTC Section 46.1
CURNTS Section 46.1
CURNTD Section 46.1
CURNTF Section 46.1
CURRFH Section 46.1

Plotting:

SCALFN Section 45.1
SCALIZ Section 46.3
BLOCKC Section 45.2
BRICKC Section 45.2
HMOMM Chapter 48

FEM:

SYMMR Section 48.4
RIHARM Section 48.4
SGL1 Section 48.4
DBL1 Section 48.4
WINDOW Section 48.4
SGL12 Section 48.4
SGL14 Section 48.4
DBL14 Section 48.4
FULL Section 48.4

BEMFEM 2-D:

SGL1 Section 48.5
DBL1 Section 48.5
WINDOW Section 48.5
SGL12 Section 48.5
SGL14 Section 48.5
DBL14 Section 48.5
FULL Section 48.5
HARD Section 48.5
CURRY Section 48.5

FRINGR Section 48.5
FRINGA Section 48.5
ACCIMP Section 48.5

BEMFEM 3-D (half):

SGLH1 Section 48.6
DBLH1 Section 48.6
WINDOH Section 48.6
SGLH12 Section 48.6
SGLH14 Section 48.6
DBLH14 Section 48.6
FULLH Section 48.6

BEMFEM 3-D (full):

SGLF1 Section 48.6
DBLF1 Section 48.6
WINDOF Section 48.6
SGLF12 Section 48.6
SGLF14 Section 48.6
DBLF14 Section 48.6
FULLF Section 48.6

Quench, Inductance:

HEATER Section 49.3
RRR Section 49.3
CFK Section 49.3
QUENCH Section 49.3
DUMPR Section 49.3
DUMPT Section 49.3
TURNS Section 46.1

Optimization:

STEPS Section 42.1
NNEUR Section 42.1
SSTAT Section 42.1
NMLE Section 42.1

Magnetization:

STRPRI Section 49.1
ABSCIS Section 49.1

Additional field:

ADDX Section 46.1
ADDY Section 46.1
ADDZ Section 46.1



Other:

XCOIL Section 46.1
YCOIL Section 46.1
FCOIL Section 46.1
DELLI Section 46.1
DCONT Section 45.1
R Section 46.1
FSCAL Section 46.3
CONPHI Section 46.1
COSPHI Section 46.1
ELLPHI Section 46.1
EDYFAC not available
EDONLY not available
IRISB3 Section 46.1
IRISB5 Section 46.1
IRISB7 Section 46.1
IRISB9 Section 46.1
IRIERR Section 46.1
GDFIEL Section 46.1
GDFSV Section 46.1
MAXW Section 46.1

Objectives

Normal Multipoles:

B Section 46.1
BR Section 46.1
B3 Section 46.3
B3R Section 46.3
BQUEN Section 49.3
BIR Chapter 48
BIRR Chapter 48

Skew Multipoles:

A Section 46.1
AR Section 46.1
A3 Section 46.3
A3R Section 46.3
AIR Chapter 48
AIRR Chapter 48

Normal Multipoles (vers. excit.):

BIRI Section 48.7
BIRRI Section 48.7
BIRN Section 48.7
BIRRN Section 48.7
BIRD Section 48.7
BIRRD Section 48.7

Skew Multipoles (vers. excit.):

AIRI Section 48.7
AIRRI Section 48.7

AIRN Section 48.7
AIRRN Section 48.7
AIRD Section 48.7
AIRRD Section 48.7

Global values:

NORM2X Section 42.1
NORM1X Section 42.1
NIB Section 48.7
BOVERI Section 48.7
GDFIER Section 46.1
MARGMI Section 46.1
XCOIL Section 46.1
YCOIL Section 46.1
DELLI Section 46.1
DCONT Section 45.1
INCLM Section 45.1
INCMAX Section 45.1
SINDU Section 48.7
SINDUD Section 48.7
TORQUE Section 46.1

Conductor data:

ALLIGN Section 45.2
DTWLE Section 45.2
CURVAT Section 45.2
BULGE Section 45.2
PVAR Section 46.3
R14CO Section 45.1
R23CO Section 45.1
F14CO Section 45.1
F23CO Section 45.1

Peak fields:

PEAK Section 46.1
PEAK3-D Section 46.3
LOADLI Section 46.1

Block (input) data:

PHI0 Section 45.1
ALPH0 Section 45.1
CURNTB Section 46.1
DRI Section 45.1
DHI Section 45.1
DW0 Section 45.1
DWI Section 45.1
DFAK Section 45.1
PHIV Section 45.1
RSHIFT Section 45.1
XSHIFT Section 45.1
YSHIFT Section 45.1



DBZ0 Section 45.2
DZZ0 Section 45.2
BETAZ Section 45.2

Block geometry:

INCLIN Section 45.1
PHI1 Section 45.1
PHI2 Section 45.1
PHI3 Section 45.1
PHI4 Section 45.1
XPOS1 Section 45.1
XPOS2 Section 45.1
XPOS3 Section 45.1
XPOS4 Section 45.1
YPOS1 Section 45.1
YPOS2 Section 45.1
YPOS3 Section 45.1
YPOS4 Section 45.1

Magnetization data:

MSTR Section 49.1
BSTR Section 49.1
MSTRT Section 49.1
BSTRT Section 49.1
MSTRF Section 49.1
BSTRF Section 49.1
AB Section 49.1
DTRF Section 49.1

Solenoid data:

SOLBXM Section 46.1
SOLBYM Section 46.1
SOLBXD Section 46.1

Magnetic levitation:

LEVDX Section 46.2
LEVDY Section 46.2
LEVYM Section 46.2

Coil ends (differential forms):

TORSIO Section 45.2
NORMA Section 45.2
GEODE Section 45.2
GEOSTR Section 45.2
EREG Section 45.2

Plotting Information 2-D

Coordinate Axes Section 43.1
Legend Section 43.1
Image Iron at X-Axis Section 43.1
Image Iron at Y-Axis Section 43.1

Area Boundary Plot Section 43.1
Poly-Marker Section 43.1
More Plot Options Section 43.1

Geometry:

NUMMC Section 45.1
NUMMB Section 45.1
NOCND Section 45.1
WEDGE Section 45.1
DISPLV Section 45.1
YOKE Section 46.1

Aperture:

QUAL Section 46.1
QUAL2 Section 46.1
QUAL3 Section 46.1
IRIS Section 46.1
MATR Section 46.1
MATRC Section 46.1
MATRP Section 46.1

Coil fields:

A Section 46.1
ARED Chapter 48
BR Chapter 48
BREDX Chapter 48
BREDY Chapter 48
BX Section 46.1
BY Section 46.1
|B| Section 46.1
B Section 46.1
MX Section 49.1
MY Section 49.1
|M| Section 49.1
MMOD Section 49.1
M Section 49.1
BPERP Section 46.1
BPARA Section 46.1
MARG Section 46.1
MARGT Section 46.1

Lorentz forces:

FX Section 46.1
FY Section 46.1
|F| Section 46.1
F Section 46.1
FPERP Section 46.1
FPARA Section 46.1
FORC Section 46.1
FPN Section 46.1



Current distribution:

I Section 46.1
JELE Section 46.1
JCU Section 46.1
JSC Section 46.1
ICC Section 49.2
|I| Section 46.1
|JEL| Section 46.1
|JCU| Section 46.1
|JSC| Section 46.1

FEM:

MESH Section 48.4
IRON Section 48.4
AR Section 48.4
|BRED| Section 48.4
|BTOT| Section 48.4
|BS| Section 48.4
MUE Section 48.4
MUEFAC Section 48.4

BEMFEM:

MESH Section 48.5
IRON Section 48.5
AR Section 48.5
|BTOT| Section 48.5
MUE Section 48.5
MUEFAC Section 48.5

EDYSON GENERAL:

IRON not available
MESH not available
MUE not available
MUEFAC not available

EDYSON POTENTIALS:

AX not available
AY not available
AZ not available
|A| not available
AXN not available
AYN not available
AZN not available
RAPHI not available
RAPHIN not available
PHI not available
PHIN not available

EDYSON CURRENTS:

JX not available
JY not available
JZ not available
|J| not available
JVEC not available
J2S not available

EDYSON FIELDS:

|B| not available
BVEC not available
BX not available
BY not available
BZ not available
|H| not available
HVEC not available
HX not available
HY not available
HZ not available
|E| not available
EVEC not available
EX not available
EY not available
EZ not available

Bn strand contr. of I:

B1 Section 46.1
B2 Section 46.1
B3 Section 46.1
B4 Section 46.1
B5 Section 46.1
B6 Section 46.1
B7 Section 46.1
B8 Section 46.1
B9 Section 46.1
B10 Section 46.1
B11 Section 46.1

Bn strand contr. of M:

M1 Section 49.1
M2 Section 49.1
M3 Section 49.1
M4 Section 49.1
M5 Section 49.1
M6 Section 49.1
M7 Section 49.1
M8 Section 49.1
M9 Section 49.1
M10 Section 49.1
M11 Section 49.1



Plotting Information 3-D

Plot imaged at z=0 Plane Section 43.1
Display of Cut-Planes Section 43.1
3-D Min. Field in Cond. Section 46.3
3-D Max. Field in Cond. Section 46.3
No shift of Plot Center Section 43.1
Plot of Coordinate System Section 43.1

Interface Options

Field-Vector Matrix Section 46.1
Field along a Line (2-D,3-D) Section 46.1
CNC Machine files Section 45.2
Opera 8-node Bricks Section 50
Opera 20-node Bricks Section 50
Ansys Section 50
Autocad Section 50
MS Excel Section 50
Virtual Reality (3-D) Section 50
2-D Field Map in Coil Section 46.1
3-D Field Map in Coil Section 46.3
Extended Printout Section 50
3-D Line Currents Section 46.3
2-D Line Currents Section 46.1
Input data from ’BEND’ Section 50
Scan through .scan File Section 50
Levitation (grad B**2) Section 46.2
Strips from Darboux Vec. Section 45.2
Write Multipoles for pp. Section 50
Cockpit Software outp. Section 42.1

Transient Effects

Options

IFCC (Wilson) Section 49.1
ISCC (Wilson analytic) Section 49.1
ISCC (network model) Section 49.2
LICC + mut. inductances Section 49.2
Nonlinear Inner Iterations Section 49.1
Plotting Magn. Fields Only Section 49.1

Parameters

PC: 0:None; 1,3:1D; 4:Vector Section 49.1
Symmetry: 0:gen, 1:1in1, 2:2in1 Section 49.1
Start Time for Loss Calculation Chapter 49
End Time for Loss Calculation Chapter 49
Start Time for Multipole Variation Chapter 49
End Time for Multipole Variation Chapter 49



Part IX

Examples of ROXIE Applications
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Chapter 55

Coil Modeling

55.1 2-D coil modeling

We start with the cosine-theta coil geometry as this is the option that ROXIE was initially conceived for.

55.1.1 Cosine-Theta cross-section

!

"

r

N1

N2

Fig. 55.1: The parametersr (radius),ϕ (po-

sitioning angle) andα (inclination angle)

used in the definition of a block of conduc-

tors.

The "Block Data 2-D"-table is the basic input instrument
to create a 2-D coil model. A coil is made of blocks which are
formed by a number of conductors - usually Rutherford-type or
ribbon-type conductors, rectangular in shape. The conductors are
placed in the cross-section such that they approximate a cosine-
n-theta current-density distribution in a circular shell around the
magnet’s aperture.

The parametersr (radius),ϕ (positioning angle) andα (in-
clination angle) are shown in Fig. 55.1. The conductor name must
be defined in either theroxie.madata-file or theroxie.cadata-file.

!

"

r

N1

N2

Fig. 55.2: The parame-

ters N1 and N2.

The variables N1 and N2 give the discretization in radial and azimuthal
direction of the conductors, see Fig. 55.2. This is not equivalent to the number of
strands which is given in either theroxie.madata- or theroxie.cadata-file.

The three blocks in Fig. 55.3 (left) are defined by the following input table.

The effect of the turn and image data is illustrated in Fig. 55.3 (right). The input is given below.
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Fig. 55.3: Left: 1st quadrant of a dipole design. Right:Use of image and turn data in the "Block Data 2-D"-table.

55.1.2 The Symmetry option

Fig. 55.4: Geometry of Fig. 55.3 with symmetry

option. Note that ROXIE does not give block- (or

conductor-) numbers to the implicitly defined enti-

ties.

To make use of symmetries in coil designs the "Sym-
metric Coil"-option was included in the "Main Options".
The cross-section is defined for one pole only and only in
the first quadrant. ROXIE does not actually generate the
entire coil-geometry - no block- or conductor numbers are
given. The "Type of coil/ref. field"-value in the "Global
Information"-widget tells ROXIE what kind of magnet sym-
metry is to be used. The implicitly defined conductors and
the sign of the current in each of them are taken into account
during field calculation.

At a later stage of development, the layer option was
introduced, see Section 55.1.3, which is now standard for
many features such as non-linear iron calculations with BEM-
FEM coupling or persistent current calculations. The reason
for this is that the layer-option generates the entire coil ge-
ometry with all conductors. The advantage of the symmetry-
over the layer option is that, in order to do a transformation

(e.g., during an optimization run) only those blocks (of the first pole) that lie in the first quadrant need to
be addressed and all implicitly defined blocks and conductors are transformed accordingly.

With "Dipole" defined in the "Global information"-widget and the "Symmetric coil"-option checked
in the "Main Options", the geometry of Fig. 55.3 looks like Fig. 55.4.

55.1.3 The Layer option

As mentioned above, the layer option, contrary to the symmetry option, generates additional blocks
of conductors from the ones that are specified in the "Block Data 2-D"-table. It also allows to assign
different geometry types to different layers in the cross-section. To this purpose the "Layer"-widget
appears that allows to assign blocks to layers and to specify the respective geometry type. The following
input produces the geometry in Fig. 55.5.



Fig. 55.5: Two layers, an inner dipole and an outer

quadrupole. Note that all blocks (and conductors) are as-

signed numbers when the layer option is used.

With the layer option switched ’on’, the "Type
of coil/ref. field"-value in the "Global Information"-
widget does not define the coil geometry but only the
reference field for harmonic field analysis, see Chap-
ter 46.1.

Many transformations in the "Design Variables"-
widget apply to individual conductors, blocks or en-
tire layers. A transformation applied to a block in the
"Block Data 2-D"-table applies to this block alone and
not to the ones generated by the layer option. Therefore
it is important to understand the numbering scheme of
the generated blocks:
The first numbers are given to the blocks defined in
the "Block Data 2-D"-table. Then the algorithm works
layer by layer and block by block, i.e., it will start with
block number one in layer one and generate and num-
ber the mirrored and turned new blocks before passing
on to block 2 in layer 1. Then comes layer 2 and so
forth, compare Fig. 55.5. The block numbering can al-
ways be checked either in the "Preview Window"-or by
printing block numbers in a postscript plots.

55.1.4 Rectangular cross-section

Fig. 55.6: Window-frame magnet design obtained from

setting the "Window Frames"-option ’on’, setting the

layer-geometry to "Dipole" and setting theα inclination

angles to 0 or 90 degrees, compare Fig. 55.5.

The standard input option for coil cross-sections
is the cosine-theta coil. If other magnet times are to be
modeled, this has to be explicitly stated in the input file.
The second-most common design variant has rectan-
gular conductor- and block shapes (different window-
frame designs, conventional magnets).

The standard option is the "Window Frames"-
option in the "Global Variables"-widget. For the in-
put we use same tables and symmetry/layer options
as for cosine-theta magnets. Only the meaning of the
geometry-data in the "Block Data 2-D"-table changes.
Ther-variable becomes thex-variable of the block po-
sition and theϕ- becomes they-variable. Theα-angle
is mostly 0 or 90 degrees for window-frame magnets.
The following input produces the geometry in Fig. 55.6.

• Note that with the the "Window Frames"-option switched ’on’, ROXIE stacks keystoned cables onto
each other keeping their mid-planes parallel. The inner width of the conductor defines the conductor



spacing. The use of keystoned conductors will thus not make sense, although the program is not
going to abort. Keystoned conductors will overlap in a rectangular cross-section.

55.1.5 Wires on the mandrel

Fig. 55.7: Model of singles wires

wound on the mandrel.

A third cross-section option is that of individual wires on the
mandrel. In that caser- andϕ-variables act as in the cosine-theta case,
but α becomes the increment angle between individual wires in the
block. To use wires on the mandrel the "Single wires on mandrel"-
option needs to be clicked. The following input yields the output in
Fig. 55.7.

55.1.6 Solenoidal magnets

To solve a 2-D solenoidal problem, the Maxwell Equations are solved in cylindrical coordinates. When
the "Axi-Symmetry"-option in the "Main Options" is chosen, every wire in the ROXIE model represents a
full circular current loop. ROXIE assumes the solenoid axis to lie on thex-axis. Therefore solenoid mod-
els are built only in the upper half-plane. The following input (with "Window-Frames"-option clicked)
leads to the coil model of Fig. 55.8 (left) and the field shown in Fig. 55.8 (right).

Fig. 55.8: Left: Model of a solenoid coil. Each strand in the cables represents a current loop around thex-axis. Right: Solenoid

field.



55.1.7 Examples of design variable transformations

Coil-blocks (cross-section):

The following input produces the output in Fig. 55.9 (left):

The transformations that have been applied to the design of Fig. 55.5 (all values are either degrees or
millimeters or integer numbers) are summarized as follows. Note that the blocks in the fourth quadrant
have not been altered and can be used for comparison.

• The number of conductors in Block 1 was reduced to 5.

• Block 1 was repositioned atϕ1 andα1.

• Block 2 was positioned relative to Block 1 withϕ2 = ϕ1 + 5 andα2 = α1 + 9.

• Block 3 was positioned atϕ3 = ϕ2 + 10. The angleα3 is chosen such that the resulting wedge
between Blocks 2 and 3 is symmetric. (This eliminates a source of error during the coil assembly
and helps to reduce costs.)

• Block 8 was reset toϕ8 = α8 = 37.

• The Block 11 was shifted 10 degrees towards they-axis and 10 mm towards the center.

• The inclination angle of block 12 was augmented by 15 degrees.

• The blocks 5, 6, 16, and 17 were set to be of rectangular shape. Thus the input in the "Block Data
2-D" is read as if the "Window Frames"-option was clicked ’on’.

• The blocks 5, 6, and 16 are turned in different ways: The "TILT"-option for Block 5 inclines the
conductors while leaving the block in upright position; The "INCL"-option for Block 6 leaves the
conductors flat but the block is built up in an inclined way; The "ALPH0"-option does the same
that a none-zeroα angle in the "Block Data 2-D"-table would do: it inclines the entire block and
its conductors, the block-shape remaining rectangular.

• The cable width in Block 14 is increased by a factor of 1.5.

• The cable height in Block 15 is increased by a factor of 3 - the current in the line currents is
increased such that the current density remains unchanged.



Layer:

The "Layer"-options in the design variables apply to either an entire layer or to a block in the "Block
Data 2-D"-table and all the blocks generated from that one. Several options are used in the following
example, compare Fig. 55.9 (right):

• Block number 1 and hence the Blocks 5, 6, and 7 are assigned five conductors.

• Block number 2 and hence the Blocks 8, 9, and 10 are set to a mandrel radius of 40 mm.

• Block 3 and Blocks 11, 12, and 13 are assigned a positioning-angleϕ of 75 degrees.

• Layer 2 is turned by 15 degrees. and all its block are set to be of rectangular type, compare
RECTBL-option above.

Fig. 55.9: A number of design parameters applied block-wise (left) or layer-wise (right) to the design of Fig. 55.5.

Conductors:

In the "Conductors"-section of the design variables the geometry of conductors can be altered individ-
ually or block-wise. The following input yields the coil in Fig. 55.10 (left, the second layer has been
omitted).

• The outer width of the conductors in Block 3 is set to 6 mm.

• Conductor number 3 is repositioned on a mandrel radius of 30 mm.

• The outer front of conductor number 13 is shifted inx-direction by 10 mm.



Fig. 55.10: Design options from the "Conductors"-menu (left) and the "2-D Transform (layers and blocks)"-menu (right)

applied to the design of Fig. 55.5.

2-D transform (layers and blocks):

In the "2-D Transform (layers and blocks)"-section of the design variables blocks and layers can be
shifted and turned. The following input yields the coil in Fig. 55.10 (right).

• Layers 1 and 2 are shifted by 90 mm in oppositex-direction.

• Layer 2 is turned by 45 degrees. The order is important here

• Conductor number 3 is repositioned on a mandrel radius of 30 mm.

• The outer front of conductor number 13 is shifted inx-direction by 10 mm.

55.1.8 Cable in Conduit

The N1- and N2-parameters in the "Block Data 2-D"-table can be used to define round hollow conductors.
To use this feature the N2-parameter is set to 0 while the N1-parameter gives the number of of round
conductors to be inscribed into the mantle of the cylinder. This parameter implicitly defines the inner
radius of the cylinder. The following input yields the output in Fig. 55.11.

Fig. 55.11: Setting the conductor-

discretization parameter N2 to 0

yields a hollow conductor.



55.2 3-D coil modeling

55.2.1 The constant-perimeter coil end

The input parameters for constant-perimeter coil ends are described in Section 30.6. We design a coil
end for the cross-section in Fig. 55.5. To this end we switch the "3-D Coil Geometry"-option ’on’ in the
"Main Options" and enter the following data. The output can be seen in Fig. 55.12 (left).

Fig. 55.12: Coil end design of the 2-layer cross-section in Fig. 55.5. Right: TRAILZ-option applied to the inner layer.

The coil end in Fig. 55.12 is starting point and basically only ensures that the 3-D coil topology is correct.
The mechanical quality can be determined from a table given in the.output-file of every 3-D run.

PERIMETER OF CABLE EDGES (XYZ PLANE, WITHOUT STRAIGHT SECTION) (mm)

INNER SIDE OUTER SIDE CURVATURE (1/MM) ISOMETRY FACT.

UPPER LOWER UPPER LOWER GEODESIC NORMAL MAXIMUM MAXIMUM

COND. 4 1 3 2 SQUEEZE STRETCH



1 230.64 230.67 233.17 233.21 -0.00001 0.00158 0.999 1.141

2 227.72 227.76 230.24 230.29 -0.00001 0.00160 0.998 1.121

3 224.79 224.84 227.31 227.37 -0.00001 0.00162 0.997 1.101

4 221.86 221.92 224.38 224.44 -0.00002 0.00164 0.996 1.082

5 218.93 219.00 221.44 221.51 -0.00002 0.00165 0.994 1.064

6 216.00 216.07 218.49 218.57 -0.00002 0.00167 0.993 1.047

... ... ... ... ... ... ... ... ...

In the case of Fig. 55.12 case we find a minimum isometry-value of 0.79. A perfect constant-perimeter
end would have 1.0. Optimization of the shape is required (use the BULGE- and CURVAT-options in the
"Objectives"-table).

For the plot in Fig. 55.12 (right) we use the TRAILZ-option in the "Transform 3-D"-menu of the
"Design Variables" and applied it to layer 2, i.e., the inner layer. To set the plot-range right we needed
to click the "No shift of Plot Center"-option in the "Plotting Information 3-D"-widget. Note that if you
use "Transform 3-D"-options you also have to ensure the correct powering of the transformed blocks
or layers. In the case of Fig. 55.12 (right) the sign of the currents of blocks 2-4 in the "Block Data
2-D"-table needs to be inversed.

Figure 55.13 shows the effect of the "Super-Elliptical Coil-End"-option in the "Global Information
3-D". The baseline ellipse is replaced by a super-ellips which has a slightly more "rectangular" shape.

Fig. 55.13: Quadrant of an iso-parametric coil end of a cosine-theta magnet. Left: with an elliptical baseline; Right: with a

super-elliptical baseline.

55.2.2 Racetrack coil

The only coil-end option for Window Frame magnets implemented in ROXIE is the Racetrack Coil. The
following input yields the coil end in Fig. 55.14 (left). The "Symmetric Coil"-option from the "Main
Options" is selected, as well as the "Plot Imaged at z=0 Plane"-option in the "Plot Information 3-D".



With the following input (option TRANIX) we can introduce a straight part in the racetrack ends, com-
pare Fig. 55.14 (right). The Inserted straight section shifts the straight section apart.

Fig. 55.14: Left: Racetrack-shaped coil end for Window Frame magnet. Right: Racetrack-shaped coil end with additional

straight part.



55.2.3 Differential geometry for coil end design

The differential-geometry method for coil-end design yields a more accurate mechanical model of ca-
bles in coil ends than the constant-perimeter method. More involved endspacer designs, e.g., for brittle
conductors such as Ribbon-Type conductors or Rutherford-Type cables with a steel core, have a higher
chance of success with this method. The method is described in Chapter 30.

Unfortunately, the new model does not quite fit into the ROXIE data- and program format. There-
fore, coil ends designed with differential geometry methods cannot yet be used for field calculations.
Moreover, the postscript plots will only give a very basic view of the conductors and endspacers.

Differential-geometry coil ends use the same input format in the "Block Data 3-D"-table. All
data entered in this table is read and processed in the way it would be for constant-perimeter coil ends.
In addition, the user has to specify a number of "Design Variables" from the "Coil Ends (Differential
Forms)"-tab. For optimization, the user can choose curvature parameters from the "Coil Ends (Differen-
tial Forms)"-tab in the "Objectives"-table.

The following input generates the output of Fig. 55.15 as well as a CNC Machine file that contains
the data of the differential geometry end. The DARBOU-option is selected in the "Plot Data 3-D"-table.
For this option to work, the "Strips from Darboux Vec."-option and the "CNC Machine Files"-option
need to be switched ’on’ in the "Interface Options".

Fig. 55.15: Coil end design with differential geometry methods. The postprocessing shows the output of a constant-perimeter

calculation as defined in the "Block Data 3-D"-table. On top of this plot, the rulings of a differential-geometry defined coil end

are plotted. Left: block of conductors; Right: endspacer.



Chapter 56

Examples of Analytical Field Calculation

56.1 2-D field calculation

56.1.1 Modeling idealcos Θ current distributions

To model a shell with an idealcos Θ current distributions we use the COSPHI-option from the "Design
Variables"-table. The COSPHI-option distributes conductors in the specified blocks over the given angle
by adapting the inner outer conductor width such that ideal sector geometries are generated. It then
varies the strand currents according to their angular position and according to the "Type of Coil/Ref.
Field"-variable from "Global Information". The specified block current in the "Block Data 2-D"-table is
used as the amplitude of thecos Θ current distribution. The number of conductors serves thus no other
purpose than to specify a discretization of thecos Θ current distribution. About 50 conductors are used
for the generation of the current distribution shown in Fig. 56.1 (left).

The following input produces the field configuration in Fig. 56.1 (left). The "Layer Definition"-
option is ’on’, but the COSPHI option works with the "Symmetric Coil"-option as well.

To obtain the pure sextupole field shown in Fig. 56.1 (right) we specify the COSPHI angle in the design
variable block to 30 deg. The number of conductors can be reduced to 20.
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Fig. 56.1: Pure dipole (left) and sextupole (right) field produced with the COSHPI option in the "Design Variable".



Chapter 57

Examples of Numerical Field Calculation

57.1 Permanent magnets in 2-D

A 2-D calculation with permanent magnets is considerably more sophisticated than standard calculations
with ferro-magnetic material. In a first step we create a standard model of the configuration with some
kind of excitation coil. The following input illustrates this first step, compare Fig. 57.1. Note the shift
of the radius of harmonic analysis by the XCOIL option. This is necessary as the origin for the finite
element mesh generation was not chosen as the center of the aperture.

The.iron-file of this case is listed below, compare Fig. 57.1 (left).

-- IRON YOKE MODELLING FOR PERMANENET MAGNET CALCULATION

HyperMesh;

-- VARIABLES AND PARAMETERS

mm = 0.001;

xpos1 = -52.0 * mm; xpos2 = -2.0 * mm; xpos3 = 150.0 * mm; xpos4 = 2.0 * mm;

ypos1 = 0.0 * mm; ypos2 = 32.0 * mm; ypos3 = 80.0 * mm;

-- KEYPOINTS

kp1 = [xpos1,ypos1]; kp2 = [xpos2,ypos1];

kp3 = [xpos1,ypos2]; kp4 = [xpos2,ypos2];

kp5 = [xpos1,ypos3]; kp6 = [xpos2,ypos3];

kp7 = [xpos3,ypos3]; kp8 = [xpos3,ypos2];

kp9 = [xpos4,ypos3]; kp10 = [xpos4,ypos2];

-- LINES

ln1 = HyperLine(kp3,kp1,"Line",0.5);

ln2 = HyperLine(kp3,kp4,"Line",0.5);
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Fig. 57.1: C-shaped magnet with coil-excitation. Left: Finite Element Mesh. The areasar3 and its mirror image with material

BHiron8 are situated in the centre of the arc; The areasar4 and its image withBHiron9 can be identified as the thin areas in

the branches. Right: Vector potential inside the C-magnet.

ln3 = HyperLine(kp4,kp2,"Line",0.5);

ln4 = HyperLine(kp1,kp2,"Line",0.5);

ln5 = HyperLine(kp5,kp3,"Line",0.5);

ln6 = HyperLine(kp5,kp6,"Line",0.5);

ln7 = HyperLine(kp6,kp4,"Line",0.5);

ln8 = HyperLine(kp6,kp9,"Line",0.5);

ln9 = HyperLine(kp4,kp10,"Line",0.5);

ln10 = HyperLine(kp9,kp10,"Line",0.5);

ln11 = HyperLine(kp10,kp8,"Line",0.5);

ln12 = HyperLine(kp9,kp7,"Line",0.5);

ln13 = HyperLine(kp7,kp8,"Line",0.5);

-- AREAS

ar1 = Area(ln7,ln6,ln5,ln2,BHiron2);

ar2 = Area(ln13,ln12,ln10,ln11,BHiron2);

ar3 = Area(ln3,ln2,ln1,ln4,BHiron8);

ar4 = Area(ln10,ln8,ln7,ln9,BHiron9);

-- NUMBER OF ELEMENTS / LINE

Lmesh(ln1,6);

-- MIRRORING

Mirrorx;

The materialsBHiron8 andBHiron9 are defined in theroxie.bhdata-file as permanent magnetic material.
Their definition reads

BHiron8

3 1.0

0.000 0.

0.9 7.0E+05

1.8 1.4E+06 permanent magnet material

BHiron9

3 1.0

0.000 0.

0.9 7.0E+05

1.8 1.4E+06 permanent magnet material



Fig. 57.2: C-shaped magnet driven by permanent magnets. Left: Magnetic vector potential. Right: Magnetic Induction.

The definition of twice the same curve is necessary as two different vector fields (directions) will later
be assigned to the materials. We can now identify the so-called collector-numbers of the areas with
materialsBHiron8 andBHiron9 in the.hmo-file generated by the HERMES pre-processor.

# HYPERMESH OUTPUT FOR EDYSON CREATED WITH MGEN2HMO; VERSION=1.3

BEG_COMP_DATA

4

1 BHiron9

2 BHiron8

3 BHiron2

4 SuperCoils

END_COMP_DATA

BEG_NODL_DATA

2473

1 -0.00200000 0.08000000 0.00000000

2 -0.00825000 0.08000000 0.00000000

3 -0.01450000 0.08000000 0.00000000

4 -0.02075000 0.08000000 0.00000000

...

BHiron9 has been assigned number 1 andBHiron8 has number 2. Finally we can proceed to define two
vector fields in a.VEFI-file, compare Section 48.8.

2 3

1 1 0.9

1 0 1 +2 0 0 0

0.0 0.0 0.0 0.0 0.0 0.0

2 2 0.9

1 0 1 +1 0 2 0

0.0 0.0 0.0 0.0 0.0 0.0

2 0 1 -1 0 1 0

0.0 0.0 0.0 0.0 0.0 0.0

This file defines 2 vector fields. The first one pointing in+y-direction and the second one pointing in
+x-direction in the upper half plane and in−x-direction in the lower half plane.

In a final step we assign the vector fields to the respective areas (materials, collector numbers). The
following input produces the output of Fig. 57.2. Note that all currents in the "Block Data 2-D"-table are
now set to zero.



In Fig. 57.2 we used the NOCND-option in the "Plotting Information 2-D"-table to suppress the plotting
of the current-void coil blocks.

57.2 Differential inductance

The calculation of a differential inductance of a magnetic circuit (compare Section 24.1.3) is done during
a transfer-function evaluation. If the induced voltage is measured during the ramping of the magnet,
then it is the differential inductance that can be derived from these measurements. The following input
automatically generates the output and plot shown in Fig. 57.3. Figure 57.4 shows the geometry with
the iron yoke. On the yoke, the relative magnetic permeability is displayed at low field (left) and at high
field (right).



Fig. 57.3: Self inductance (in mH/m) and differential inductance for the geometry in Fig. 57.4 as a function of excitation.

Fig. 57.4: relative magnetic permeability is displayed at low field (left) and at high field (right).



Chapter 58

Examples of SC-Related Time-Transient
Effects

58.1 The analytical models of SC magnetization

This section presents an example magnet and ramp cycle. The Persistent Current (PC) effects, the Inter-
filament Coupling Currents (IFCCs) and the Interstrand Coupling Currents (ISCCs) are simulated, their
influence on field quality and loss-contribution are discussed. We use the following input in the "Time
Transient Effects"-widget.

The excitation function thus defined is shown in Fig. 58.1 (right). The left plot shows the magnet cross-
section and exciting magnetic field.

58.1.1 Persistent currents

The description of the mathematical model of persistent currents can be found in Section 27.4. The PC-
magnetization of SC filaments is shown in Fig. 58.2. Figure 58.3 shows the excitation and magnetization
curve of a single strand. Figure 58.4 yields the absolute and relative sextupole component of the field as
a function of excitation current.
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Fig. 58.1: Left: Dipole magnet cross-section (RHIC dipole magnet) with excitation field. Right: Excitation function of block

1. The option DTRF was used in the "Objectives"-table to obtain the plot. Furthermore the "PC: 0: None; 1,3: 1D; 4: Vector"-

parameter was set to zero as PC calculations would produce a plot of Excitation over current rather than excitation over time.

Fig. 58.2: PC-induced magnetization in SC strands. Left: Magnetization at low field. Right: Magnetizaton at high field. All

strands but the center ones are saturated.

Fig. 58.3: Excitation field (left) and magnetization (right) of a single strand. The options BSTR and MSTR were used from the

"Objectives"-table.



Fig. 58.4: The magnet’s sextupole error as a function of the excitation. Left: Relative field error. Right: Absolute field error.

The B and BR options from the "Objectives"-table were used.

58.1.2 Interfilament coupling currents

The IFCC-magnetization of SC strands is shown in Fig. 58.5 (left). The right plot shows the magnetiza-
tion curve of a single strand.

Fig. 58.5: Left: Strand magnetization pattern due to IFCCs. Right: Magnetization curve of a single strand. The difference

between ramp up and down is due to the use of forward differences in the calculation of the time-derivative of the magnetic

induction.

58.1.3 Interstrand coupling currents

The ISCC-magnetization of SC cables is shown in Fig. 58.6. Fig. 58.7 (left) shows the magnetization
curve of a single strand in a cable. The right plot gives the angular information, including a jump by 180
degrees at the peak-excitation.



Fig. 58.6: Strand magnetization pattern due to ISCCs.

Fig. 58.7: Left: Magnetization curve of a single strand in a cable. Right: Angular information on cable magnetization. The

difference between ramp up and down is due to the use of forward differences in the calculation of the time-derivative of the

magnetic induction.

Note that analytical models of interstrand coupling currents can only give an estimate. Especially
in terms of losses the implemented model tends to underestimate the real losses. This happens mostly
when there are blocks with a field vertex, i.e., the magnetic field in a block shows in up on one side and
down on the other, with zero field in the midle. In this case the cable-magnetization will underestimate
the losses. The network model of Section 58.2 gives accurate results.

58.2 Network model of ISCCs

The same excitation as in the previous section is used to evaluate interstrand coupling currents from a
network model which represents the cross-over- and adjacent resistances in a Rutherford-type cable. The
coupling current pattern is plotted in Fig. 58.8



Fig. 58.8: Interstrand coupling-current pattern in the coil cross-section. Note that the Eddy-Current loops in the outer blocks

close over the cross-over resistances, while in the central blocks they close over the adjacent resistances.

58.3 Quench calculations

Quench calculations run independently from transfer-function definitions with the "Transfer Function"-
option or time-transient calculations with the "Time Transient Effects"-option. The "Quench Calculation"-
option in the "Global Information"-widget starts a time-stepping algorithm of its own. The "Self and
Mutual Inductance"-option needs to be equally ’on’. The data on the quench’s initial location as well as
on machine-protection measures and material parameters are all entered in the "Design Variables"-table
via the "Quench, Inductance"-menu. The following input automatically produces the plot in Fig. 58.9
(left) if the "Postscript Plots"-option is ’on’.

The additional action of a dump resistor is demonstrated in Fig. 58.9 (right).



Fig. 58.9: Time evolution of current, resistivity and temperature during a quench. The magnet is equipped with quench heaters

(left)/with quench heaters and a dump resistor (right).



Chapter 59

Examples of Interfaces

59.1 Interfaces for 2-D calculations

In this section we present interface files for the nested quadrupole-/dipole-model in Fig. 55.5.

59.1.1 Field-vector matrix (Map)
The "Field-Vector Matrix (Map)"-option in the "Interface Options"-widget produces an output file. In
2-D this happens only if a matrix-option (MATR, MATRC or MATRP from the "Aperture"-menu) is
selected in the "Plotting Information 2-D"-widget.

I J X Y BX BY |B| DOMAIN

1 1 -90.000000 -90.000000 -0.009448 0.043838 0.044844 B

2 1 -80.526316 -90.000000 -0.016277 0.051280 0.053801 B

3 1 -71.052632 -90.000000 -0.025893 0.058876 0.064319 B

4 1 -61.578947 -90.000000 -0.038789 0.066333 0.076842 B

5 1 -52.105263 -90.000000 -0.056004 0.073666 0.092538 B

6 1 -42.631579 -90.000000 -0.080640 0.080640 0.114042 B

7 1 -33.157895 -90.000000 -0.119580 0.082117 0.145060 B

8 1 -23.684211 -90.000000 -0.172218 0.058646 0.181929 B

9 1 -14.210526 -90.000000 -0.211407 0.001016 0.211409 B

10 1 -4.736842 -90.000000 -0.219440 -0.072235 0.231023 B

11 1 4.736842 -90.000000 -0.196080 -0.144229 0.243412 B

12 1 14.210526 -90.000000 -0.144123 -0.203070 0.249015 B

13 1 23.684211 -90.000000 -0.069422 -0.234215 0.244287 B

14 1 33.157895 -90.000000 0.006643 -0.224513 0.224611 B

15 1 42.631579 -90.000000 0.057199 -0.188974 0.197441 B

16 1 52.105263 -90.000000 0.084098 -0.150712 0.172588 B

17 1 61.578947 -90.000000 0.097002 -0.116668 0.151726 B

18 1 71.052632 -90.000000 0.101551 -0.087620 0.134126 B

19 1 80.526316 -90.000000 0.100762 -0.063251 0.118969 B

20 1 90.000000 -90.000000 0.096463 -0.043178 0.105686 B

1 2 -90.000000 -80.526316 -0.000995 0.049057 0.049067 B

2 2 -80.526316 -80.526316 -0.007223 0.059286 0.059724 B

... ... ... ... ... ... ... ...

The DOMAIN-column features ’F’ or ’B’, where ’F’ means that the evaluation point is in a FEM domain
and ’B’ stands for a BEM domain.

The call of the "Field-Vector Matrix (Map)"-option together with a matrix-option (MATR, MA-
TRC or MATRP from the "Aperture"-menu) prints the following lines to the.output-file:

2-D MATRIX FIELD CALCULATION

LONGEST VECTOR IN PLOT= 0.5439613 T

This output can be used to select a value for the "Vmax"-entry in the "Plotting Information 2-D"-table
with the "More Plot Options"-option switched ’on’. This feature is used in BEM-FEM calculations
when the evaluation of the field on BEM-FEM domain-boundaries yields unphysical singularities. The
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respective field vector is then calculated as a mean value of the surrounding field points. The output to
the.matrf-file is adjusted in the same way.

59.1.2 Field along a line (2-D, 3-D)

The "Field Along a Line (2-D, 3-D)"-option produces a postscript plot, compare Fig. 59.1 with the
following input.

Fig. 59.1: Field along thex-axis of the cross-section in Fig. 55.5. Note the gradient of the quadrupole field in the aperture,

shifted by a dipole-component.

The line-field is also printed to the.output-file:

CALL OF 3-D FIELD ALONG A LINE

FIELD CALCULATION ALONG A LINE (SOURCE)

I X-POS Y-POS Z-POS DIST BX BY BZ |B|

1 -65.00 0.00 0.00 0.00 0.5767E-15 0.5270E+00 0.00E+00 0.53E+00

2 -58.16 0.00 0.00 6.84 0.6543E-15 0.2775E+00 0.00E+00 0.28E+00

3 -51.32 0.00 0.00 13.68 0.5068E-15 -0.1123E-01 0.00E+00 0.11E-01

4 -44.47 0.00 0.00 20.53 -0.6157E-16 -0.8537E-01 0.00E+00 0.85E-01

5 -37.63 0.00 0.00 27.37 0.2154E-16 -0.1097E+00 0.00E+00 0.11E+00

6 -30.79 0.00 0.00 34.21 -0.1347E-15 -0.1351E+00 0.00E+00 0.14E+00

7 -23.95 0.00 0.00 41.05 0.2429E-16 -0.1621E+00 0.00E+00 0.16E+00

8 -17.11 0.00 0.00 47.89 0.5974E-16 -0.1900E+00 0.00E+00 0.19E+00

9 -10.26 0.00 0.00 54.74 -0.8568E-16 -0.2183E+00 0.00E+00 0.22E+00

10 -3.42 0.00 0.00 61.58 -0.9502E-16 -0.2467E+00 0.00E+00 0.25E+00

11 3.42 0.00 0.00 68.42 0.1283E-16 -0.2749E+00 0.00E+00 0.27E+00

12 10.26 0.00 0.00 75.26 0.4646E-16 -0.3029E+00 0.00E+00 0.30E+00

13 17.11 0.00 0.00 82.11 0.2118E-16 -0.3311E+00 0.00E+00 0.33E+00

14 23.95 0.00 0.00 88.95 -0.2125E-15 -0.3602E+00 0.00E+00 0.36E+00

15 30.79 0.00 0.00 95.79 0.1845E-16 -0.3917E+00 0.00E+00 0.39E+00

16 37.63 0.00 0.00 102.63 0.5219E-16 -0.4276E+00 0.00E+00 0.43E+00

17 44.47 0.00 0.00 109.47 -0.1697E-15 -0.4692E+00 0.00E+00 0.47E+00



18 51.32 0.00 0.00 116.32 0.1063E-15 -0.4675E+00 0.00E+00 0.47E+00

19 58.16 0.00 0.00 123.16 0.6014E-16 -0.2577E+00 0.00E+00 0.26E+00

20 65.00 0.00 0.00 130.00 -0.2660E-15 -0.8968E-01 0.00E+00 0.90E-01

MAXIMUM OF THE FIELD COMPONENTS BX,BY: 6.5427821E-16 0.5269822

59.1.3 Ansys
The "Ansys"-option creates acoilmesh.iron-file which contains one area-definition for each conductor in
the cross-section.

kpcon1_1=[ 0.070129, 0.001852];

kpcon1_2=[ 0.070149, 0.000132];

kpcon1_3=[ 0.085150, 0.000132];

kpcon1_4=[ 0.085126, 0.002192];

lncon1_1=Line(kpcon1_1,kpcon1_2);

lncon1_2=Line(kpcon1_2,kpcon1_3);

lncon1_3=Line(kpcon1_3,kpcon1_4);

lncon1_4=Line(kpcon1_4,kpcon1_1);

arcon1=Area(lncon1_1,lncon1_2,lncon1_3,lncon1_4,BHiron7);

Lmesh(lncon1_1,1);

Lmesh(lncon1_4,8);

kpcon2_1=[ 0.070061, 0.003811];

kpcon2_2=[ 0.070119, 0.002092];

kpcon2_3=[ 0.085117, 0.002432];

kpcon2_4=[ 0.085046, 0.004491];

...

59.1.4 Autocad
The "Autocad"-option produces afilename.dxfxy-file which contains an autocad-model of the coil cross-
section.
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25

...

59.1.5 MS Excel
The "MS Excel"-option creates afilename.excelfile that has the geometrical information of the bare
cables in the cross-section. A second table gives the coordinates of the corners of each cable block. The
tables are comma-delimitted.

CONDUCTOR POSITION IN THE CROSS-SECTION

NO., COND., BLOCK , CORNER , X(mm) , Y(mm)

, NO. , NO. , NO. , ,

1, 1, 1, 1, 50.1292, 1.8486

2, 1, 1, 2, 50.1486, 0.1287

3, 1, 1, 3, 65.1496, 0.1287

4, 1, 1, 4, 65.1263, 2.1886

5, 1, 1, 1, 50.1292, 1.8486

6, 2, 1, 1, 50.0488, 3.8072

7, 2, 1, 2, 50.1073, 2.0882

8, 2, 1, 3, 65.1044, 2.4282

9, 2, 1, 4, 65.0344, 4.4870

10, 2, 1, 1, 50.0488, 3.8072

11, 3, 1, 1, 49.8919, 5.7620

12, 3, 1, 2, 49.9893, 4.0447

13, 3, 1, 3, 64.9749, 4.7245

14, 3, 1, 4, 64.8582, 6.7812

15, 3, 1, 1, 49.8919, 5.7620

16, 4, 1, 1, 49.6585, 7.7105

17, 4, 1, 2, 49.7948, 5.9959

BLOCK POSITION IN THE CROSS-SECTION

NO., BLOCK , CORNER , X(mm) , Y(mm)

, NO. , NO. , ,

1, 1, 1, 63.3850, 25.0434

2, 1, 2, 68.0000, 0.0119

3, 1, 3, 83.3006, 0.0119

4, 1, 4, 78.1010, 29.2325

5, 1, 1, 63.3850, 25.0434

6, 2, 1, 44.8894, 22.8527

7, 2, 2, 50.0000, 0.0087

8, 2, 3, 65.3010, 0.0087

... ... ... ... ...

59.1.6 2-D Field Map in Coil
The "2-D Field Map in Coil"-option creates afilename.map2-D-file. The file contains the magnetic
induction in the position of every strand in the cross-section.

UNSPECIFIED

&MAGNET

NPOLE= 0, NBLOKS= 20,SCX=0.001,SCB=1.0,ORIGIN='ROXIE',VERSION=9.0,

RIRON= 0.0000,BREF= 1.0000,XREF= 0.017000,/

BL. COND. NO. X-POS/MM Y-POS/MM BX/T BY/T AREA/MM**2 CURRENT FILL FAC.

1 1 1 50.5506 1.4257 -0.0125 -0.4930 0.7206 27.78 0.3698

1 1 2 50.5604 0.5611 -0.0018 -0.4932 0.7206 27.78 0.3698

1 1 3 51.3839 1.4399 -0.0139 -0.4640 0.7285 27.78 0.3658

1 1 4 51.3938 0.5658 -0.0017 -0.4642 0.7285 27.78 0.3658

1 1 5 52.2171 1.4541 -0.0148 -0.4360 0.7363 27.78 0.3619

1 1 6 52.2271 0.5705 -0.0020 -0.4362 0.7363 27.78 0.3619

1 1 7 53.0503 1.4682 -0.0157 -0.4089 0.7442 27.78 0.3581

1 1 8 53.0604 0.5752 -0.0024 -0.4091 0.7442 27.78 0.3581

1 1 9 53.8835 1.4824 -0.0166 -0.3825 0.7521 27.78 0.3543

1 1 10 53.8938 0.5799 -0.0028 -0.3827 0.7521 27.78 0.3543

... ... ... ... ... ... ... ... ... ...



59.1.7 2-D line currents
The "2-D Line Currents"-option creates afilename.fila2-D-file. The file contains information on the
current-carrying areas in every discretized conductor (compare the N1-, N2-parameters in the "Block
Data 2-D"-table), as well as on the position of each line current. The file therefore contains two tables:

POSITIONS OF CURRENT AREAS (2-D)

NO. OF THE FIL., CURRENT

X1 , X2 , X3 , X4

Y1 , Y2, Y3, Y4

1 50.00000

70.138903 70.129156 71.628868 71.638806

0.992162 1.852107 1.886105 1.009161

2 50.00000

70.148649 70.138903 71.638806 71.648745

0.132217 0.992162 1.009161 0.132217

3 50.00000

71.638806 71.628868 73.128579 73.138710

1.009161 1.886105 1.920102 1.026160

... ... ... ...

POSITIONS OF CURRENT FILAMENTS (2-D)

NO., CURRENT X Y

1 50.00000 70.883933 1.434884

2 50.00000 70.893776 0.566439

3 50.00000 72.383741 1.460382

4 50.00000 72.393776 0.574939

5 50.00000 73.883548 1.485880

6 50.00000 73.893776 0.583438

7 50.00000 75.383355 1.511379

... ... ... ...

59.1.8 Write multipoles for Post-Processing
The "Write Multipoles for Pp."-option creates afilename.txt-file. The file contains the normal- and skew
harmonics at every time-step. Every data line yields the step number, the time, the current in block 1, the
main field component, and the relative harmonics.

Steps Time Current BN bn(n=1-20) an(n=1-20)

1 0.00000 1000.00000 -0.26080 10000.00000 2685.33092 /

-23.36314 0.00000 12.63201 2.89206 1.27216 0.00000 /

0.01525 -0.00316 -0.01057 0.00000 -0.00231 -0.00001 /

0.00018 0.00000 0.00001 0.00000 0.00000 0.00000 /

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 /

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 /

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 /

0.00000 0.00000

59.2 Interfaces for 3-D calculations

In this section we present output files that can be produced to exchange data on 3-D coil end design with
other programs. As a model coil end we use the end of Fig. 55.5, compare Fig. 59.2



Fig. 59.2: Set of endspacers of the coil en in Fig. 55.5.

59.2.1 Field vector matrix (Map)
The "Field-Vector Matrix (Map)"-option produces afilename.matrf-file which contains the components
of the magnetic induction in the respective positions in the matrix.

I , J , KK 1 1 1

X , Y , Z -80.000000 -80.000000 0.000000

BX, BY, BZ -0.001952 0.026444 0.002581

I , J , KK 1 1 2

X , Y , Z -80.000000 -80.000000 5.128205

BX, BY, BZ -0.002208 0.029795 0.002715

I , J , KK 1 1 3

X , Y , Z -80.000000 -80.000000 10.256410

BX, BY, BZ -0.002440 0.033063 0.002858

I , J , KK 1 1 4

X , Y , Z -80.000000 -80.000000 15.384615

BX, BY, BZ -0.002637 0.036180 0.003011

... ... ... ...

59.2.2 Field along a line (2-D, 3-D)

The "Field Along a Line (2-D, 3-D)"-option works in the same way in 3-D- as in 2-D-calculations.

59.2.3 CNC machining fiels
The "CNC Machine Files"-option, together with the "Wedge/Endspacer"-option in the "Main Options"
produces afilename.cncfile that can serve as an input for a CNC-machining process of endspacers.

$$ WEDGE 1 INNER, POLYGON 1 P. FOLLOW 23

$$ X (mm) Y (mm) Z (mm)

p 52.423 38.935 0.000

p 52.423 38.935 9.313

p 52.423 38.935 18.628

p 52.423 38.935 27.946

p 52.423 38.935 37.268

p 52.423 38.935 46.592

p 52.423 38.935 55.912

p 52.423 38.935 65.219

p 52.358 39.022 74.527

p 52.041 39.444 83.813

p 51.444 40.219 93.075

p 50.546 41.342 102.274

p 49.309 42.810 111.384

p 47.682 44.615 120.383



p 45.601 46.740 129.208

p 42.981 49.160 137.807

p 39.712 51.837 146.108

p 35.668 54.698 153.982

p 30.687 57.640 161.276

p 24.612 60.484 167.723

p 17.318 62.962 172.945

p 8.864 64.696 176.413

p 0.000 65.300 177.589

$$ WEDGE 1 INNER, POLYGON 2 P. FOLLOW 23

$$ X (mm) Y (mm) Z (mm)

p 50.862 37.830 0.000

p 50.862 37.830 9.327

... ... ... ...

With the "Strips from Darboux Vec."-option the "CNC Machine Files"-option also produces afilename.darbcnc-
file from the differential-geometry based coil-end design. The output format differs slightly.

$$ WEDGE 1 INNER, POLYGON ON OUTER RADIUS P. FOLLOW 23

$$ X(mm) Y(mm) Z(mm)

p 51.310 40.406 0.000

p 51.391 40.360 102.320

p 51.463 40.326 98.876

p 51.330 40.536 100.616

p 50.859 41.140 106.361

p 50.069 42.085 114.134

p 49.336 42.941 119.923

p 48.722 43.655 123.849

p 48.218 44.255 126.479

p 47.746 44.824 128.473

p 46.890 45.766 131.551

p 45.480 47.192 135.873

p 43.532 49.003 140.894

p 41.065 51.083 146.216

p 38.155 53.276 151.455

p 34.918 55.435 156.288

p 31.320 57.526 160.704

p 27.314 59.513 164.683

p 22.850 61.349 168.177

p 17.851 62.974 171.131

p 12.317 64.281 173.416

p 6.333 65.142 174.880

p 0.000 65.450 175.395

$$ WEDGE 1 INNER, POLYGON ON INNER RADIUS P. FOLLOW 23

$$ X(mm) Y(mm) Z(mm)

p 38.794 31.544 0.000

p 38.725 31.628 114.786

... ... ... ...

59.2.4 Opera interface
The "Opera 8/20-Node Bricks"-option yieldsfilename.opera8- andfilename.opera20-files. They contain
input for Vector Field’s OPERA program that describes the coil ends in 3-D.

CONDUCTOR GEOMETRY PRINT OUT FOR VF-OPERA 3-D

********************************************



COND

DEFI BR8

0.0 0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

50.129157 1.848616 0.000000

50.148649 0.128727 0.000000

65.149612 0.128727 0.000000

65.126267 2.188594 0.000000

50.129157 1.848616 29.333333

50.148649 0.128727 29.333333

65.149612 0.128727 29.333333

65.126267 2.188594 29.333333

104.238036 , 1 , 0.0

0 1 1

10.

QUIT

COND

DEFI BR8

0.0 0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

50.129157 1.848616 29.333333

50.148649 0.128727 29.333333

... ... ...

59.2.5 Autocad
In 3-D calculations, "Autocad"-option produces not only afilname.dxfxy-file that describes the coil cross-
section in an Autocad-readable format, but also afilename.dxfyz-file that yields the geometrical data of a
cut through theyz-plane of a coilend.
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59.2.6 Virtual reality (3-D)
The "Virtual Reality (3-D)"-option produces afilename.wrl-file, which can be read in by any VRML-
browser (sometimes called WRL-browser or VMRL-browser). Afilename.wrl-file looks like this:

#VRML V2.0 utf8



Viewpoint {

position 2 2 -20

orientation 0 1 0 3.14

}

Group { children [ Transform {

scale 0.0871 0.0871 0.0871

children [ Shape {

appearance Appearance {

material Material {

ambientIntensity 0.1

diffuseColor 0.6 0 0

specularColor 1 0.7 0

shininess 0.02

} }

geometry IndexedFaceSet {

coord Coordinate {

point [

68.1373 1.4818 0.0000,

68.1489 0.1419 0.0000,

83.1494 0.1419 0.0000,

83.1356 1.7418 0.0000,

68.1373 1.4818 36.6667,

... ... ...

The 3-D-model can be viewed in an interactive browser, compare Fig. 59.3.

Fig. 59.3: The coil end of Fig. 55.12, viewed with a free WRL-browser.

59.2.7 3-D field map in coil
The "3-D Field Map in Coil"-option produces afilename.map3-D-file. The "3-D Peak Field Calc."-option
in the "Global Information 3-D" must be switched ’on’. The file contains five tables which describe the
position of the line currents (filaments), the field inx-, y-, andz-component, the the field in parallel-,
perpendicular-, and longitudinal-component, the pressure on the conductors and the forces acting on the
conductors.

NFIL NCUT NCON X Y Z



1 1 1 68.5568 1.1522 0.0000

1 2 1 68.5568 1.1522 36.6667

1 3 1 68.5568 1.1522 73.3333

1 4 1 68.5568 1.1522 110.0000

1 5 1 68.5564 1.1565 116.3867

1 6 1 68.5559 1.1699 122.7730

1 7 1 68.5549 1.1924 129.1583

1 8 1 68.5534 1.2242 135.5421

1 9 1 68.5508 1.2653 141.9240

1 10 1 68.5473 1.3374 148.3032

... ... ... ... ... ...

NFIL NCUT NCON Bx By Bz |B|

1 1 1 -0.0136 -0.0929 -0.0001 0.0939

1 2 1 -0.0164 -0.0986 -0.0002 0.0999

1 3 1 -0.0173 -0.1122 -0.0003 0.1135

1 4 1 -0.0152 -0.1300 -0.0010 0.1309

1 5 1 -0.0127 -0.1353 -0.0005 0.1359

1 6 1 -0.0091 -0.1376 0.0002 0.1379

1 7 1 -0.0045 -0.1357 0.0012 0.1358

1 8 1 0.0008 -0.1287 0.0024 0.1288

1 9 1 0.0062 -0.1156 0.0040 0.1158

1 10 1 0.0162 -0.0952 0.0080 0.0969

... ... ... ... ... ... ...

NFIL NCUT NCON B long. B -| B ||

1 1 1 -0.0001 0.0939 -0.0144

1 2 1 -0.0002 0.0999 -0.0173

1 3 1 -0.0003 0.1135 -0.0182

1 4 1 -0.0011 0.1309 -0.0163

1 5 1 -0.0008 0.1359 -0.0153

1 6 1 -0.0002 0.1379 -0.0162

1 7 1 0.0005 0.1358 -0.0189

1 8 1 0.0015 0.1287 -0.0226

1 9 1 0.0026 0.1158 -0.0260

1 10 1 -0.0005 0.0969 -0.0217

... ... ... ... ... ...

NCON NCUT P || P -| Px Py Pz

1 1 -0.1018 0.0005 -0.1017 -0.0065 0.0000

1 2 -0.1139 0.0006 -0.1138 -0.0080 0.0000

1 3 -0.1057 0.0007 -0.1057 -0.0084 0.0000

1 4 -0.0946 0.0006 -0.0945 -0.0075 0.0000

1 5 -0.0905 0.0003 -0.0904 -0.0042 0.0000

1 6 -0.0859 -0.0002 -0.0861 0.0013 0.0000

1 7 -0.0808 -0.0008 -0.0821 0.0078 -0.0001

1 8 -0.0747 -0.0014 -0.0786 0.0139 -0.0002

1 9 -0.0672 -0.0018 -0.0753 0.0184 -0.0004

1 10 -0.0566 -0.0023 -0.0708 0.0222 -0.0006

... ... ... ... ... ... ...

NCON NCUT Fr Fphi Fz

1 1 -5.0024 -0.2598 0.0000

1 2 -5.5976 -0.3265 0.0000

1 3 -5.1962 -0.3507 0.0000

1 4 -0.8139 -0.0543 0.0000

1 5 -0.7810 -0.0255 0.0000

1 6 -0.7528 0.0253 -0.0036

1 7 -0.7308 0.0879 -0.0115

1 8 -0.7153 0.1516 -0.0232

1 9 -0.7044 0.2062 -0.0376

1 10 -0.6915 0.2638 -0.0643

... ... ... ... ...



59.2.8 3-D line currents
The "3-D Line Currents"-option creates afilename.fila3-D-file, which describes the positioning of line
currents in 3-D coil models.

NUMBER OF LINE CURRENTS *****

12

XS , YS , ZS

XE , YE , ZE

CURRENT

12

68.55680 1.15225 0.00000

68.55680 1.15225 36.66667

27.77778

12

68.55680 1.15225 36.66667

68.55680 1.15225 73.33333

27.77778

12

68.55680 1.15225 73.33333

68.55680 1.15225 110.00000

27.77778

12

68.55680 1.15225 110.00000

68.55644 1.15654 116.38671

27.77778

12

68.55644 1.15654 116.38671

68.55587 1.16992 122.77296

27.77778
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